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Non-Isomorphic Maximal Orders with
Isomorphic Matrix Rings

A. W. Chatters

Abstract. 'We construct a countably infinite family of pairwise non-isomorphic maximal Q[X]-orders such
that the full 2 by 2 matrix rings over these orders are all isomorphic.

1 Introduction

Many examples are now known of non-isomorphic prime Noetherian rings S and T such
that the corresponding full 2 by 2 matrix rings M,(S) and M,(T) are isomorphic (for
instance, an uncountably infinite family of such examples was given in [1]). This phe-
nomenon illustrates the difficulty of distinguishing between closely related but non-
isomorphic rings even when they satisfy additional natural conditions. Until recently only
a few examples were known of such rings S and T which are also maximal orders (see for
instance [3] and [4]). In [2] it was shown how to construct arbitrarily large finite families
of such examples among maximal Z-orders, but the method used there cannot give infinite
families. In this note we switch from the ring Z of integers to the rational polynomial ring
Q[X], and we construct a countably infinite family of pairwise non-isomorphic maximal
Q[X]-orders in the same division algebra such that the corresponding 2 by 2 matrix rings
are all isomorphic. Whatever method is used to construct such examples, the hard part
is usually the problem of finding a way to distinguish the non-isomorphic rings. The way
used here is probably more simple-minded and elementary than in earlier constructions.

2 The Examples

Let Q) be the field of rational numbers and set A = Q) [X] where X is a central indeterminate.
Throughout this section R will denote the ring of quaternions over A on i and j with > =
—1and j2 = wwhere w = X?* + 4. Set k = ij. Thus a typical element of R has the
form a + bi + cj + dk for unique elements 4, b, ¢, d of A, and the norm of this element is
a? + b — (¢ + d*)w. It is easy to show, using degree considerations in A = Q)[X], that the
above norm-value is 0 if and only ifa = b = ¢ = d = 0. From this it is routine to show
that R is an integral domain which has a quotient division ring D.

Lemma 2.1 w is an irreducible element of A.

Proof Recall that w = X** + 4 and that A = Q[X]. We can use the change of variable
X =Y + 1, and then apply the Eisenstein Criterion. ]

Received by the editors October 1, 1998; revised July 29, 1999.
AMS subject classification: Primary: 16S50; secondary: 16H05, 16N60.
(©Canadian Mathematical Society 2000.

413

https://doi.org/10.4153/CMB-2000-049-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2000-049-0

414 A. W. Chatters

Lemma 2.2 Let f be an irreducible element of A with fA # wA. Then fR is a maximal ideal
of R.

Proof Set F = A/fA and let u and v denote the images of i and j respectively in R/ fR.
Then R/ fR is quaternions over the field F on uand v with u*> = —1 and v* # 0. Itis routine
to show that R/ fR is a semi-simple F-algebra. Alsoij — ji = 2k ¢ fR, so that R/fR is
not commutative. Therefore R/ fR is a non-commutative semi-simple 4-dimensional F-
algebra, so that either R/fR is a division ring or R/fR is isomorphic to the full 2 by 2
matrix algebra M, (F). |

Lemma 2.3 jR is the unique maximal ideal of R which contains w.

Proof Clearly jR is a two-sided ideal of R and (jR)*> = wR. Set E = A/wA. Because w is
irreducible over Q) of odd degree, the field E has odd degree as an extension of (). Hence
E contains no square roots of —1. But R/jR = E[u] where u is the image of i in R/jR.
Because u* = —1 and E contains no square roots of —1, it follows that R/ jR is a field. M

Proposition 2.4 Every maximal ideal of R is principal (by which we mean that it has the form
xR for some element x of R with xR = Rx).

Proof Let M be a maximal ideal of R. Then M contains a non-zero element a of A. Hence
M contains an irreducible factor f of a in A. If fA # wA then fR is a maximal ideal of R
by 2.2, so that M = fR. On the other hand, if fA = wA then M = jR by 2.3. ]

Corollary 2.5 R is a maximal A-order in D.

Proof Clearly R is a Noetherian A-order in D. In order to show that R is a maximal order,
it is enough to show that every non-zero ideal of R is principal (in the sense used in 2.4)
and hence is invertible. We know by 2.4 that every maximal ideal of R is principal, and it
follows from this by a standard maximal counter-example argument that every non-zero
ideal of R is principal. ]

We shall next construct an infinite family of maximal right ideals of R such that the
corresponding left orders are pairwise non-isomorphic. These right ideals correspond to
prime numbers p, and it will simplify matters to fix the following notation for the rest of
the section.

Notation 2.6 Let p be a prime number. Set f = X° — p?, K = fR+ (p° + 2i + j)R, and
S = Oy(K); here O;(K) denotes the set of elements of D which left-multiply K into K.

Lemma 2.7 f is an irreducible element of A.

Proof Recall that f = X° — p?. If p = 2 then we can show that f is irreducible by using the
change of variable X = Y — 1 and then applying the Eisenstein Criterion. Now suppose that
p is odd. Clearly f has no linear factors over (). Over the integers mod(2) the irreducible
factors of f are X + 1 and X* + X*> + X2 + X + 1, and from this it follows that f has no
quadratic factors over Q). ]

Lemma 2.8 K is a maximal right ideal of R and is not a two-sided ideal of R.
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Proof By 2.7 and the proof of 2.2 we know that R/ fR is either a division ring or a full 2 by
2 matrix ring over a field. Set x = p> +2i + jand y = p° — 2i — j. Then K = fR + xR;
x and y do not belong to fR; but xy = yx = p'® + 4 — w = p'® — X?* which is divisible
by p* — X°. It follows that fR # K # R. Therefore R/ fR is a full 2 by 2 matrix ring over a
field and K is a maximal right ideal of R containing fR. ]

Proposition 2.9 M;(S) = M,(R).

Proof Let W denote the endomorphism ring of K as a right R-module. For s € S define
ws € W by w,(k) = sk for all k € K. Because K contains the non-zero central element f
of R, it is routine to show that the function which sends s to w; is an isomorphism from
S to W. Thus it is enough to show that M, (W) = M,(R). We showed in the proof of 2.8
that R/ fR is a full 2 by 2 matrix ring over a field and that K is a maximal right ideal of R
which contains f. Hence R/K = K/fR as right R-modules (in fact R/K and K/ fR are
both isomorphic to the unique simple right R/ fR-module). We can now proceed as in the
proof of Theorem 3.1 of [2] to show that M, (W) = M,(R). [ |

Corollary 2.10 S is a maximal A-order in D.

Proof Firstly we note that S is a subring of D which contains A. Also SK C Rand f € K,
so that S C f~!R. Because R is finitely-generated as an A-module, so also are f~'R and
S. Let B be the quotient field of A. Then RB = D and fB = B. Also K C S. Hence
D = RB = fRB C KB C SB, so that SB = D. Therefore S is an A-order in D. But
M,(S) = M,(R) by 2.9, and we showed in the proof of 2.5 that every non-zero ideal of R
is invertible. Hence every non-zero ideal of S is invertible, so that S is a maximal order.
Therefore S is a maximal A-order in D. ]

Theorem 2.11 Let p, f, K, S be as in 2.6. Similarly let q be a prime number and set ¢ =
X — g L=gR+(g°+2i+ j)R and T = Oy(L). Then S= T ifand only if p = q.

Proof Suppose that e: S — T is an isomorphism of rings. Then e can be extended to an
automorphism of the quotient division ring D, and we shall also call this automorphism
e. Because A is the centre of both S and T, we know that the restriction of e to A is an
automorphism of A. Hence e preserves degree in X when applied to elements of A = Q [X].

We shall determine the values of e(i) and e(j); from these it will follow that e acts as the
identity function on A, and that the restriction of e to R is an automorphism of R. Recall
that S = Oy(K) and K O fR. Hence fi € K andso fi € S. Thus e(fi) € T = O,(L) where
L O gR. Therefore e(fi)g € R. Set h = e(f). Because f is an irreducible element of A of
degree 5, so also is h. We have (e(fi)g)2 = (e(i)gh)2 = —g?h%. Thus e(i)gh is an element
of R whose square is in A. But e(i)gh is not in A because i is not a central element of D.
Therefore

(1) e(i)gh=">bi+cj+dk forsomeb,c,dec A.
Squaring both sides of (1) gives

(2) —&*h = b+ (& + d)w.
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Using “deg” to denote degree in X, we have deg(g) = deg(h) = 5 and deg(w) = 25. Also
because we are working over () we have either ¢* + d> = 0 or deg(c* + d*) is a non-negative
even integer. Thus degree considerations enable us to deduce from (2) that ¢ + d*> = 0, so
that c = d = 0, and gh = £b. Therefore from (1) we have e(i) = =+i.

Next we find the possible values of e(j). Proceeding as with e(i), we have
(3) e(j)gh=wui+vj+zk forsomeu,v,z¢e A.

But e(i)e(j) + e(j)e(i) = e(ij + ji) = 0, and we know that e(i) = +i. Hence from (3)
we have i(ui + vj + zk) + (ui + vj + zk)i = 0, so that u = 0. Set a = e(w). Then a
is an irreducible element of A of degree 25. Also ag’h? = e(w)g*h* = (e ]'))2g2h2 =
(ui +vj+zk)* = (vj+zk)> = (v* + 2*)w. Thus

(4) ag’h* = (v* + 25)w.

But deg(g*h?) = 20, and w is an irreducible element of A of degree 25. It follows from (4)
that w divides a in A. But deg(a) = deg(w). Therefore a = tw for some non-zero rational
number ¢. Also because e induces an automorphism of A = Q [X], we have e(X) = rX+s for
somer,s € Q) withr # 0. Wehave (X®+4)t = tw = a = e(w) = e(XP+4) = (rX+s5)P+4,
so that

(5) (X +4)t = (rX +5)* + 4.

It follows readily from (5) thats = 0, = 1, and r = 1. Hence e(X) = X, so that e acts as
the identity function on A. Also a = e(w) = wand h = e(f) = f, so that (4) gives

(6) frg =v+7.

But A/ fA embeds in the field of real numbers, so that a sum of squares in A/ fA is 0 if and
only if all the terms are 0. Therefore it follows from (6) that f divides v and z. Because
g* = (v/)* + (z/f)? it follows similarly that g divides v/ f and z/f. Thus fg divides
both v and z, and it follows from (6) that v = cfg and z = dfg for some ¢,d € Q with
¢® + d?> = 1. Going back to equation (3) now gives e(j) = cj + dk, so that e(j) € R.

At this point we know that e(i) = =i and e(j) = cj + dk for some ¢,d € Q with
¢ + d*> = 1. From this it follows easily that the restriction of e to R is an automorphism of
R. Also e acts as the identity function on A. Hence fR = e(fR) C e(S) = T, and clearly
gR C T. Therefore fR+ ¢gR C T. But T = Oy(L) where L is not a left ideal of R, so that R
is not contained in T. Hence fR+¢gR # R. Therefore fA +gA # A. But f and g are monic
irreducible elements of A. It follows that f = g, i.e., X° — p> = X° — g%, i.e, p = q. ]

Corollary 2.12  For each prime number p let S, be the maximal Q[X]-order S constructed
in 2.6. Then M>(S,) = M,(S,) for all prime numbers p and g, but S, = S, if and only if
p=q

https://doi.org/10.4153/CMB-2000-049-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2000-049-0

Orders with Isomorphic Matrix Rings 417

3 Concluding Remarks

Remark 3.1 With the notation of 2.6 and 2.11, we conjecture that M, (S) = M, (T) for all
positive integers n # 1.

Remark 3.2 The non-isomorphic rings S and T constructed in Section 2 correspond to
maximal right ideals of R lying over different maximal ideals of the centre A of R. It would
be elegant if we could do the same sort of thing but using only maximal right ideals of R
which contain a fixed irreducible element of A (and then it would be easy to settle the point
raised in 3.1), but we have been unable to do this.

Remark 3.3 The construction given in Section 2 relies heavily on special properties of the
field Q of rational numbers. One (but not the only) important property which we have
used is that there are polynomials of high degree which are irreducible over Q. It seems
unlikely that this approach could be modified to give an uncountably infinite family of
such maximal orders S.

Remark 3.4 The strategy for the proof of Theorem 2.11 was to show that only very special
automorphisms of the quotient division ring D could induce an isomorphism between the
subrings S and T, and it was not obvious in advance that such automorphisms would fix the
elements of the centre of D. The same approach could be used to simplify the proofs in [2]
concerning maximal Z-orders, and in that case the automorphisms would automatically fix
central elements.
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