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Umbilical Submanifolds of Sn × R

Bruno Mendonça and Ruy Tojeiro

Abstract. We give a complete classification of umbilical submanifolds of arbitrary dimension and codi-
mension of Sn×R, extending the classification of umbilical surfaces in S2×R by Souam and Toubiana
as well as the local description of umbilical hypersurfaces in Sn × R by Van der Veken and Vrancken.
We prove that, besides small spheres in a slice, up to isometries of the ambient space they come in a
two-parameter family of rotational submanifolds whose substantial codimension is either one or two
and whose profile is a curve in a totally geodesic S1 ×R or S2 ×R, respectively, the former case arising
in a one-parameter family. All of them are diffeomorphic to a sphere, except for a single element that
is diffeomorphic to Euclidean space. We obtain explicit parametrizations of all such submanifolds.
We also study more general classes of submanifolds of Sn × R and Hn × R. In particular, we give a
complete description of all submanifolds in those product spaces for which the tangent component of
a unit vector field spanning the factor R is an eigenvector of all shape operators. We show that surfaces
with parallel mean curvature vector in Sn ×R and Hn ×R having this property are rotational surfaces,
and use this fact to improve some recent results by Alencar, do Carmo, and Tribuzy. We also obtain a
Dajczer-type reduction of codimension theorem for submanifolds of Sn × R and Hn × R.

1 Introduction

Roughly speaking, a submanifold of a Riemannian manifold is totally umbilical, or
simply umbilical, if it is equally curved in all tangent directions. More precisely, an
isometric immersion f : Mm → M̃n between Riemannian manifolds is umbilical if
there exists a normal vector field ζ along f such that its second fundamental form
α f : TM × TM → N f M with values in the normal bundle satisfies

α f (X,Y ) = 〈X,Y 〉ζ for all X,Y ∈ TM.

Umbilical submanifolds are the simplest submanifolds after the totally geodesic
ones (for which the second fundamental form vanishes identically), and knowledge
of them sheds light on the geometry of the ambient space.

Apart from space forms, however, there are few Riemannian manifolds for which
umbilical submanifolds are classified. Recently, this was accomplished for all three-
dimensional Thurston geometries of non-constant curvature as well as for the Berger
spheres in [14]. The richest case turned out to be that of the product spaces S2×R and
H2×R. For these manifolds, it was shown that, up to isometries of the ambient space,
umbilical nontotally geodesic surfaces come in a one-parameter family of rotational
surfaces, whose profile curves have been completely determined in terms of solutions
of a certain ODE.
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A local description of umbilical hypersurfaces of Sn × R and Hn × R of any di-
mension n was given in [17] and [5], respectively. Again, the nontotally geodesic
ones are rotational hypersurfaces over curves in totally geodesic products S1×R and
H1 × R, respectively. On the other hand, it was shown in [15] that a Riemannian
product M × R admits nontrivial totally umbilical hypersurfaces if and only if the
Riemannian manifold M has locally the structure of a warped product, and in this
case a local description of all such hypersurfaces was provided.

In this paper we give a complete classification of umbilical submanifolds of arbi-
trary dimension and codimension of Sn × R. To state our result, for a given integer
m ≥ 2 let Φ : Sm+1 × R → Rm+2 \ {0} be the conformal diffeomorphism given by
Φ(x, t) = et x. Choose a closed half-line ` := {x̄} × [0,∞) ⊂ Rm+2 = Rm+1 × R
with x̄ 6= 0. Let Mm

r,h be the image by Φ−1 of the m-dimensional sphere Sm
r,h in Rm+2

of radius r centered on ` that lies in the affine hyperplane through (x̄, h) orthogonal
to `, with the origin removed if h = 0 and r = d := |x̄|. Then we prove the following
theorem.

Theorem 1.1 The submanifold Mm
r,h is a complete umbilical submanifold of Sm+1×R

for every r > 0 and h ≥ 0. Moreover, it has the following properties:

(i) it is diffeomorphic to Sm if (r, h) 6= (d, 0) and to Rm if (r, h) = (d, 0);
(ii) it lies in a totally geodesic hypersurface Sm × R ⊂ Sm+1 × R if and only if h = 0;
(iii) Mm

r,0 is homologous to zero in Sm × R if r < d and inhomologous to zero if r > d;
(iv) it is a rotational submanifold whose profile is a curve in a totally geodesic subman-

ifold S2 × R (respectively, S1 × R) if h 6= 0 (respectively, h = 0);
(v) Mm

r,h is not congruent to Mm
r ′,h ′ if (r, h) 6= (r ′, h ′).

Conversely, any umbilical nontotally geodesic submanifold of Sn × R with dimension
m ≥ 2 is, up to an isometry of the ambient space, an open subset of one of the following:

(a) a small sphere in Sn × {0};
(b) Mm

r,0 for some r > 0 if n = m;
(c) Mm

r,h for some r > 0 and h ≥ 0 if n = m + 1;

(d) Mm
r,h in a totally geodesic Sm+1 × R for some r > 0 and h ≥ 0 if n > m + 1.

Moreover, we provide explicit parametrizations of all submanifolds Mm
r,h, r > 0,

h ≥ 0 (see Proposition 6.1) in terms of elementary functions. The precise meaning
of Mm

r,h being rotational is explained in Section 4.
In the process of proving Theorem 1.1, we have been led to study more general

classes of submanifolds with interest on their own.
Let Qn

ε denote either Sn, Rn, or Hn, according to whether ε = 1, ε = 0, or ε = −1,
respectively. Given an isometric immersion f : Mm → Qn

ε ×R, let ∂
∂t be a unit vector

field tangent to the second factor. Thus, for ε = 0 we just choose a unit constant
vector field ∂

∂t in Rn+1. Then, a tangent vector field T on Mm and a normal vector
field η along f are defined by

(1.1)
∂

∂t
= f∗T + η.

We denote by A the class of isometric immersions f : Mm → Qn
ε × R with the

property that T is an eigenvector of all shape operators of f . Our next result is a
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complete description of all isometric immersions in class A. First note that trivial
examples are products Nm−1 × R, where Nm−1 is a submanifold of Qn

ε , which cor-
respond to the case in which the normal vector field η in (1.1) vanishes identically.
We call these examples vertical cylinders. More interesting ones are constructed as
follows. We consider the case ε ∈ {−1, 1}, the case ε = 0 being similar.

Let g : Nm−1 → Qn
ε be an isometric immersion. Assume that there exists an or-

thonormal set of parallel normal vector fields ξ1, . . . , ξk along g. This assumption is
satisfied, for instance, if g has flat normal bundle. Thus, the vector subbundle E with
rank k of the normal bundle NgN of g spanned by ξ1, . . . , ξk is parallel and flat. Let
j : Qn

ε → Qn
ε × R and i : Qn

ε × R → En+2 denote the canonical inclusions, and let
j̃ = i ◦ j. Here En+2 denotes either Euclidean space Rn+2 if ε = 1 or Lorentzian space

Ln+2 if ε = −1. Set ξ̃i = j̃∗ξi , 1 ≤ i ≤ k, ξ̃0 = g̃ := j̃ ◦ g, and ξ̃k+1 = i∗∂/∂t .
Then the vector subbundle Ẽ of N g̃N whose fiber Ẽ(x) at x ∈ Nm−1 is spanned
by ξ̃0, . . . , ξ̃k+1 is also parallel and flat, and we may define a vector bundle isometry
φ : Nm−1 × Ek+2 → Ẽ by

φx(y) := φ(x, y) =

k+1∑
i=0

yi ξ̃i , for y = (y0, . . . , yk+1) ∈ Ek+2.

Now let
f : Mm := Nm−1 × I → Qn

ε × R

be given by

(1.2) f̃ (x, s) := (i ◦ f )(x, s) = φx(γ(s)) =

k+1∑
i=0

γi(s)ξ̃i(x),

where γ : I → Qk
ε ×R ⊂ Ek+2, γ = (γ0, . . . , γk, γk+1), is a smooth regular curve such

that εγ2
0 +γ2

1 + · · ·+γ2
k = ε and γk+1 has nonvanishing derivative. Notice that vertical

cylinders correspond to the case in which γ parametrizes { p̄}×R ⊂ Qk
ε ×R ⊂ Ek+2.

Theorem 1.2 The map f defines, at regular points, an immersion in class A. Con-
versely, any isometric immersion f : Mm → Qn

ε × R, m ≥ 2, in class A is locally given
in this way.

A necessary and sufficient condition for a point (x, s) ∈ Mm = Nm−1 × I to be
regular for f is given in Proposition 3.2(ii).

The map f̃ is a partial tube over g̃ with type fiber γ in the sense of [6] (see also [7]).
Geometrically, f̃ (M) is generated by parallel transporting the curve γ in a product
submanifold Qk

ε × R of a fixed normal space of g̃ with respect to its normal connec-
tion.

Theorem 1.2 extends to submanifolds with arbitrary codimension the main result
of [16], where the case of hypersurfaces was studied. That the preceding construc-
tion coincides with the one in [16, Theorem 1] in the hypersurface case was already
observed in Remarks 7(ii) in that paper. Some important classes of hypersurfaces of
Qn
ε × R, ε ∈ {−1, 1}, that are included in class A are hypersurfaces with constant
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sectional curvature [13], rotational hypersurfaces [10], and constant angle hypersur-
faces (see, e.g., [16]; see also Corollary 1.4 and the comments preceding it).

Let f : Mm → Qn
ε ×R, ε ∈ {−1, 1}, be an isometric immersion, and set f̃ = i ◦ f ,

where i : Qn
ε × R → En+2 is the canonical inclusion. It was shown in [13] that if

m = n, then f is in class A if and only if the vector field T in (1.1) is nowhere
vanishing, and f̃ has flat normal bundle. For submanifolds of higher codimension
we have the following corollary.

Corollary 1.3 The following assertions are equivalent:

(i) the vector field T in (1.1) is nowhere vanishing, and f̃ has flat normal bundle;
(ii) f has flat normal bundle and is in class A;

(iii) f̃ is locally given as in (1.2) in terms of an isometric immersion g : Nm−1 → Qn
ε

with flat normal bundle and a smooth regular curve γ : I → Qk
ε × R ⊂ Ek+2,

γ = (γ0, . . . , γk, γk+1), with γ ′k+1 nowhere vanishing.

Observe that the vector field T vanishes at some point if and only if f (Mm) is
tangent to the slice Qn

ε ×{t} of Qn
ε ×R through that point. If T vanishes on an open

connected subset U ⊂ Mm then f (U ) is contained in some slice.
Notice that a surface in class A automatically has a flat normal bundle. Hence, by

Corollary 1.3, a surface in Qn
ε × R, ε ∈ {−1, 1} is in class A if and only if it has a flat

normal bundle as a surface in the underlying flat space En+2 (and is nowhere tangent
to a slice). By Theorem 1.2, any such surface is locally given by (1.2) in terms of a
unit-speed curve g : J → Qn

ε and a smooth regular curve γ : I → Qk
ε×R ⊂ Ek+2, γ =

(γ0, . . . , γk, γk+1), with γ ′k+1 nowhere vanishing. Clearly, in this case the existence of
an orthonormal set of parallel normal vector fields ξ1, . . . , ξk along g is automatic for
any 1 ≤ k ≤ n− 1.

In the case of a hypersurface f : Mn → Qn
ε × R, the vector field η in (1.1) can

be written as η = ρN, where N is a unit normal vector field along f . Then f is
called a constant angle hypersurface if the function ρ is constant on Mn. One possible
way to generalize this notion to submanifolds of higher codimension is to require the
vector field η to be parallel in the normal connection. It turns out that submanifolds
with this property also belong to class A, and this leads to the following classification,
extending [16, Corollary 2].

Corollary 1.4 Let f : Mm := Nm−1 × I → Qn
ε × R be given by (1.2) with γ : I →

Qk
ε ×R a geodesic of Qk

ε ×R. Then f defines, at regular points, an immersion for which
the vector field η in (1.1) is parallel in the normal connection. Conversely, any isometric
immersion f : Mm → Qn

ε × R, m ≥ 2, such that T is nowhere vanishing and η is
parallel in the normal connection, is locally given in this way.

Another important subclass of class A is that of rotational submanifolds in Qn
ε ×R

with curves in totally geodesic submanifolds Q`
ε × R ⊂ Qn

ε × R as profiles (see
Section 4). We obtain the following characterization of independent interest. By a
geodesic circle in Qn

ε we mean a curve whose curvature vector is parallel in the normal
connection.
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Corollary 1.5 Let f : Mm → Qn
ε × R, ε ∈ {−1, 1}, be an isometric immersion such

that the vector field T defined by (1.1) is nowhere vanishing. Then the following are
equivalent:

(i) f is a rotational submanifold whose profile is a curve in a totally geodesic subman-
ifold Qn−m+1

ε × R ⊂ Qn
ε × R;

(ii) f is given as in (1.2) in terms of an umbilical isometric immersion g : Nm−1 → Qn
ε

(a geodesic circle, if m = 2);
(iii) there exists a normal vector field ζ along f such that

(1.3) α f (X,Y ) = 〈X,Y 〉ζ for all X ∈ TM and Y ∈ {T}⊥,

and ζ is parallel in the normal connection along {T}⊥ if m = 2.

Moreover, for ε = 1 the preceding assertions are equivalent to f being given as in (1.2)
in terms of a totally geodesic isometric immersion g : Nm−1 → Qn

ε . This is also the case
if ε = −1 and f is of hyperbolic type in (i) and g an equidistant hypersurface in (ii).

Notice that in the hypersurface case, i.e., for n = m, the second fundamental form
satisfies (1.3) if and only if f has at most two principal curvatures, and if it has exactly
two, then one of them is simple with T as an eigenvector.

A key step in the classification of umbilical submanifolds in Sn×R is the following
result on reduction of codimension of isometric immersions into Qn

ε × R. That an
isometric immersion f : Mm → Qn

ε × R reduces codimension to `, or has substan-
tial codimension `, means that f (Mn) is contained in a totally geodesic submanifold
Qm+`−1
ε ×R of Qn

ε ×R. We denote by∇⊥ the normal connection of f and by N1(x)
the first normal space of f at x, i.e., the subspace of N f

x M spanned by its second fun-
damental form.

Lemma 1.6 Let f : Mm → Qn
ε ×R, ε ∈ {−1, 1}, be an isometric immersion. Let η be

the normal vector field defined by (1.1). Assume that L := N1 + span{η} is a subbundle
of N f M with rank ` < n + 1 − m and that ∇⊥N1 ⊂ L. Then f reduces codimension
to `.

Lemma 1.6 should be compared with its well-known counterpart for submani-
folds of space forms (see, e.g., [11]), in which case the corresponding condition for
a submanifold to reduce codimension is that its first normal spaces form a parallel
subbundle of the normal bundle. A necessary and sufficient condition for parallelism
of the first normal bundle of a submanifold of a space form in terms of its normal
curvature tensor R⊥ and mean curvature vector field H was obtained by Dajczer [8]
(see also [9, Chapter 4]). The proof of Dajczer’s theorem can easily be adapted to
yield the following result for submanifolds of Qn

ε × R.

Theorem 1.7 Let f : Mm → Qn
ε × R, ε ∈ {−1, 1}, be an isometric immersion. Let

η be the normal vector field defined by (1.1). Assume that L := N1 + span{η} is a
subbundle of N f M of rank ` < n + 1−m. Then∇⊥N1 ⊂ L if and only if the following
two conditions hold:

(i) ∇⊥R⊥|L⊥ = 0;
(ii) ∇⊥H ∈ L.
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As an application of Theorem 1.7, in Subsection 5.1 we give a simple proof of
[3, Theorem 1] on surfaces with parallel mean curvature vector in Qn

ε × R. By using
this result together with Corollary 1.5 we prove the following corollary.

Corollary 1.8 Any surface f : M2 → Qn
ε × R, ε ∈ {−1, 1}, in class A with parallel

mean curvature vector is a rotational surface in a totally geodesic submanifold Qm
ε × R,

m ≤ 4, over a curve in a totally geodesic submanifold Q s
ε × R, s ≤ 3.

In the case n = 2, the preceding corollary is a special case of [16, Theorem 3],
in which hypersurfaces f : Mn → Qn

ε × R in class A with constant mean curvature
and arbitrary dimension n were classified. It was pointed out in Remarks 7(i) of that
paper that for n = 2 they are all rotational surfaces. Recently we learned that this was
independently proved in [4, Theorem 1].

In [2], the authors introduced the real quadratic form

Q(X,Y ) = 2〈α(X,Y ),H〉 − ε〈X,T〉〈Y,T〉

on a surface f : M2 → Qn
ε × R, as a generalization to higher codimensions of the

Abresch–Rosenberg real quadratic form defined in [1]. Extending the result in [1]
for constant mean curvature surfaces, they proved that the (2, 0)-part Q(2,0) of Q is
holomorphic for surfaces with parallel mean curvature vector field. This means that
if (u, v) are isothermal coordinates on M2, then the complex function

Q(Z,Z) = 2〈α(Z,Z),H〉 − ε〈Z,T〉2

is holomorphic, where Z = 1√
2
( ∂
∂u + i ∂∂v ) and the metric on M2 is extended to a

C-bilinear map.
The same authors observed in [3] that surfaces with parallel mean curvature vec-

tor that are not contained in a slice of Qn
ε ×R and for which Q(2,0) vanishes identically

belong to class A. They also proved that a surface f : M2 → Qn
ε with parallel mean

curvature vector field has vanishing Q(2,0) if either M2 is homeomorphic to a sphere
or if ε = −1, M2 has Gaussian curvature K ≥ 0 and K is not identically zero. By
means of Corollary 1.8, we obtain the following improvement of part 4 of [3, Theo-
rems 2 and 3].

Corollary 1.9 Let f : M2 → Qn
ε × R, ε ∈ {−1, 1}, be a surface with parallel mean

curvature vector. Suppose f (M2) is not contained in a slice of Qn
ε × R and either

(i) M2 is homeomorphic to a sphere, or
(ii) ε = −1, M2 is complete with curvature K ≥ 0 and K is not identically zero.

Then f is a rotational surface (of spherical type in case (i)) in a totally geodesic subman-
ifold Qm

ε × R, m ≤ 4, over a curve in a totally geodesic submanifold Q s
ε × R, s ≤ 3.

We observe that, if f (M2) is contained in a slice Qn
ε ×{t} of Qn

ε ×R, then by [18,
Theorem 4] either f is a minimal surface of an umbilical hypersurface of Qn

ε × {t}
or it is a surface with constant mean curvature in a three-dimensional umbilical or
totally geodesic submanifold of Qn

ε × {t}. Moreover, if M2 is homeomorphic to a
sphere, then by Hopf ’s Theorem it must be a totally umbilical 2-sphere of Qn

ε × {t}.
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The paper is organized as follows. In the next section we recall the basic equations
of an isometric immersion into Qn

ε × R. In Section 3 we study submanifolds in class
A and prove Theorem 1.2 as well as Corollaries 1.3 and 1.4. Section 4 is devoted to
rotational submanifolds. In particular, Corollary 1.5 is proved. In Section 5 we prove
Lemma 1.6 and Theorem 1.7 on reduction of codimension of isometric immersions
into Qn

ε × R. Then we apply the latter to give a simple proof of [3, Theorem 1] on
reduction of codimension of surfaces with parallel mean curvature vector in Qn

ε ×R.
We conclude this section with the proof of Corollary 1.8. Finally, in the last section
we prove Theorem 1.1 on the classification of umbilical submanifolds of Sn × R.

2 Preliminaries

In this section we recall the fundamental equations of an isometric immersion

f : Mm → Qn
ε × R.

Using that ∂
∂t is a parallel vector field in Qn

ε ×R, we obtain by differentiating (1.1)
that

∇XT = A f
ηX(2.1)

and

α f (X,T) = −∇⊥X η(2.2)

for all X ∈ TM. Here and in the sequel A f
η stands for the shape operator of f in the

direction η, given by

〈A f
ηX,Y 〉 = 〈α f (X,Y ), η〉 for all X,Y ∈ TM.

Notice that the vector field T is a gradient vector field. Namely, if ε ∈ {−1, 1}
and f̃ = i ◦ f , where i : Qn

ε × R → En+2 denotes the canonical inclusion, then T is
the gradient of the height function h = 〈 f̃ , i∗

∂
∂t 〉. If ε = 0, then T is the gradient of

h = 〈 f , ∂∂t 〉.
The Gauss, Codazzi, and Ricci equations for f are, respectively (see, e.g., [12]),

R(X,Y )W = ε
(

X ∧ Y − 〈Y,T〉X ∧ T + 〈X,T〉Y ∧ T
)

W + A f
α(Y,W )X − A f

α(X,W )Y,

(2.3)

(∇⊥X α)(Y,W )− (∇⊥Y α)(X,W ) = ε
(
〈X,W 〉〈Y,T〉 − 〈Y,W 〉〈X,T〉

)
η(2.4)

and

(2.5) R⊥(X,Y )ζ = α(X,A f
ζY )− α(A f

ζX,Y ).

Equation (2.4) can also be written as

(2.6) (∇Y A f )(X, ζ)− (∇XA f )(Y, ζ) = ε〈η, ζ〉(X ∧ Y )T,
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where (X ∧ Y )T = 〈Y,T〉X − 〈X,T〉Y .
Although this will not be used in the sequel, it is worth mentioning that equations

(2.1)–(2.5) completely determine an isometric immersion f : Mm → Qn
ε × R up to

isometries of Qn
ε × R (see [12, Corollary 3]).

We now relate the second fundamental forms and normal connections of f and f̃ .
First notice that ν̂ = π ◦ i is a unit normal vector field to the inclusion i : Qn

ε × R →
En+2, ε ∈ {−1, 1}, where π : En+1 × R → En+1 is the projection, and

∇̃Z ν̂ = π∗i∗Z = i∗Z −
〈

i∗Z, i∗
∂

∂t

〉
i∗
∂

∂t
= i∗

(
Z −

〈
Z,

∂

∂t

〉 ∂

∂t

)
,

for every Z ∈ T(Qn
ε × R), where ∇̃ is the derivative in En+2. Hence

(2.7) Ai
ν̂Z = −Z +

〈
Z,

∂

∂t

〉 ∂

∂t
.

The normal spaces of f and f̃ are related by

N f̃ M = i∗N
f M ⊕ span{ν},

where ν = ν̂ ◦ f = π ◦ f̃ . Let ∇̄ denote the Levi-Civita connection of Qn
ε ×R. Given

ξ ∈ N f M, we obtain from (2.7) that

∇̃X i∗ξ = i∗∇̄Xξ + αi( f∗X, ξ) = − f̃∗A
f
ξX + i∗∇⊥X ξ + ε〈X,T〉〈ξ, η〉ν,

hence

(2.8) A f̃
i∗ξ

= A f
ξ

and

(2.9) ∇̃⊥X i∗ξ = i∗∇⊥X ξ + ε〈X,T〉〈ξ, η〉ν

for every ξ ∈ N f M, where ∇̃⊥ is the normal connection of f̃ . On the other hand,

∇̃Xν = ∇̃X ν̂ ◦ f = ∇̃ f∗X ν̂ = f̃∗(X − 〈X,T〉T)− 〈X,T〉i∗η,

hence A f̃
νX = −X + 〈X,T〉T, or equivalently,

(2.10) A f̃
νT = −‖η‖2T and A f̃

νX = −X for X ∈ {T}⊥,

and

(2.11) ∇̃⊥X ν = −〈X,T〉i∗η.
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3 Class A

In this section we study submanifolds in class A. In particular, we give the proofs of
Theorem 1.2 and of Corollaries 1.3 and 1.4. We start with the following observation.

Proposition 3.1 Assume that the vector field T in (1.1) is nowhere vanishing. Then
the following assertions are equivalent:

(i) T is an eigenvector of A f
ζ for all ζ ∈ N f M;

(ii) η is parallel along {T}⊥;

(iii) A f̃
ν commutes with A f

ζ for all ζ ∈ N f M.

Proof The equivalence between (i) and (ii) follows from (2.2), whereas (2.10) im-
plies the equivalence between (i) and (iii).

Before going into the proof of Theorem 1.2, we write down in the next proposition
the differential, the normal space, and the second fundamental form of an immersion

f̃ = i ◦ f : Mm := Nm−1 × I → Qn
ε × R ⊂ En+2, ε ∈ {−1, 1},

which is given by (1.2) in terms of an isometric immersion g : Nm−1 → Qn
ε and a

smooth regular curve γ : I → Qk
ε ×R ⊂ Ek+2, γ = (γ0, . . . , γk, γk+1), with εγ2

0 +γ2
1 +

· · · + γ2
k = ε. The case ε = 0 is similar. We use the notations before the statement

of Theorem 1.2. Given x ∈ Nm−1, X ∈ TxN and s ∈ I, we denote by XH the unique
vector in T(x,s)M such that π1∗X

H = X and π2∗X
H = 0, where π1 : Mm → Nm−1

and π2 : Mm → I are the canonical projections.

Proposition 3.2 The following holds:

(i) The differential of f̃ is given by

(3.1) f̃∗(x, s)XH = g̃∗(x)(γ0(s)I −
k∑

i=1

γi(s)Ag
ξi

(x))X, for every X ∈ TxN,

where I is the identity endomorphism of TxN, and

(3.2) f̃∗(x, s)
∂

∂s
= φx(γ ′(s)).

(ii) The map f̃ (and hence f ) is an immersion at (x, s) if and only if

Ps(x) := γ0(s)I −
k∑

i=1

γi(s)Ag
ξi

(x) = −Ag̃
φx(γ̄(s)) = −Ag̃

φx(γ(s)),

where γ̄(s) = (γ0(s), . . . , γk(s), 0), is an invertible endomorphism of TxN.
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(iii) If f̃ is an immersion at (x, s), then

N f̃
(x,s)M = j̃∗E(x)⊥ ⊕ φx(γ ′(s)⊥) ⊂ N g̃

x N,

where E(x)⊥ is the orthogonal complement of E(x) in Ng
x N, and

(3.3) N f̃
(x,s)M = i∗N

f
(x,s)M ⊕ span{(π ◦ f̃ )(x, s)} = i∗N

f
(x,s)M ⊕ span{φx(γ̄(s))}.

(iv) If f̃ is an immersion at (x, s), then

(3.4) A f̃
ξ (x, s)XH = (Ps(x)−1Ag̃

ξ(x)X)H

for all ξ ∈ N f̃
(x,s)M and X ∈ TxN,

A f̃
ξ (x, s)

∂

∂s
= 0, if ξ ∈ j̃∗E(x)⊥,(3.5)

and

A f̃
φx(ζ)(x, s)

∂

∂s
=
〈γ ′ ′(s), ζ〉
〈γ ′(s), γ ′(s)〉

∂

∂s
, if ζ ∈ Ek+2, 〈ζ, γ ′(s)〉 = 0.(3.6)

Proof Given a smooth curve β : J → Nm−1 with 0 ∈ J, β(0) = x, and β ′(0) = X,
for each s ∈ I let βs : J → Mm be given by βs(t) = (β(t), s). Then βs(0) = (x, s) and
β ′s (0) = XH. Hence

f̃∗(x, s)XH =
d

dt
|t=0 f̃

(
βs(t)

)
=

d

dt
|t=0

k+1∑
i=0

γi(s)ξ̃i

(
β(t)

)
= g̃∗(x)

(
γ0(s)I −

k∑
i=1

γi(s)Ag̃

ξ̃i
(x)
)

X,

and (3.1) follows from the fact that Ag̃

ξ̃i
= Ag

ξi
for any 1 ≤ i ≤ k.

The proof of (3.2) is straightforward, and the assertions in (ii) and (iii) follow
immediately from (i). To prove (3.4), given ξ ∈ N f̃

(x,s)M and X ∈ TxN, let β : J →
Nm−1 and βs : J → Mm be as in the beginning of the proof. Then, using (3.1), we
obtain

− f̃∗(x, s)A f̃
ξ (x, s)XH = (∇̃XHξ)T =

( d

dt
|t=0ξ

(
βs(t)

))T
= −g̃∗(x)Ag̃

ξ(x)X

= −g̃∗(x)Ps(x)Ps(x)−1Ag̃
ξ(x)X = − f̃∗(x, s)

(
Ps(x)−1Ag̃

ξ(x)X
)H

,

and (3.4) follows. Here, putting T as a superscript of a vector means taking its tangent
component.
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Formula (3.5) is clear. As for (3.6), given ζ ∈ Ek+2 with 〈ζ, γ ′(s)〉 = 0, extend ζ to
a parallel normal vector field along γ, so that

ζ ′(s) =
〈ζ ′(s), γ ′(s)〉
〈γ ′(s), γ ′(s)〉

γ ′(s) = − 〈γ
′ ′(s), ζ(s)〉

〈γ ′(s), γ ′(s)〉
γ ′(s).

Then we have

− f̃∗(x, s)A f̃
φx(ζ)(x, s)

∂

∂s
=
(
∇̃ ∂

∂s
φx(ζ)

)T
=
(
φx(ζ ′(s))

)T

= − 〈γ
′ ′(s), ζ(s)〉

〈γ ′(s), γ ′(s)〉
(
φx(γ ′(s))

)T

= − f̃∗(x, s)
〈γ ′ ′(s), ζ(s)〉
〈γ ′(s), γ ′(s)〉

∂

∂s
,

where we have used (3.2) in the last equality. This gives (3.6) and completes the
proof.

Proof of Theorem 1.2 It follows from (3.1) and (3.2) that 〈XH, ∂∂s 〉 = 0 for any
X ∈ TN, with respect to the metric induced by f . On the other hand, we also have

from (3.1) that 〈XH,T〉 = 〈 f̃∗XH, i∗
∂
∂t 〉 = 0 for any X ∈ TN. Hence T is in the

direction of ∂/∂s. We have

〈T, ∂/∂s〉 = 〈 f̃∗T, f̃∗∂/∂s〉 = 〈i∗∂/∂t, φx(γ ′(s))〉 = γ ′k+1(s),

hence

T =
〈T, ∂/∂s〉
〈∂/∂s, ∂/∂s〉

∂

∂s
=

γ ′k+1(s)

‖γ ′(s)‖2

∂

∂s
.

In particular, T is nowhere vanishing by the assumption that γ ′k+1(s) 6= 0 for all s ∈ I.
That f belongs to class A now follows from (2.8), (3.5), and (3.6).

Let us prove the converse. Since f : Mm → Qn
ε × R belongs to class A, the vector

field T is nowhere vanishing, and using (2.1) and the fact that T is a gradient vector
field, we obtain

(3.7) 〈∇TT,X〉 = 〈∇XT,T〉 = 〈A f
ηT,X〉 = 0 for any X ∈ {T}⊥.

Hence, the one-dimensional distribution spanned by T is totally geodesic. Moreover,
since T is a gradient, then the orthogonal distribution {T}⊥ is integrable. Therefore,
there exists locally a diffeomorphismψ : Nm−1×I → Mm, where I is an open interval
containing 0, such that ψ(x, · ) : I → Mn are integral curves of T for any x ∈ Nm−1

and ψ( · , s) : Nm−1 → Mm are leaves of {T}⊥ for any s ∈ I. Denoting by E1 and
E2 the distributions given by tangent spaces to the leaves of the product foliation of
Nm−1 × I, we have that E1 and E2 are mutually orthogonal and E2 is totally geodesic
with respect to the metric induced by ψ. Set f̃ = i ◦ f ◦ ψ. Then

(3.8)
〈

f̃∗X, i∗
∂

∂t

〉
= 〈ψ∗X,T〉 = 0
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for every X ∈ E1. Moreover, α f̃ (X, ∂∂s ) = 0 for every X ∈ E1, in view of (2.10) and

the fact that f belongs to class A. Hence, using that E2 is totally geodesic we obtain
that

∇̃ ∂
∂s

f̃∗X = f̃∗∇ ∂
∂s

X + α f̃

(
X,

∂

∂s

)
= f̃∗∇ ∂

∂s
X ∈ f̃∗E1

for all X ∈ E1, hence f̃∗E1 is constant in En+2 along the leaves of E2. In view of (3.8)

we can assume that g̃ := f̃ (·, 0) satisfies g̃(Nm−1) ⊂ Qn
ε × {0}. Set f̂ = π ◦ f̃ and

h = 〈 f̃ , i∗∂/∂t〉, so that

f̃ = f̂ + hi∗
∂

∂t
.

Using (3.8) we obtain

〈 f̃∗X, f̃ 〉 = 〈 f̂∗X, f̂ 〉 = 0

for all X ∈ E1, since 〈 f̂ , f̂ 〉 = ε. Therefore, we have

f̃ (x, s) ∈
(

f̃∗(x, s)E1(x, s)
)⊥

=
(

f̃∗(x, 0)E1(x, 0)
)⊥

=
(

g̃∗(x)TxN
)⊥
,

where in the first equality we have used that f̃∗E1 is constant in En+2 along E2. Hence,

for fixed s ∈ I, we have that ξs(x) := f̃ (x, s) defines a normal vector field along g̃.
Moreover,

∇̃Xξs ∈ f̃∗(x, s)E1(x, s) = g̃∗(x)TxN,

thus ξs is parallel along g̃ in the normal connection. It follows that

x ∈ N 7→W (x) := span{ f̃ (x, s) : s ∈ I}

is a parallel flat subbundle of N g̃N. Moreover, since 〈 f̂ (x, s), f̂ (x, s)〉 = ε, for any

fixed x ∈ N the image of s ∈ I 7→ f̃ (x, s) is contained in a cylinder

Qk
ε × R = W (x) ∩ (Qn−m+1

ε × R) ⊂ N g̃
x N,

where k + 2 is the rank of W .
Let g : Nm−1 → Qn

ε be defined by g̃ = j̃◦g, and let {ξ1, . . . , ξk} be an orthonormal

set of parallel normal vector fields along g such that ξ̃i = i∗ξi , 1 ≤ i ≤ k, ξ̃0 = g̃, and

ξ̃k+1 = i∗∂/∂t form an orthonormal frame of W . Note that, for any X ∈ E1, we have

X〈 f̃ , ξ̃i〉 = 〈 f̃∗X, ξ̃i〉 + 〈 f̃ , ∇̃X ξ̃i〉 = 0,

for f̃ is a normal vector field, f̃∗(x, s)X ∈ g̃∗(x)TxN and ξ̃i is parallel in the normal
connection of g̃. Then we can write

f̃ (x, s) =

k+1∑
i=0

γi ξ̃i , with γi = γi(s).

Moreover, from 〈 f̂ , f̂ 〉 = ε we obtain that εγ2
0 +
∑k

i=1 γ
2
i = ε.
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Proof of Corollary 1.3 It follows from the Ricci equation (2.5) that f has a flat nor-
mal bundle if and only if all shape operators A f

ζ , ζ ∈ N f M, are simultaneously di-
agonalizable, whereas f̃ has flat normal bundle if and only if this holds for all shape
operators A f̃

ξ , ξ ∈ N f̃ M. The equivalence between (i) and (ii) then follows from (2.8)
and Proposition 3.1.

By Theorem 1.2, an isometric immersion f : Mm → Qn
ε × R is in class A if and

only if it is locally given as in (1.2) in terms of an isometric immersion g : Nm−1 →
Qn
ε and a regular curve γ : I → Qk

ε × R ⊂ Rk+2, γ = (γ0, . . . , γk+1), with γ ′k+1 6= 0.

Since the vector subbundle Ẽ of N g̃N spanned by ξ̃0, . . . , ξ̃k+1 is flat, it follows from
the Ricci equation for g̃ that Ag̃

ξ commutes with any shape operator of g̃ for all ξ ∈ Ẽ.
Then we obtain from (2.8) and (3.4) that all shape operators of f commute if and
only if the same holds for the shape operators of g. By the Ricci equation, we conclude
that f has flat normal bundle if and only if the same holds for g. Hence (ii) and (iii)
are equivalent.

Proof of Corollary 1.4 Let f : Mm := Nm−1 × I → Qn
ε × R be given by (1.2) with

γ : I → Qk
ε × R a geodesic of Qk

ε × R. By Theorem 1.2, the immersion f belongs to
class A, hence η is parallel along {T}⊥ by Proposition 3.1. On the other hand, the
fact that γ : I → Qk

ε × R is a geodesic of Qk
ε × R implies that α f (T,T) = 0 by (3.6).

Thus η is parallel in the normal connection of f by (2.2).
Conversely, let f : Mm := Nm−1×I → Qn

ε ×R be an isometric immersion with the
property that the vector field η is parallel in the normal connection. We obtain from
(2.2) that f belongs to class A and that α f (T,T) = 0. By Theorem 1.2, it is locally
given by (1.2) in terms of an isometric immersion g : Nm−1 → Qn

ε and a smooth
regular curve γ : I → Qk

ε × R. That γ is a geodesic follows from α f (T,T) = 0 and
equation (3.6).

4 Rotational Submanifolds in Qn
ε × R

In this section we define rotational submanifolds in Qn
ε × R with curves as profiles,

extending the definition in [10] for the hypersurface case. Then we prove Corol-
lary 1.5.

Let (x0, . . . , xn+1) be the standard coordinates on En+2 with respect to which the
flat metric is written as

ds2 = ε dx2
0 + dx2

2 + · · · + dx2
n+1.

Regard En+1 as
En+1 =

{
(x0, . . . , xn+1) ∈ En+2 : xn+1 = 0

}
and

Qn
ε =

{
(x0, . . . , xn) ∈ En+1 : ε x2

0 + x2
2 + · · · + x2

n = ε
}

( x0 > 0 if ε = −1).

Let Pn−m+3 be a subspace of En+2 of dimension n − m + 3 containing the e0 and
the en+1 directions, where {e0, . . . , en+1} is the canonical basis. Then

(Qn
ε × R) ∩ Pn−m+3 = Qn−m+1

ε × R.
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Denote by I the group of isometries of En+2 that fix pointwise a subspace Pn−m+2 ⊂
Pn−m+3 also containing the en+1 direction. Consider a curve γ in Qn−m+1

ε × R ⊂
Pn−m+3 that lies in one of the two half-spaces of Pn−m+3 determined by Pn−m+2.

Definition 4.1 An m-dimensional rotational submanifold in Qn
ε × R with profile

curve γ and axis Pn−m+2 is the orbit of γ under the action of I.

We will always assume that Pn−m+3 is spanned by e0, em, . . . , en+1. In the case
ε = 1, we also assume that Pn−m+2 is spanned by em, . . . , en+1. Writing the curve γ as

γ(s) = γ0(s)e0 +
n∑

i=m

γi−m+1(s)ei + h(s)en+1,

with
∑n−m+1

i=0 γ2
i = 1, the rotational submanifold in Sn × R with profile curve γ and

axis Pn−m+2 can be parametrized by

(4.1) f̃ (s, t) =
(
γ0(s)ϕ1(t), . . . , γ0(s)ϕm(t), γ1(s), . . . , γn−m+1(s), h(s)

)
,

where t = (t1, . . . , tm−1) and ϕ = (ϕ1, . . . , ϕm) parametrizes Sm−1 ⊂ Rm.
For ε = −1, one has three distinct possibilities, according as Pn−m+2 is Lorentzian,

Riemannian, or degenerate, respectively, and the rotational submanifold is called ac-
cordingly of spherical, hyperbolic or parabolic type. In the first case, we can assume
that Pn−m+2 is spanned by e0, em+1, . . . , en+1 and that

(4.2) γ(s) = γ0(s)e0 +
n∑

i=m

γi−m+1(s)ei + h(s)en+1,

with−γ2
0 (s) +

∑n−m+1
i=1 γ2

i = −1. Then the submanifold can be parametrized by

f̃ (s, t) = (γ0(s), γ1(s)ϕ1(t), . . . , γ1(s)ϕm(t), γ2(s), . . . , γn−m+1(s), h(s)),

where again t = (t1, . . . , tm−1) and ϕ = (ϕ1, . . . , ϕm) parametrizes Sm−1 ⊂ Rm.
In the second case, we can assume that Pn−m+2 is spanned by em, . . . , en+1. Then,

with the curve γ also given as in (4.2), a parametrization is

f̃ (s, t) =
(
γ0(s)ϕ1(t), . . . , γ0(s)ϕm(t), γ1(s), . . . , γn−m+1(s), h(s)

)
,

where t = (t1, . . . , tm−1) and ϕ = (ϕ1, . . . , ϕm) parametrizes Hm−1 ⊂ Lm.
Finally, when Pn−m+2 is degenerate, we choose a pseudo-orthonormal basis

ê0 =
1√
2

(−e0 + en), ên =
1√
2

(e0 + en), ê j = e j ,

for j ∈ {1, . . . , n − 1, n + 1}, and assume that Pn−m+2 is spanned by êm, . . . , ên+1.
Notice that 〈ê0, ê0〉 = 0 = 〈ên, ên〉 and 〈ê0, ên〉 = 1. Then we can parametrize γ by

γ(s) = γ0(s)ê0 +
n∑

i=m

γi−m+1(s)êi + h(s)ên+1,
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with 2γ0(s)γn−m+1(s) +
∑n−m

i=1 γ2
i (s) = −1, and a parametrization of the rotational

submanifold is

(4.3) f̃ (s, t) =

(
γ0, γ0t1, . . . , γ0tm−1, γ1, . . . , γn−m, γn−m+1 −

γ0

2

m−1∑
i=1

t2
i , h

)
,

where t = (t1, . . . , tm−1) parametrizes Rm−1, γi = γi(s), 0 ≤ i ≤ n − m + 1, and
h = h(s).

Proof of Corollary 1.5 We can write (4.1) as

f̃ (s, t) = γ0(s)ĝ(t) +
n∑

i=m

γi−m+1(s)ei + h(s)en+1,

where ĝ(t) =
∑m

i=1 ϕi(t)ei for t = (t1, . . . , tm−1). This shows that for ε = 1 a
rotational submanifold is given as in (1.2) in terms of a totally geodesic isometric
immersion ĝ : Sm−1 → Sn. The case of a rotational submanifold of hyperbolic type
in Hn × R is similar. In particular, this proves that (i) implies (ii) in these cases.

Equation (4.3) can be written as

(4.4) f̃ (s, t) = γ0(s)ĝ +
n∑

i=m

γi−m+1(s)êi + h(s)ên+1,

where

ĝ(t) = ê0 +
m−1∑
i=1

ti êi −
1

2

(m−1∑
i=1

t2
i

)
ên.

Notice that ĝ defines an isometric immersion of Rm−1 into Ln+2 (in fact into the
light-cone Vn+1, for 〈ĝ, ĝ〉 = 0), and that ĝ, êm, . . . , ên, ên+1 is a pseudo-othonormal
basis of N ĝ Rm−1, with 〈ĝ, ĝ〉 = 0 = 〈ên, ên〉, 〈ĝ, ên〉 = 1 and êm, . . . , ên−1, ên+1 an
orthonormal basis of span{ĝ, ên}⊥. For any fixed s0 ∈ I, let g : Rm−1 → Hn be
given by g = γ(s0)ĝ + v, where v =

∑n
i=m γi−m+1(s0)êi . Then g defines an umbilical

immersion with the same normal space in Ln+2 as ĝ at every t ∈ Rm−1, i.e.,

span{ĝ, êm, . . . , ên, ên+1} = span{g, ξ̃1, . . . , ξ̃n−m+1, ên+1},

where ξ̃i = i∗ξi , 1 ≤ i ≤ n−m + 1, for a parallel orthonormal frame ξ1, . . . , ξn−m+1

of Ng Rm−1. Hence we can also write (4.4) as

f̃ (s, t) = γ̃0(s)g +
n−m+1∑

i=1

γ̃i(s)ξ̃i + h(s)ên+1,

where γ̃ : I → En−m+3 is a regular curve satisfying −γ̃2
0 +

∑n−m+1
i=1 γ̃2

i = −1. Thus
condition (ii) holds for f . The case of a spherical rotational submanifold is similar
and easier.
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Now suppose that f is given as in (1.2) in terms of an umbilical isometric immer-
sion g : Nm−1 → Qn

ε (a geodesic circle if m = 2). Suppose first that ε = 1. We can
assume that the affine hull of g(Nm−1) in Rn+1 is v + W , where W is the subspace
spanned by {e0, . . . , em−1} and v ∈W⊥, hence g = aĝ + v, where a ∈ R and ĝ is the
composition ĝ = i ◦ g̃ of a homothety g̃ : Nm−1 → Sm−1 with the canonical inclusion
i of Sm−1 into W = Rm as the unit sphere centered at the origin. Then g and ĝ have
the same normal spaces in Rn+1 at every point of Nm−1, that is,

span{ĝ, êm, . . . , ên, ên+1} = span{g, ξ̃1, . . . , ξ̃n−m+1, ên+1},

where ξ̃i = i∗ξi , 1 ≤ i ≤ n−m + 1, for a parallel orthonormal frame ξ1, . . . , ξn−m+1

of Ng Sm−1. Hence f can also be parametrized by

f̃ (s, t) = γ̃0ĝ +
n∑

i=m

γ̃i−m+1(s)êi + h(s)ên+1,

where γ̃ : I → En−m+3 is a smooth regular curve satisfying
∑n−m+1

i=0 γ̃2
i = 1. Thus f

is a rotational submanifold with γ̃ as profile.
If ε = −1, we argue for the parabolic case, the others being similar and easier.

We can assume that Nm−1 = Rm−1 and that the the affine hull of g(Rm−1) in Ln+1 is
v + W , where W is the subspace spanned by {ê1, . . . , êm−1, ên} and v ∈ W⊥. Then
g = ĝ + v, where

ĝ(t) = ê0 +
m−1∑
i=1

ti êi −
1

2

(m−1∑
i=1

t2
i

)
ên

for t = (t1, . . . , tm−1). As before, by using the fact that g and ĝ have the same normal
spaces in Ln+1 for every t ∈ Rm−1, we conclude that f is a rotational submanifold
parametrized as in (4.4).

The second fundamental form of f being given by (1.3) is equivalent to the re-
striction of each shape operator A f

ξ to {T}⊥ being a multiple of the identity tensor.
By (2.8) and (2.10), this is equivalent to the same property being satisfied by all shape
operators of f̃ . In particular, the immersion f is in class A, hence it is locally given
as in (1.2) in terms of an isometric immersion g : Nm−1 → Qn

ε and a regular curve
γ : I → Qk

ε × R ⊂ Rk+2. It follows from (3.4) that, for each x ∈ Nm−1 and s ∈ I,
the operator P−1

s (x)Ag̃
ξ(x), with Ps(x) = −Ag̃

φx(γ(s)), is a multiple of the identity endo-
morphism I of TxN for any

ξ ∈ N f̃
(x,s)M = j̃∗E(x)⊥ ⊕ φx(γ ′(s)⊥) ⊂ N g̃

x N.

Hence Ag̃
ξ(x) is a multiple of Ps(x) for any ξ ∈ N f̃

(x,s)M. It follows that, for each s ∈ I,

there exists a hyperplane Ws in N f̃
(x,s)M ⊂ N g̃

x N such that Ag̃
ξ(x) = 0 for any ξ ∈Ws.

If the family of subspaces s 7→Ws is not constant, since Ag̃
g̃ = −I, then the subspace

spanned by all Ws, s ∈ I, must be a hyperplane W ⊂ N g̃
x N with Ag̃

ξ(x) = 0 for any
ξ ∈W . Therefore, the map ξ ∈ N g̃

x N 7→ Ag̃
ξ(x) has rank one, and hence its image is

spanned by I. Thus g̃, and hence g, is umbilical.
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Assume now that all Ws coincide with a fixed subspace W ⊂ N g̃
x N. Then W

cannot contain ξ̃k+1 = i∗∂/∂t , otherwise ∂/∂t would be normal to f , contradicting
the fact that the vector field T in (1.1) is nowhere vanishing. Then Ag̃

ξ(x) = 0 for any

ξ in the hyperplane of N g̃
x N spanned by W and i∗∂/∂t , and we conclude as before

that g is umbilical.
Conversely, if f is locally given as in (1.2) in terms of an umbilical isometric im-

mersion g : Nm−1 → Qn
ε , then formulas (2.8) and (3.4)–(3.6) imply that the restric-

tion of each shape operator A f
ξ to {T}⊥ is a multiple of the identity tensor, hence the

second fundamental form of f is as in (1.3).
To conclude the proof that (ii) and (iii) are equivalent, it remains to show that for

m = 2 the additional assumption that the vector field ζ in (1.3) be parallel along
{T}⊥ is equivalent to the unit-speed curve g : J := Nm−1 → Qn

ε being a geodesic
circle.

Write ζ = α f (X,X), where X is a unit vector field orthogonal to T. Let f̃ = i ◦ f .
In view of (2.10) we have

α f̃ (X,X) = i∗α f (X,X)− ν,

hence using (2.9) and (2.11) we obtain that

∇̃Xα f̃ (X,X) = − f̃∗A
f̃
α f̃ (X,X)X + ∇̃⊥X α f̃ (X,X)

= − f̃∗A
f̃
α f̃ (X,X)X + i∗∇⊥X α f (X,X).

Thus,∇⊥X α f (X,X) = 0 if and only if

(4.5) ∇̃Xα f̃ (X,X) = − f̃∗A
f̃
α f̃ (X,X)X.

It follows from (3.4) that at the point (t, s) we have

(4.6) α f̃ (X,X) =
g̃ ′ ′(t)

〈g̃ ′ ′(t), φt (γ̄(s))〉
,

where g̃ = j̃ ◦ g. From (3.1) we obtain

(4.7) X =
1

〈g̃ ′ ′(t), φt (γ̄(s))〉
d

dt

H

,

where d
dt is a unit vector field along J. Hence

(4.8) ∇̃Xα f̃ (X,X) = − 〈g̃
′ ′ ′(t), φt (γ̄(s)〉

〈g̃ ′ ′(t), φt (γ̄(s))〉3
g̃ ′ ′(t) +

1

〈g̃ ′ ′(t), φt (γ̄(s))〉2
g̃ ′ ′ ′(t).

On the other hand, equations (3.1), (4.6), and (4.7) yield

(4.9) f̃∗A
f̃
α f̃ (X,X)X =

〈g̃ ′ ′(t), g̃ ′ ′(t)〉
〈g̃ ′ ′(t), φt (γ̄(s))〉2

g̃ ′(t).
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It follows from (4.8) and (4.9) that (4.5) holds if and only if

g̃ ′ ′ ′(t) +
〈

g̃ ′ ′(t), g̃ ′ ′(t)
〉

g̃ ′(t) = −〈g̃
′ ′ ′(t), φt (γ̄(s)〉
〈g̃ ′ ′(t), φt (γ̄(s))〉

g̃ ′ ′(t).

Using that 〈g̃(t), g̃(t)〉 = ε and 〈g̃ ′(t), g̃ ′(t)〉 = 1 yields〈
g̃ ′(t), g̃(t)

〉
= 0,

〈
g̃ ′ ′(t), g̃(t)

〉
= −1, and

〈
g̃ ′ ′ ′(t), g̃(t)

〉
= 0.

Then, taking the inner product of both sides of the preceding equation with g̃(t)
implies that 〈g̃ ′ ′ ′(t), φt (γ̄(s)〉 = 0, and hence

g̃ ′ ′ ′(t) = −〈g̃ ′ ′(t), g̃ ′ ′(t)〉g̃ ′(t),

which is equivalent to g being a geodesic circle.

5 Reduction of Codimension

In this section we prove Lemma 1.6 and Theorem 1.7.

Proof of Lemma 1.6 We have from (2.2) that ∇⊥X η ∈ N1 ⊂ L for every X ∈ TM.
Since∇⊥N1 ⊂ L by assumption, it follows that L is a parallel subbundle of N f M. Let

f̃ = i ◦ f , where i : Qn
ε ×R → En+2 is the inclusion, and let L⊥ denote the orthogonal

complement of L in N f M. Given ξ ∈ L⊥ = N⊥1 ∩ {η}⊥, from (2.9) and the fact that
L is a parallel subbundle of N f M we obtain

∇̃⊥X i∗ξ = i∗∇⊥X ξ ∈ i∗L
⊥,

hence i∗L⊥ is a parallel subbundle of N f̃ M. On the other hand, it follows from (2.8)
that i∗L⊥ ⊂ Ñ⊥1 , where Ñ1(x) is the first normal space of f̃ at x ∈ Mm. We obtain

from the Weingarten formula for f̃ that

∇̃X i∗ξ = − f̃∗A
f̃
i∗ξ

X + ∇̃⊥X i∗ξ = ∇̃⊥X i∗ξ ∈ i∗L
⊥,

where ∇̃ is the derivative of En+2. Hence i∗L⊥ is a constant subspace of En+2, which
is orthogonal to ∂

∂t . Denote by K the orthogonal complement of i∗L⊥ in En+2. Then
for any fixed x0 ∈ Mm we have

f̃ (Mm) ⊂ f̃ (x0) + K.

But since K contains ∂
∂t and ν(x0), it also contains the position vector f̃ (x0). Thus

f̃ (x0) + K = K. We conclude that f̃ (M) ⊂ (Qn
ε × R) ∩ K = Qm+`−1

ε × R.
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Proof of Theorem 1.7 Assume that ∇⊥N1 ⊂ L. Then condition (ii) is trivially sat-
isfied. To prove (i), first notice that for ξ ∈ N⊥1 the Ricci equation gives

R⊥(X,Y )ξ = α(X,AξY )− α(AξX,Y ) = 0.

Given ξ ∈ L⊥, we have that ξ ∈ N⊥1 and that∇⊥Z ξ ∈ N⊥1 by our assumption, hence

(∇ZR⊥)(X,Y, ξ)

= ∇ZR⊥(X,Y )ξ − R⊥(∇ZX,Y )ξ − R⊥(X,∇ZY )ξ − R⊥(X,Y )∇⊥Z ξ

= 0.

To prove the converse, let ξ ∈ L⊥. Since R⊥(X,Y )ξ = 0 for all X,Y ∈ TM, we
obtain from (i) that

R⊥(X,Y )∇⊥Z ξ = 0

for all X,Y,Z ∈ TM. Using the Ricci equation again, we obtain that

[A∇⊥Z ξ,A∇⊥W ξ] = 0

for all Z,W ∈ TM. Hence, at any x ∈ M there exists an orthonormal basis Z1, . . . ,Zn

of TxM that diagonalizes simultaneously all shape operators A∇⊥Z ξ , Z ∈ TM. We will
show that 〈

∇⊥Zk
ξ, α(Zi ,Z j)

〉
= 0

for all 1 ≤ i, j, k ≤ n, which implies that∇⊥X ξ ∈ N⊥1 for all X ∈ TM.
From the choice of the basis Z1, . . . ,Zn, we have

〈
α(Zi ,Z j),∇⊥Zk

ξ
〉

= 〈A∇⊥Zk
ξZi ,Z j〉 = 0

if i 6= j. It follows from the Codazzi equation (2.6) and the fact that ξ ∈ L⊥ ⊂ {η}⊥
that

A∇⊥Zi
ξZk = A∇⊥Zk

ξZi ,

hence the eigenvalue λki of A∇⊥Zk
ξ corresponding to Zi vanishes unless k = i. There-

fore, 〈
α(Zi ,Zi),∇⊥Zk

ξ
〉

= 〈A∇⊥Zk
ξZi ,Zi〉 = 0, if i 6= k.

Finally, the assumption∇⊥H ∈ L and the above imply that

〈
α(Zi ,Zi),∇⊥Zi

ξ
〉

= n〈H,∇⊥Zi
ξ〉 = 0.
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5.1 Alencar–do Carmo–Tribuzy Theorem

In this subsection we apply Theorem 1.7 to give a simple proof of the following the-
orem due to Alencar, do Carmo, and Tribuzy [3].

Theorem 5.1 Let f : M2 → Qn
ε × R, n ≥ 5, be a surface with nonzero parallel mean

curvature vector. Then, one of the following possibilities holds:

(i) f is a minimal surface of a umbilical hypersurface of a slice Qn
ε × {t}.

(ii) f is a surface with constant mean curvature in a three-dimensional umbilical or
totally geodesic submanifold of a slice Qn

ε × {t}.
(iii) f (M2) lies in a totally geodesic submanifold Qm

ε × R, m ≤ 4, of Qn
ε × R.

Proof Since the mean curvature vector H is parallel and nonzero, the function µ :=
‖H‖2 on M2 is a nonzero constant. Suppose first that AH = µI everywhere on M2.
We claim that the vector field T vanishes identically. Assuming otherwise, there exists
an open subset U , where T 6= 0. Choose a unit vector field X on U orthogonal to T.
Then

(5.1)
〈

H, α(X,T)
〉

= µ〈X,T〉 = 0.

By the Codazzi equation (2.4) we have〈
(∇⊥T α)(X,X)− (∇⊥X α)(T,X),H

〉
= −ε‖T‖2〈η,H〉.

It follows easily from (5.1) and the fact that µ is constant on M2 that the left-hand-
side of the preceding equation is zero. Thus 〈η,H〉 vanishes on U , and hence

0 = T〈η,H〉 = 〈∇⊥T η,H〉 = −
〈
α(T,T),H

〉
= −µ‖T‖2,

where we have used (2.2) in the third equality. This is a contradiction and proves the
claim.

Therefore, if AH = µI everywhere on M2 then f (M2) is contained in a slice
Qn
ε × {t} of Qn

ε × R, and either of possibilities (i) or (ii) holds by [18, Theorem
4].

Assume now that AH 6= µI on an open subset V of M2. Since H is parallel, it
follows from the Ricci equation that [AH ,Aζ] = 0 for any x ∈ M2 and every normal
vector ζ ∈ NxM. Then the fact that AH has distinct eigenvalues on V implies that
the eigenvectors of AH are also eigenvectors of Aζ for any ζ ∈ NxM, x ∈ V . Hence
all shape operators are simultaneously diagonalizable at any x ∈ V , which implies
that f has flat normal bundle on V by the Ricci equation (2.5). In particular, the first
normal spaces N1 of f have dimension at most two at any x ∈ V . Let W ⊂ V be an
open subset, where L = dim N1 + span{η} has constant dimension ` ≤ 3. It follows
from Lemma 1.6 and Theorem 1.7 that f (W ) lies in a totally geodesic submanifold
Q2+`−1
ε × R of Qn

ε × R. By analyticity of f (see [3, Remark 1]), we conclude that
f (M2) ⊂ Q2+`−1

ε × R.
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Proof of Corollary 1.8 Let X be a unit vector field orthogonal to T. By Corollary 1.5,
in order to prove that f is a rotational surface it suffices to show that∇⊥X α f (X,X) =
0. We follow essentially the proof of [3, Proposition 2]. Since the mean curvature
vector field

H =
1

2

(
α f (X,X) + ‖T‖−2α f (T,T)

)
is parallel in the normal connection, we have

∇⊥X α f (X,X) = −∇⊥X
(
‖T‖−2α f (T,T)

)
= −X

(
‖T‖−2

)
α f (T,T)− ‖T‖−2∇⊥X α f (T,T).

Now, since f is in class A, we have from (3.7) that

〈∇TT,X〉 = 0 = 〈∇XT,T〉.

In particular, X(‖T‖−2) = 0. Moreover, using the Codazzi equation (2.4) we obtain

∇⊥X α f (T,T) = (∇⊥X α f )(T,T) + 2α(∇XT,T) = (∇⊥X α f )(T,T) = (∇⊥T α f )(X,T)

= ∇⊥T α f (X,T)− α f (∇TX,T)− α f (X,∇TT) = 0.

That f (M2) is contained in a totally geodesic submanifold Qm
ε × R, m ≤ 4, and

hence the fact that its profile curve lies in a totally geodesic submanifold Q s
ε × R,

s ≤ 3, follows from Theorem 5.1.

6 Umbilical Submanifolds of Sn × R

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Since Φ : Sm+1 × R → Rm+2 \ {0} given by Φ(x, t) = et x is a
conformal diffeomorphism, it follows that Mm

r,h = Φ−1(Sm
r,h) is an umbilical subman-

ifold of Sm+1×R, for a conformal diffeomorphism preserves umbilical submanifolds.
Assertion (i) and the completeness of Mm

r,h are clear, for Mm
r,h = Φ−1(Sm

r,h) if

(r, h) 6= (d, 0) andMd,0 = Φ−1
(

Sm
d,0 \ {0}

)
.

It is easily seen that the totally geodesic hypersurfaces Sm × R of Sm+1 × R are the
images by Φ−1 of the hyperplanes through the origin in Rm+2. Since Sm

r,h lies in such
a hyperplane if and only if h = 0, the assertion in (ii) follows. Assertion (iii) follows
from the fact that Sm

r,0 is homologous to zero in Rm+1 if r < d and inhomologous to
zero in Rm+1 if r > d.

We now prove (iv). Since orthogonal transformations of Rm+2 correspond under
the diffeomorphism Φ to isometries of Sm+1 × R fixing pointwise the factor R, and
homotheties of Rm+2 correspond to translations along R, we can assume that x̄ =√

2
2 (0, . . . , 0, 1) ∈ Rm+1. Let

I = {(p, q) ∈ R : (p − 1)2 ≤ q < p2}.
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For each (p, q) ∈ I, set Jp,q = (−
√

p −√q,
√

p −√q) and define hp,q : J̄p,q → R
by

hp,q(s) =

√
p − s2 +

√
(p − s2)2 − q.

Let Y p,q : Sm−1 × J̄p,q → Sm+1 × R and Zp,q : Sm−1 × J̄p,q → Sm+1 × R be given by

Y p,q(x, s) =

(
sx,

√
2

2

(
hp,q(s) +

1− p

hp,q(s)

)
,

√
q− (p − 1)2

√
2 hp,q(s)

, log hp,q(s)

)
,

and, for q 6= 0,

Zp,q(x, s) =

(
sx,

√
2

2

( 1− p
√

q
hp,q(s)+

√
q

hp,q(s)

)
,

√
q− (p − 1)2

√
2q

hp,q(s), log

√
q

hp,q(s)

)
.

Notice that Zp,q = Ψ ◦Y p,q, where Ψ : Sm+1 ×R → Sm+1 ×R is the isometry defined
by Ψ(x, s) = (Ax,−s + log

√
q), with A ∈ O(m) given by

A =

(
Im−2 0

0 B

)
, B =

1
√

q

(
1− p

√
q− (1− p)2√

q− (1− p)2 −(1− p)

)
.

Let ψ : I→ (0,∞)× [0,∞) be the homeomorphism given by

ψ(p, q) =

√
2

2

(√
p2 − q,

√
q− (p − 1)2

)
.

Then (iv) is a consequence of the following fact.

Lemma 6.1 For (r, h) = ψ(p, q) we have

Mm
r,h =

{
Y p,q(Sm−1 × J̄p,q) ∪ Zp,q(Sm−1 × J̄p,q), if (r, h) 6= (d, 0),

Y1,0(Sm−1 × (−1, 1)) if (r, h) = (d, 0).

Proof We argue for (r, h) 6= (d, 0), the case (r, h) = (d, 0) ( i.e., (p, q) = (1, 0))
being similar and easier. A straightforward computation shows that

(Φ ◦ Y p,q)(x, s) =
(

shp,q(s)x,

√
2

2
(h2

p,q(s)− p), 0
)

+ (x̄, h)

and

(Φ ◦ Zp,q)(x, s) =
(

sh̄p,q(s)x,

√
2

2
(h̄2

p,q(s)− p), 0
)

+ (x̄, h),

where h̄p,q(s) =
√

q/hp,q(s). Let β : J̄p,q → R2 and β̄ : J̄p,q → R2 be given by

β(s) =
(

shp,q(s),

√
2

2

(
h2

p,q(s)− p
))

and β̄(s) =
(

sh̄p,q(s),

√
2

2

(
h̄2

p,q(s)− p
))
,

respectively. Then, the statement follows from the fact that β( J̄p,q) ∪ β̄( J̄p,q) is the

circle of radius r =
√

(p2 − q)/2 centered at the origin.
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We now prove the converse. Let f : Mm → Sn × R, m ≥ 2, be an umbilical
isometric immersion. If the vector field T in (1.1) vanishes identically, then f (Mn)
is contained in a slice of Sn × R, and this gives the first possibility in the statement.
Now assume that T does not vanish at some point, and hence on some open subset
U ⊂ Mn. It suffices to prove that there exist open subsets Ũ ⊂ U and V ⊂ Sm,
(p, q) ∈ I and an interval I ⊂ Ip,q such that, up to an isometry of Sn × R, we have

f (Ũ ) ⊂ Y p,q(V × I). For this implies that f (Ũ ) ⊂ Mm
r,h with (r, h) = ψ(p, q), and

thus (Φ ◦ f )(Ũ ) ⊂ Φ(Mm
r,h) = Sm

r,h. Since Φ ◦ f is an umbilical immersion into

Rn+2 \ {0}, it follows that (Φ ◦ f )(Mm) ⊂ Sm
r,h, and hence f (Mm) ⊂ Mm

r,h.
From Codazzi equation (2.4) and α f (X,Y ) = n〈X,Y 〉H for all X,Y ∈ TM, where

H is the mean curvature vector of f , we obtain

(6.1) n∇⊥X H = −〈X,T〉η

for every X ∈ TM. If H and η are linearly dependent on U , it follows from Lemma 1.6
that f has substantial codimension one on U . Otherwise, there exists an open subset
Ũ ⊂ U such that H and η are linearly independent on Ũ , in which case Lemma 1.6
implies that f has substantial codimension two on Ũ .

On the other hand, since f is umbilical and its mean curvature vector H is parallel
in the normal connection along {T}⊥ by (6.1), Corollary 1.5(iii) is satisfied. Thus f
is a rotational submanifold.

Summing up, f |Ũ is a rotational submanifold of substantial codimension at most
two over a curve in a totally geodesic submanifold Ss × R, s ≤ 2. Hence, we can
assume that n = m + 1 and s = 2. Equivalently, in view of the last assertion in
Corollary 1.5 for ε = 1, we obtain that f |Ũ is given by (1.2) in terms of a totally
geodesic isometric immersion g : V ⊂ Sm−1 → Sm+1 and a regular curve γ : I →
S2 × R ⊂ R4, γ = (γ0, γ1, γ2, γ3), with γ2

0 + γ2
1 + γ2

2 = 1.
With notations as in Proposition 3.2, we have by (3.3) and the umbilicity of f that

A f̃
φx(ζ) is a multiple of the identity tensor for every ζ ∈ γ ′(s)⊥ ∩ γ̄(s)⊥. Using that

Ps(x) = γ0(s)I, it follows from (2.8), (3.4), and (3.6) that

−〈g̃, φx(ζ)〉
γ0(s)

=
〈γ ′ ′(s), ζ〉
〈γ ′(s), γ ′(s)〉

for all ζ ∈ γ ′(s)⊥ ∩ γ̄(s)⊥,

or equivalently,

〈γ0(s)γ ′ ′(s) + ϕ(s)e0, ζ〉 = 0 for all ζ ∈ γ ′(s)⊥ ∩ γ̄(s)⊥,

since g̃ = φx(e0). Here ϕ(s) = 〈γ ′(s), γ ′(s)〉. Hence, there exist smooth functions
y = y(s) and z = z(s) such that

(6.2) γ0γ
′ ′ + ϕe0 = yγ ′ + zγ̄.

We write the preceding equation as

(6.3) γ0γ̄
′ ′ + γ0γ

′ ′
3 e3 + ϕe0 = yγ̄ ′ + yγ ′3e3 + zγ̄.
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Notice that

〈γ̄, γ̄〉 = 1, 〈γ̄ ′, γ̄〉 = 0, 〈γ̄ ′, γ̄ ′〉 = ϕ− (γ ′3)2 = −〈γ̄ ′ ′, γ̄〉,(6.4)

and 〈γ̄ ′ ′, γ̄ ′〉 =
1

2
(ϕ ′ − 2γ ′3γ

′ ′
3 ).

On the other hand, taking the inner product of both sides of (6.3) with e3 yields

(6.5) γ0γ
′ ′
3 = yγ ′3.

Using (6.4) and (6.5), we obtain by taking the inner product of both sides of (6.3)
with γ̄ and γ̄ ′, respectively, that

(6.6) z = γ0(γ ′3)2 and y =
γ0ϕ

′ + 2ϕγ ′0
2ϕ

.

Hence (6.2) becomes

(6.7) 2ϕγ0γ
′ ′ + 2ϕ2e0 − (γ0ϕ

′ + 2ϕγ ′0)γ ′ − 2ϕγ0(γ ′3)2γ̄ = 0.

Taking the inner product of both sides of (6.7) with e3 yields

γ ′ ′3 =
( ϕ ′

2ϕ
+
γ ′0
γ0

)
γ ′3,

which easily implies that

(6.8) γ ′3 = cγ0
√
ϕ for some c ∈ R.

We now show that γ0 can not be constant on I. Assume otherwise, say, that γ0 =
a ∈ R. We may also suppose that γ is parametrized by arc-length, i.e., ϕ = 1. Then
γ ′3 = ac by (6.8), thus z = a3c2 and y = 0 by (6.6). Replacing into (6.7), the
e0-component gives c2a4 = 1, whereas for 1 ≤ i ≤ 2 the ei-component then yields
γ ′ ′i = (1/a)γi . We obtain that γi = ai exp(s/a) + bi exp(−s/a) for some ai , bi ∈ R,
1 ≤ i ≤ 2. Replacing into 1 = γ2

0 + γ2
1 + γ2

2 = a2 + γ2
1 + γ2

2 implies that ai = 0 = bi

for 1 ≤ i ≤ 2, i.e., γ1 = 0 = γ2, and that a = ±1. Therefore f |Ũ is totally geodesic,
contradicting our assumption.

Hence, there must exist an open interval J ⊂ I such that γ ′0(s) 6= 0 for all
s ∈ J, thus we can reparametrize γ on J so that γ0(s) = s for all s ∈ J. Then the
e0-component of (6.7) gives

sϕ ′ + 2(c2s4 − 1)ϕ2 + 2ϕ = 0.

This is easily seen to be equivalent to ϕ−1(s) = c2s4 + c2s2 + 1 for some c2 ∈ R. Hence
the right-hand side of the preceding equation is nowhere vanishing, and we can write
bϕ−1(s) = s4 + as2 + b for a = c2/c2 and b = 1/c2, or equivalently,

(6.9) ϕ(s) =
p2 − q

(s2 − p)2 − q
, p2 > q,
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for p = − a
2 and q = a2

4 − b. Equation (6.8) becomes

(6.10) γ ′3(s) =
s√

(s2 − p)2 − q
.

Taking the inner product of both sides of (6.7) with ei , 1 ≤ i ≤ 2, and using (6.9)
and (6.10) yields

s
(

(s2 − p)2 − q
)
γ ′ ′i + (s4 − p2 + q)γ ′ − s3γi = 0, 1 ≤ i ≤ 2.

Lemma 6.2 Let γi : I → R, 1 ≤ i ≤ 2, be linearly independent solutions of the ODE

(6.11) s
(

(s2 − p)2 − q
)
γ ′ ′i + (s4 − p2 + q)γ ′ − s3γi = 0, p2 > q,

on an open interval I ⊂ R, where (s2 − p)2 − q > 0. Assume that s2 + γ2
1 + γ2

2 = 1 for
all s ∈ I. Then (p, q) ∈ I, I ⊂ Jp,q and there exists θ ∈ R such that

(6.12)
√

2(γ1(s), γ2(s)) =(
h(s) +

1− p

h(s)

)
(cos θ, sin θ)±

√
q− (1− p)2

h(s)
(− sin θ, cos θ),

where h(s) =
√

p − s2 +
√

(p − s2)2 − q.

Proof Let F be a primitive of δ : I → R given by

δ(s) =
s√

(s2 − p)2 − q
.

Then it is easily checked that the functions

ρ+ := exp ◦F and ρ− := exp ◦(−F)

form a basis of the space of solutions of (6.11) on I. Thus, there exist ai , bi ∈ R,
1 ≤ i ≤ 2, such that

γi = aiρ+ + biρ−, 1 ≤ i ≤ 2.

Replacing into s2 + γ2
1 + γ2

2 = 1 gives

(6.13) s2 + A exp(2F(s)) + B + C exp(−2F(s)) = 0, for all s ∈ I,

where A = a2
1 + a2

2, B = 2(a1b1 + a2b2)− 1 and C = b2
1 + b2

2.
Assume that any one of the following conditions holds:

(i) q < 0;
(ii) q > 0 and p ≤ 0;
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(iii) q > 0, p > 0 and I is not contained in Jp,q.

Then, up to a constant,

F(s) =
1

2
log
(

s2 − p +
√

(s2 − p)2 − q
)
,

hence (6.13) gives

A(u +
√

u2 − q) + C(u +
√

u2 − q)−1 = −u + E,

where u = s2 − p and E = −B− p. This yields

2(2A + 1)(C − Aq) = −(2A + 1)2q, (C − Aq)E = −(2A + 1)Eq

and (C − Aq)2 = −E2q.

Since 2A + 1 > 0, the first and the third of the preceding equations give q = 0 if
E = 0, whereas the same conclusion follows from the first and second equations if
E 6= 0. This is a contradiction and shows that either q = 0 or q > 0, p > 0, and
I ⊂ Jp,q.

Let us consider first the case q = 0. Suppose either that p < 0 or that p > 0 and
I is not contained in Jp,0 = (−√p,

√
p). Then F(s) = 1

2 log(s2 − p) and (6.13) gives
Au +Cu−1 = −u + E, which implies that C = 0, E = 0 and A = −1, a contradiction.

Thus p > 0 and I ⊂ Jp,0, in which case F(s) = − 1
2 log(p − s2) and (6.13) now

yields −Au−1 − Cu = −u + E. This implies that A = 0, E = 0, and C = 1,
hence (a1, a2) = (0, 0), p = −B = 1, and there exists θ ∈ R such that (b1, b2) =
(cos θ, sin θ). Therefore γ1 = cos θ

√
1− s2, γ2 = sin θ

√
1− s2, and hence the state-

ment is true in this case.
Now suppose that q > 0, p > 0 and I ⊂ Jp,q. Then

F(s) = −1

2
log
(√

(p − s2)− q− s2 + p
)

= − log h(s),

where h(s) is as in the statement. We obtain from (6.13) that

A(
√

u2 − q− u)−1 + C(
√

u2 − q− u) = −u + E,

with u = s2 − p and A,C, E as before. This is equivalent to

2(2C − 1)(A− qC) = −q(2C − 1)2,

(A− qC)E = −q(2C − 1)E,

(A− qC)2 = −qE2,

and hence to

E = 0, A =
q

2
, and C =

1

2
.
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This gives

(6.14) a1b1 + a2b2 =
1

2
(1− p), a2

1 + a2
2 =

q

2
, and b2

1 + b2
2 =

1

2
.

By the last equation in (6.14), there exists θ ∈ R such that (b1, b2) =
√

2
2 (cos θ, sin θ).

Set u := (cos θ, sin θ) and v := (− sin θ, cos θ). Then the first equation can be written
as

(6.15)
〈

(a1, a2), u
〉

=

√
2

2
(1− p).

Using this and the second equation we obtain

q

2
= a2

1 + a2
2 =

1

2
(p − 1)2 +

〈
(a1, a2), v

〉 2
,

hence 〈
(a1, a2), v

〉 2
=

1

2

(
q− (p − 1)2

)
.

In particular, this shows that q ≥ (p − 1)2, thus (p, q) ∈ I. Moreover, together with
(6.15) it implies that

a1 =

√
2

2

(
(1− p) cos θ ∓

√
q− (1− p)2 sin θ

)
,

a2 =

√
2

2

(
(1− p) cos θ ±

√
q− (1− p)2 sin θ

)
,

and (6.12) follows.

We obtain from Lemma 6.2 and (6.10) that γ(s) is given by

(
s,
√

2
2

(
h(s) + 1−p

h(s)

)
(cos θ, sin θ)±

√
2

2

√
q−(1−p)2

h(s) (− sin θ, cos θ),H ± log h(s)
)
,

H ∈ R, and f |Ũ can be parametrized by Y : Sm−1 × I → Sm+1 × R given by

Y (X, s) =
(

sX, γ1(s), γ2(s), γ3(s)
)
.

Let A be the linear isometry of Rm+2 ⊃ Sm+1 × R defined by

Aem = cos θem + sin θem+1, Aem+1 = ∓ sin θem + cos θem+1,

Aei = ei for i ∈ {1, . . . ,m} and Aem+2 = ±em+2. Then A−1Y (X, s) − hem+2 =
Y p,q(X, s).
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It remains to prove assertion (v) in the direct statement. This is equivalent to
showing that Y p,q and Y p ′,q ′ do not parametrize congruent submanifolds for distinct
pairs (p, q) and (p ′, q ′) in I. After reparametrizing the curve γ = γp,q by arc-length,
the metric induced by Y p,q is a warped product metric ds2 + ρ2(s)dσ on I × Sm−1,
where dσ is the standard metric on Sm−1 and the warping function ρ = ρp,q is the
inverse of the arc-length function

Sp,q(t) =

∫ t

0
‖γ ′p,q(τ )‖dτ =

∫ t

0

√
ϕp,q(τ )dτ ,

with ϕp,q given by (6.9). If Y p,q and Y p ′,q ′ parametrize congruent submanifolds, then
the induced metrics, and hence the corresponding warping functions, must coincide.
It follows that ϕp,q = ϕp ′,q ′ , which easily implies that (p, q) = (p ′, q ′).
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