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Abstract

Let 5 be a regular semigroup and A a Z)(S)-module. We proved in a previous paper that the set
Ext(5, A) of equivalence classes of extensions of A by S admits an abelian group structure and studied
its functorial properties. The main aim of this paper is to describe Ext(5, A) as a second cohomology
group of certain chain complex.

1980 Mathematics subject classification (Amer. Math. Soc): 20 M 50.

Let 5 be a regular semigroup and A a Z)(S)-module. Denote by S the regular
semigroup obtained from S by adjoining an identity element I, I & S, and by A1

the Z>(5/)-module obtained from A by taking A\ — lim A, where IS denotes
the subsemigroup generated by the idempotents of 5. In Loganathan (1982) we
showed that the set Ext(S, A) of equivalence classes of extensions of A by S
admits an abelian group structure and studied its functorial properties. One of the
purposes of the present paper is to construct a chain complex C in the category of
•D(S7)-modules and to show that the group Ext(5, A) is naturally isomorphic to
the second cohomology group H2(C, A1). This generalizes the corresponding
result for inverse semigroups due to Lausch (1975).

After Section 2 which gives necessary preliminaries, we construct in Section 3
the chain complex C and compare the lower dimensional cohomology groups of C
and the category D(S'). It is shown that the second cohomology group
H2(D(S'), B) is isomorphic to a subgroup of H2(C, B) and that the first
cohomology group H\D(S'), B) is isomorphic to the group H\C, B), for any
D(5'/)-module B. In Section 4 we prove that the group Ext(S, A) is isomorphic to
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[2 ] Cohomology and extensions of regular semigroups 179

the group H2(C, A1). The remainder of the paper is devoted to interpreting the
groups H2(D(S'),Al) and H2(D(S'),Al) in terms of /-split extensions and
automorphisms of extensions respectively.

2. Preliminaries

Let S be a regular semigroup, and E(S) the set of idempotents of S. We denote
the set of inverses of an element x G S by V(x), that is,

V(x) = { x ' £ X : xx'x = x, x'xx' — x'}.

If x' e V(x) then (x, x') is called a regular pair in S. For e, f G E(S), let 5(e, / )
be the sandwich set of e and /, that is,

S(e,f) = {h <=E(S): he = h = fh and ehf = ef } .

LEMMA 2.1 (Nambooripad, 1979). Let S be a regular semigroup and let x, y G S.
Suppose that x' G V(x), y' G V(y) and let h G S(x'x, yy'). Then y'hx' G V(xy).

A sequence (eo,eu...,en) of idempotents of S is called an E(S)-chain if
e,9Le,+ i or e,£e,+ 1 for / = 0 , 1 , . . . ,n - 1.

LEMMA 2.2 (Nambooripad, 1979). Let S be a regular semigroup and IS the
subsemigroup generated by the idempotents of S. Then

(i) given any x in IS there exists an E(S)-chain (eo,ex,...,en) such that
x — eQe^ • • • en;

(ii) given any regular pair (x, x') in IS there exists an E(S)-chain (f0, / , , . . . ,/m)
such that (x, x') = ( / 0 / , • • • fm, fm • • • / , / „ ) .

We recall from Loganathan (1981) that if S is any regular semigroup then
C(5) is defined to be the category whose objects are the idempotents of S and
whose morphisms from an object e to the object/ are the triples (e, x, x') such
that x' EL V(x), e ** xx' and x'x — f. The category D(S) is the quotient category
of C(S) by the congruence generated by the following relation. If (e, x, x'),
(e, y, y'): e ->/are morphisms from e to/then (e, x, x') ~ (e, y, y') if and only
if x = y or x' = y'. We denote the image of (e, x, x') in D(S) by [e, x, x'\.

Finally we recall the definition of the cohomology of a small category. For
more details we refer to Watts (1965) and to Loganathan (1981). Let Ab denote
the category of abelian groups. Let 6 be any small category. A Q^module is a
functor A : Q -* Ab. Let A, B be two G-modules. A Qrhomomorphism <p : A -» B is
a natural transformation from A to B. The group of all C-homomorphisms from A
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to B is denoted by Home(^4, B). The category of ©-modules and 6-homomor-
phisms is denoted by Mod(G). The inverse limit functor limg: Mod(G) -» Ab is

left exact. Therefore the right derived functors of limg can be defined. If A is a

6-module then the value of the nth right derived functor of limg on A, denoted

by H"(G, A), is called the nth cohomology group of 6 with coefficients in A.
Let AZ: 6 -> Ab be the constant 6-module at Z, the additive group of integers,

that is (AZ)e = Z for every object e of 6, and (AZ)u is the identity homomor-
phism for every morphism u of 6. Then H"(G, A) = Ext£(AZ, A). Therefore the
cohomology groups of 6 may be calculated using a projective resolution of the
module AZ.

Let 60 denote the discrete subcategory determined by the identity morphisms
of 6. A Q0-set is a functor from 60 to the category of sets, and a Q0-map is a
natural transformation between such functors. Note that a 6-module (resp.
6-homomorphism) may be regarded as a G0-set (resp. 60-map) in an obvious way.

Let A" be a 60-set and F a 6-module. F is called a free 6-module on X if there
exist a 60-map i: X -» F such that to every 6-module A and to every 60-map

j : X -» A there is a unique G-homomorphism q>: F -> A such that itp — j . Given a
60-set X— {Xe: e E. ObQ} a free 6-module F o n I can be obtained by associat-
ing to each object e of G the free abelian group Fe generated by the symbols
(x, u), where w: h -» e runs through the morphisms of 6 with range e and x G Xh,
and to each morphism v: e -» / the homomorphism Fv: Fe^> Ff, where Fu is
given by (x, M)(FD) = (x, MD). The G0-map i: X -* F is defined by JH = (x, le),
where x G Xe and le is the identity morphism of 6 at e. We usually identify A'
with its image in F under i.

3. Chain complexes over AZ

Let 5 be a regular semigroup. In this section we construct a chain complex C in
the category of Z>(S7)-modules. The cohomology of C will be used in Section 4 to
describe the group Ext(S, A).

Throughout the remainder of this paper S will denote a regular semigroup with
an inverse map x i-> x* : S -* S; a map xi -»x*:S->S is called inverse if (i)
x* e V(x) for each x E 5; (ii) x* G HeifxG He. We extend x H* X* : 5 ->• S to
S' by defining /* = /. If JC, y G S7 then we denote the

[y*y,y*y(xy)*xy,(xy)*xy] : y*y^(xy)*xy

and

[x*x, x*xy, (xy)*xh] : x*x

« G S(x*x, yy*), by ̂ x y and /^ y respectively.
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LEMMA 3.1 (Loganathan 1982). For x, y, z G S1, we have

0) Ky,zKx,yz ~ Kxy,z>

\ll)''x,y''xy,z ~ Jx,yz>

(iii) Kx yJxy z = Jy ZKX yz.

Let Q , n > 0, be the free Z^S^-module on the D(SJ)0-set S" = ( S ; : e G

£(S ' ) } , where for « ^ 1,

5 ; = {(xl,...,xn):xi 6 S . K K / I , ( x , • • • xn)*xx •••xn = e}

and for M = 0, S° consists of a single element, denoted by ( ), and S° is empty if
e ¥= /. Note that 5" is an empty set for all n> I. We define D(57)-homomor-
phisms </„: CB-» CB_,by

2 . • • • . * » ) . ^ x , , x 2 - - - x . )

1 = 1

and

( x ) rf, = ( ( > , [ / , x*x, x*x]) - ( ( > , [ / , x, x*]).

A routine verification shows that dndn_x = 0 . Hence

(3.1) C : . . . - C n - + C H _ l ^ • • • - C o - 0

is a free chain complex in Mod(D(S7)). If B is a D(S7)-module then the wth
cohomology group of C with coefficients in B is the abelian group

H"(C, B) = H"(HomD(sl)(C, B)).

The following description of the second cohomology group of C is needed in
Section 4. Suppose that A is a Z>(S)-module. Then we denote by A1 the
D(57)-module extended from A by taking A\ = lim J4 and defining, for every

morphism [/, x, x']\ I -> e,

A\[l,x,x']):A\^A\(=Ae)

to be the composite

pxx' A([xx',x,x'\)

lim A -^Axx, -> Ae,
D(IS)

where pxx, is the projection from lim .4 to Axx.. If we regard S X S and 5 as

Z>(S)0-sets by taking for each e G E(S), (S X S)e = Se
2 and 5e = Sf' respectively
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then, since S" is an empty set for all n > 1, it follows that

HornD(S/>(C2, .4') = HomO(S)0(S X S, A)

and

H o m ^ ^ C , , A1) = HomO ( 5 ) 0(S, A).

Hence, a 2-cocycle a can be considered as a D(5)0-map a: S X S -» A such that

(3.2) (y, z)aA{Kxy2) - (xy, z)a + (x, yz)a - (x, y)aA{jxyz) = 0,

for all JC, y, z E S; a is a coboundary if and only if there exists a Z)(S)0-map
^•.S^A such that

(3.3) (x, >>)« = (y)fiA(KXty) - (xy)fi + (x)PA(Jx,y),

for all J J 6 X .

We would like to compare the lower dimensional cohomology groups of C and
the small category D(Sr). For this purpose we shall construct free resolutions of

Let Gn, n 3= 1, be the free 2)(57)-module on the D(Sr)0-set Y" = {Ye
n: e G

E(S')}, where Y" consists of all composable sequences (« , , . . . ,Mn) of mor-
phisms of D(S') with domain of M, = / , and range of un = e. Put Go = Co.
Define Z)(5/)-homomorphisms e: Go -» AZ by (( » e = 1, the identity element of
the group (AZ), = Z, and dn:Gn^ Gn_x by

n - l

+ 2 < - i ) ' ( « , , . . . , « , « , + , , . . . , « „ )

w h e r e e , G E(Sr) a n d d o m a i n of M 2 = ex;

([I, x, x']) dx = (( >, [/, x'x, x'x]) - (( ), [/, x, x']).

Define Z)(S/)0-homomorphisms sn : Gn -» Gn+, (n > 0) and S: AZ -> Go by

where 1 is the identity element of the group (AZ)e = Z. It is easy to verify that

8e = 1AZ, 50rf, + e8 = lCo, sndn+1 + dnsn_x = 1CB (« > 0).
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[6] Cohomology and extensions of regular semigroups 183

Using these relations one can show as in Mac Lane (1963), page 115, that

• • • - £ „ - £ „ _ , - . . . - » < ? „ - < )

is a free resolution of AZ.
In Gn put ((«,,. . . ,«„), v) = 0, whenever one of the variables M, = identity

morphism or u, = [ / , / , / ] for some fEE(Sr). Then we get another free
resolution

(3 .4 ) F : • • • - F n - / • , _ , - > •••^Fo^0

of AZ such that Fo = Go = Co, and Fn is the free D(ST)-module on the D(S')0-set
X" = {X?: e e £ ( S ' ) } , where X? is the subset of Ye" consisting of all ( «„ . . . , «„>
such that w, ^ [/, e, e] for any e E E(Sl) and such that none of the « , , . . . ,«„ are
identity morphisms. Note that X" is an empty set for all n 5= 1.

Now

is a free chain complex over AZ and

F : • • • - * / ; - F B _ , ^ • • • - F o - 0

is a free resolution of AZ. Therefore the identity homomorphism of AZ can be

lifted to a chain map <p: C -> F and any two such chain maps are chain

homotopic.

PROPOSITION 3.2. Let <p:C->Fbea chain map such that <poe = e. Then for any
D{S')-moduleB,

(0 tf:
is an isomorphism and

(ii) <pl:

is a monomorphism.

PROOF. We choose <p so that <pn : Cn -» Fn, n = 0,1,2 are given by

<p0 = identity homomorphism;

(i) Suppose /?: F, -» B is a cocycle such that <p,)8 is a coboundary. Then there
exists a unique b G Br such that

(jc)Vli8 = (7/>JC)0 = bB{J,<x.x) - bB(J,J,
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for all x £ 5. Since

( [ / , x, x*], [x*x, x*x, x'x])(P)dl = 0,

it follows that

( [ / , x, x'])B = bB([I, x'x, x'x]) - bB([l, x, x']),

for all ( [ / , x, x']) £ X1. Hence B is a coboundary. Thus <p| is a monomorphism.
Now suppose that B: C, -» B is a cocycle. Then (x)/? = 0 for all x £ /S. If we
define/?': Fx -> B by

([/, x, x']> 0' = (x)BB([x*x, x*x, x'x]), ([I, x, x']) £ X\

then ^ ' is a cocycle and <p2^' = B. Hence (pj is an epimorphism.
(ii) Suppose that [a] £ ker<pj, and let a' = <p2a. Then there exists a D(S')-

homomorphism B': Cx -» fi such that

(3.5) (x, ̂ )«' = (x)p'B(jxJ + (y)B'B(Kxy) - (xy)B',

for all (x, y) £ S2. If x, y E IS then (x, y)a' = 0 because

(x, y)a! = (x, y)<p2a

= (jf<x,Jx<y)a+(jIty,Kx<y)a

= (Jl,x*x>Jx.y)<*+ (Jl,y'y'Kx,y)a

= 0.

Since every element of IS can be expressed as a product of idempotents of S,
using (3.5) one can prove by an induction argument that (x)B' = 0 for all x £ IS.
This implies that B : F, -> 5 given by

(3.6) ( [ / , x, *']>/? = {x)B'B{Kx,xx.x) - </,,„ tf^., >a

is well defined and it is a D(S/)-homomorphism from F, to B. We claim that
a = (B)d%. To prove this let

([l,x,x'],[e,y,y'])eXf
2, fGE(S).

Consider

( [ / , x, x'], [e, y, y'])(B)d* = ([I, y, y']) B - ([I, xy, y'x'}) B

(using (3.5) and (3.6)).
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Now

(x, y)a'B(K/Xxy).xy) = (/,,„ Jx,y)aB(KUxy).xy)

+ (j,,y,Kx,y)aB(KfXxyyxy)

— (KxjJx.y Kf,(xy)'xy / a ~ \Jl,xJx,y^ K/,(xy)*xy ) a

+ \JI,x> Jx,yKf,(xy)*xy)a

(3-8) -(jI<yKxy,KUxyrxy)a

+ ( JI,y ' Kx,yKf,(xy)*xy ) «

- -\Jl,xy> Kf,(.xy)'xy)a + \JI,x< Jx, yKf,{xy)>xy)a

+ (Ji.y>Kf,y-y)a>

since Kx ,JX y = J, yKx y by Lemma 3.1; and, since (J, x, Ke x*x,[e, y, y'])(a)d%
= 0,

(Ji,x, Ke<x.x)aB([e, y, y']) = -{j,,xKe<x.x, [e, y, y'])a

+ {J,.x,KttX.x[e,y,y'\)a

(3.9) =

Substituting (3.8) and (3.9) in (3.7) we get

( [ / , x, x'], [e, y, y'])(B)d*2 = (j,tX, Jx<yKUxy).xy)a

> x*xy, y'eX)

since Jx yKfAxy).xy - [x*x, x*xy, y'y(xy)*xh] = [x*x, x*xy, y'e]. Thus a =
(B)d*. Hence <pj is a monomorphism.

If S is an inverse semigroup then the chain complex C is exact and hence a free
resolution of AZ. In this case <p becomes a chain equivalence inducing isomor-
phism on the cohomology groups. In the general case, q>* need not be an
isomorphism. The reader is advised to compare Proposition 3.1 with Theorem 7.5
and the subsequent Remark in Lausch (1975).

4. Description of Ext(S, A)

Let Tr:T->S be an idempotent separating homomorphism from a regular
semigroup T onto 5. Then, for each e £ E(S),

)e = {t ET:tir = e}
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is a subgroup of T a n d the following two properties hold:

, . af = fa, for all a G (Ker ir)e and a l l / E £ ( T )
such that*? ss/w;

x'(Ker 7r)ex C (Ker w ) ( x x ) T , for all regular pairs

(x, x') in T such that e > (xx')ir.

Suppose now that the groups (Ker <n)e, e G E(S), are abelian. Thus, using (4.1)
and (4.2), it is easy to see that IT defines a Z)(S)-module, denoted by Ker IT, which
associates to each object e the abelian group (Keri7-)e and to each morphism
[e, x, x']: e -» / the homomorphism

(Ker w)[e, x, x'] : (Ker v)e -»(Kerir) , ,

given by a((Ker w)[e, x, JC']) = y'ay, where (j>, j>') is a regular pair in T satisfying
(yir, y'ir) - (x, x').

Let A be a £>(5)-module. We recall from Loganathan (1982) that an extension
of A by 5 is a triple E = (T,IT, i) consisting of a regular semigroup T, an
idempotent separating homomorphism w from T onto S such that the groups
(KeT7r)e, e G E(S), are abelian, and an isomorphism / : A -> Kerw of D(S)-
modules. Two extensions £ , = (71,, w,, /,) and E2 = (T2, TT2, i2) are said to be
equivalent if there exists a homomorphism (in fact an isomorphism) 0:Tx^T2

such that 8-n2 = w, and ail8 = ai2, for all a G ^4. Let Ext(S, A) denote the set of
all equivalence classes of extensions of A by S. We have shown in Loganathan
(1982) that Ext(S, A) admits an abelian group structure. We now show that the
abelian group Ext(5, A) is naturally isomorphic to the group H2(C, A]).

LEMMA 4.1. Let IT : T -» S be an idempotent separating homomorphism from a
regular semigroup T onto S. Suppose that tm = urn = x, t, u G T. Then, for each
e G E(S) n Lx, there exists a unique element a in T such that u — ta and am = e.

PROOF. Let x' be an inverse of x such that x'x — e. Choose t' G V(t) and
u' G V(u) such that t'-rr — x' = U'TT. Then, since m is idempotent-separating,
tt' = MM', and t't = u'u. If we take a — t'u then u = uu'u = tt'u = ta, and air =
x'x = e. The element a is unique, for if b is another element of T satisfying u — tb
and bir = e then b = t'u — a.

Let now E = (T,TT, i) be an extension of A by 51. Fix an inverse map
t\->t*:T^ T such that (t*)ir = (tir)* for all t G T. Choose a section/: S -> T;
that is, j is a map from 5 to T such that xjm = x, for all x E S. Since
((x/)(.y/))w = -xy = (xy)jir, it follows from Lemma 4.1 that there exists a D(S)0-
map a : S X S - » i 4 such that

(x)j(y)j = (xy)j{(x, y)a)i, for all x, y E S.
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We shall prove that a is a 2-cocycle. First we prove a lemma.

LEMMA 4.2. Let t, u G T, and let a G A(lny.tv, b G A(u^»U7r. Then

t{a)iu{b)i = tu(aA(JIWiUW) + bA(Kt^))i.

PROOF. Let h G S(t*t, uu*). Then t*thuu* = t*tuu*, t*t > t*th and uu* > huu*.
Since a E A^n,n), (a)it*t = t*t(a)i = (a)i. Now

t(a)iu(b)i = t(a)it*thuu*u{b)i

= tt*th{a)iu(b)i (by (4.1), since t*t > t*th)

= tuu*h(a)iu(b)i.

Since (tuu*h(a)iu)ir = (tu)ir and since m is idempotent separating, it follows that

tuu*h(a)iu = tuu*h(a)iuk, where A: = (tu)*tu.

Hence

t{a)iu{b)i = tuu*h(a)iuk(b)i

= tu(ku*h(a)it*tu)(k{b)iuu*k) (by (4.1), since u*u > u*uk)

= tu(aA{J,w<uw) + bA(K,,tU,))L

Hence the result.

Let a be as above. Suppose x, y, z G 5. Put e — (xyz)j*(xyz)j and / =
(yz)j*(yz)j- Then

j(y, z)ai

= (xyz)j(x, yz)ai{y, z)ai

= (xyz)j(x, yz)aiefe(y, z)ai (since ef= e and (x, yz)aie = (x, yz)a)

= (xyz)j(x, yz)aie(y, z)aife (by (4.1), sincef>fe)

= (xyz)j((x, yz)a +(y, z)aA(Kxyz))i;

where as

((xj)(yj))(zj) = {xy)j(x,y)ai(zj)

= (xy)j(zj)((x, y)aA(Jxyz))i (using Lemma 4.2)

= (xyz)j{(xy, z)a + (x, y)aA(Jxyz))i.

Since (xj){(yj)(zj)) = {{xj)(yj)){zj), Lemma 4.1 implies that

(x, yz)a + (y, z)aA(Kxyz) = (xy, z)a + (x, y)aA(Jxyz).
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That is,

(y, z)aA(Kxyz) - {xy, z)a + (x, yz)a - (x, y)aA(Jxyz) = 0.

Hence a is a 2-cocycle by (3.2).
Suppose E' = (T',TT', /') is another extension of A by S which is equivalent to

E = (T,ir, i) and 8: T -» T is an isomorphism such that Oir' = IT and aid = ai',
for all a G A. Let a' = S X S ->v4 be the cocycle induced by a section/ : S -» T.
Since jdir' =j'ir', it follows from Lemma 4.1 that there exists a D(S)0-map
0: S -^A such that xjO = (xj'Xxfii'), for all x e S. It is easily seen that a - a'
= {fi)d*. Consequently, the cohomology class of a does not depend on the
extension E but only on the equivalence class [E]. Hence we have a well defined
mapping

[E] H> ( [£])2 : Ext(5, A) - H2(C, A1).

PROPOSITION 4.3. 2 is a homomorphism of abelian groups.

PROOF. Consider two extensions Ex — (T{, TT,, /',), E2 = (T2, TT2, i2) with sec-
tions 7, : S -* Tx, j2 : S -» T2 and corresponding 2-cocycles a, : S X S -»^4, a2: S
X S ^ / 4 . Let £, + £2 = (T, + T2, IT, i) be the sum of £, and E2. If we define

7': S -» T, + r2 by JC/ = (JC/,, xj2) then7 is a section and the 2-cocycle induced by
7 is a, + a2. Therefore

([£,] + [£2])2 = ([£, + £2])2 = [a, + «2] = [a,] + [«2]

= ([£,])2 + ([£2])2.

Hence 2 is a homomorphism.

THEOREM 4.4. 2 : Ext(5, A) -» H2(C, A]) is an isomorphism of abelian groups.

PROOF. TO show that 2 is a monomorphism, assume that E = (T, IT, i) is an
extension of A by S such that ([£])2 = 0. Then there exists a section 7: S -» T
such that the 2-cocycle a induced by 7 is of the form a = (fl)d2 for some
D(5)0-map 0 : S -+A. Now define n: 5 ^ T by (x)p = (x)j(-(xP))i. Then, for
x,yGS,

j[(x, y)a-(x)pA(JXty) - (y)fiA(Kx%y)]i

(by Lemma 4.2)

= {xy)j(- (xy)P)i (since a = (p)d*)
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Thus ju is a homomorphism. Further, nw — ls. Hence E — (T, m, i) is a split
extension of A by S and so, by Theorem 3.3 of Loganathan (1982), [E] is the zero
element of Ext(S, A).

To show that 2 is an epimorphism, let a : S X S -> A be a 2-cocycle. Set

Ta= {(x,a):xES,aGAx.x)

and define a multiplication on Ta by

(x, fl)^, ft) = {xy, (x, y)a + aA(JxJ + bA{KxJ).

Using Lemma 3.1 and (3.2), it is easily seen that the above multiplication is
associative. The set E(Ta) of idempotents of Ta is

E(Ta)={(e,-(e,e)a):eEE(S)}.

If (x, a) G Ta then, for each j> e V(x),

)a - (y, x)a)A{jyxy) - )

is an inverse of (x, a). Hence Ta is a regular semigroup. Define IT : Ta -» S by
(x, a)7T = JC. Then w is an idempotent separating homomorphism from T onto S
such that

)e={(e,a):aeAe}, e G E(S).

Define i'•: A -» Ker w by

Then Ea — (Ta, IT, i) is an extension of A by 5. If we define a section 7: S -> ra

by (*)./ = (*> 0X»X)> * 6 S, then the induced 2-cocycle is a so that ([£'a])2 is the
cohomology class determined by a. Thus 2 is an epimorphism and hence an
isomorphism.

By Proposition 3.2, H2(D(S'), A1) can be identified with its isomorphic image
in H2(C, A1). We next characterize the subgroup of Ext(S, A) which corresponds
to H2(D(S'), A1) under the isomorphism 2.

An extension E = (T, m, i) of A by 5 is called I-split if TT | IT: IT -»IS is an
isomorphism of regular semigroups. If E = (T, IT, i) is an /-split extension of A
by S then any extension which is equivalent to E is itself /-split. Further, the
subset E{S, A) of Ext(S, A) consisting of all equivalence classes of /-split
extensions of A by 5 is closed under taking sums and inverses. Hence E(S, A) is a
subgroup of Ext(5, A).

THEOREM 4.5 (Loganathan, 1978). 1.\E(S,A) is an isomorphism of abelian
groups from E(S, A) onto H2(D(S'), A1).

We first prove the following lemma.
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LEMMA 4.6. Let ir:T->Sbea homomorphism from a regular semigroup T onto S
such that ir \ IT: IT -» 75 is an isomorphism. Let (IT, IT) : RP(T) -> RP(S) be the
induced map, where RP(T) and RP(S) denote the set of all regular pairs in T and S
respectively. Then there exists a section (j\, j2) of (ir,ir) satisfying the following
conditions.

(i) If e G E(S), then ((e, e)jx,(e, e)j2) = (e, e), where e is the unique idempo-
tent of Tsuch that eir = e.

(ii) If(y, y'), (x, x') are regular pairs in T such that (y, y') = (en • • • eox, x'e0

• • • en)for some E(S)-chain (e0,... ,en), with e0 — xx' anden = yy', then

((y, y')j\,(y> y')h) = (*„••• eo{x, x')jx,{x, x')j2e0 • • • en).

PROOF. Consider the equivalence relation p on RP(S) defined by (y, y')p(x, x')
if and only if (y, y') = (en • • • eox, x'e0 • • • en) for some £(S) -cha in (e0,.. .,en)

satisfying e0 = xx' and en = yy'. (Note that (y, y')p(x, x') if and only if [7, y, y']
= [7, x, x'] in D(S').) Let U be a transversal of p such that (e, e) G U for all
e e E(S). Define (y,, j2):U -» RP(T) such that (e, e)jt = (e, e)j2 = e for all
e G E(S), and ((x, x')j\ir,(x, x')j2m) = (x, x') for all (x, x') G U. We extend
(Jv Ji) t o RP(S) as follows. Suppose that (y, y') G RP(S). Then there exists a
unique (x, x') G U and an 7i(5')-chain (e0,...,en), with eQ = xx' and en = yy',
such that (y, y') = (en • • • eox, x'eQ • • • en). We define

')j\>(y>y')h) - {en---ea{x, x')ju{x, x')j2e0 • • • e j .

Since m \ IT is an isomorphism, the above map is well defined. It is quite obvious
from the definition of (_/,, j2) that it satisfies (i) and (ii).

PROOF OF THEOREM 4.5. Suppose E = (T, IT, i) is an /-split extension of A by
S. We must show that ([£])2 G H2(D(S'), A1). To prove this, take any section
(7i> h) o f (n^w): RP(T) -> RP(S) satisfying (i) and (ii) of Lemma 4.6. Let

j': S -» 7 be the section of w defined by (x)j = (x, JC*)^, x G 5, and let a' be the
corresponding 2-cocycle so that [a'] = ([£])2. Define a: E2 -> A1 implicitly by

([7, x, x'], [x'x, y, y'])ai = (xy, y'x')j2(x, x')j\(y, y')jt,

([I, x, x'], [x'x, y, y'\) G X2. Then using Lemma 4.6 and the fact that e is the
identity element of the group (Kerw),, it follows that a is well defined and
(a)J3* = 0. We claim that (a)<p| = a', implying that {[a])^ = [a'] = ([E])2. To
prove this take any x, y G S. Put e = x*x, f = yy*, and k — (xy)*xy. Then

(x, y)(a)tfi = {(JltX, Jx,y)a + (jI<y, Kx<y)a)i

= (xy, ky*hx*)j2(x, x*)jx(ey, ky*h)j[

X(yk,ky*)j2(y,y*)jl(fk,k)ji,
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where h e S(e, / ) . Now by Lemma 4.6,

(*>>, ky*hx*)j2 = (xy , ( x y ) * ) . ^ * . **) . / i* (* , x*)j2

and

(ey, *y*A)7, = dihTf(yk, ky*)jx = ef(yk, ky*)jx.

It follows that

(x, y)(a)tp$i = (xy, (xy)*)j2(x, x*)j\(y, y*)jx = (x, y)a'i.

Hence (a)<pj = a'.
Next suppose [a] e H2(D(Sf), A1) C H2(C, A1) and let a be a representative

of [a]. Then (x, y)a = 0 for all x, y G IS. It follows that the associated extension
Ea = (Ta, IT, i) is /-split and ([£J)2 = [«].

REMARK. If S is an inverse semigroup then every extension of A by S is /-split.
Hence E(S, A) = Ext(S, A) and 2 | E(S, A) = 2. In this case, Theorem 4.5 is
equivalent to Theorem 7.4 of Lausch (1975).

5. The group Hl(D(S'), A1)

In this section we interpret the group H\D(S'), Ax) in terms of automor-
phisms of extensions. We begin by describing the group H\D(Sr), Ax). Since
Hom^j/^C,, Ax) = HomD(S)o(5, A), a 1-cocycle ft can be considered as a
Z>(S)0-map fi:S-*A such that

(5.1) (y)fiA(KXty) - (xy)p + (x)0A(Jx,y) = 0,

for all x, y E 5. Since Horn^S/^(CO, A1) = lim s A, a 1-cocycle (i: S -> /I is a

coboundary if and only if there exists a a in lim s 4̂ such that

(S-2) (*)j8 = (x*x)a - (xx*)oA(Jxx.x),

for all x e 5. Hence H\D(S'), A') is the group of all Z)(S)0-maps satisfying
(5.1) modulo the subgroup of all /)(5)0-maps satisfying (5.2).

Let E = (T, IT, i) be an extension of A by S. Let Aut E denote the group of all
automorphisms 6 of T satisfying B-n = IT, and aid — ai for all a E A. For each
a e UmD(/S)A define 6a : T -* Thy

(5.3) {t)0a = t{tv)fii,
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where (S: S -> A is the 1-cocycle defined by (5.2), 6a is a homomorphism because

= tu((x)PA(jXty) + (y)pA(Kxy))i (by Lemma 4.2)

= tu(xy)fii (since (5 is a cocycle)

where x = tir and y — urn. Clearly Qam — IT, and (a)i0a = (a)i for all a
Hence 9O is an automorphism of T and 6a G Aut £ . Let

V = fl : a G lim ^ .

We now will define a map TJ : Aut E -> Z^DiS1), A1), where
denote the group of all 1-cocycles. Let 0 G Aut £ . Since Om = TT, by Lemma 4.1
we can associate with each t in T a unique element a, in A(lw),l7r such that
/# = t{a,)i. If /w = Mir then a, — au. Hence we obtain a £>(S)0-map ft: S ^> A
such that (tir)fi = a,, t G T. If /, M G T then it follows from Lemmas 4.1 and 4.2
that

Hence /? is a cocycle. We associate with 6 the element (0)TJ = /?. Clearly ?) is a
homomorphism of groups.

THEOREM 4.6. Le? E = (T, IT, i) be an extension of A by S. Then the homomor-

phism

TJ : Aut E -> ZX{D{S'), A1)

induces an isomorphism

(Aut E)\V = Hl(D(Sr), A1).

PROOF. If £ : 5 -» A is a 1-cocycle then the map 0:T-> T, defined by (t)6 =
t(t-n)fii, is a homomorphism by Lemma 4.2. Further w6 = IT and (a)iO = (a)/ for
all a G ^ . Hence 0 £ Aut £. Obviously (0)TJ = 0.

It is easy to see that 0 G V if and only if (0)T) is a coboundary. Hence
H\D(S'), AX) is isomorphic to the quotient group (Aut £ ) | V.
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