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Abstract. The kinetics of biochemical and biophysical events determined the course of life processes and attracted considerable interest and
research. For example, modeling of biological networks and cellular responses relies on the availability of information on rate coefficients.
Atomically detailed simulations hold the promise of supplementing experimental data to obtain a more complete kinetic picture.
However, simulations at biological time scales are challenging. Typical computer resources are insufficient to provide the ensemble of trajec-
tories at the correct length that is required for straightforward calculations of time scales. In the last years, new technologies emerged that
make atomically detailed simulations of rate coefficients possible. Instead of computing complete trajectories from reactants to products,
these approaches launch a large number of short trajectories at different positions. Since the trajectories are short, they are computed trivially
in parallel on modern computer architecture. The starting and termination positions of the short trajectories are chosen, following statistical
mechanics theory, to enhance efficiency. These trajectories are analyzed. The analysis produces accurate estimates of time scales as long as
hours. The theory of Milestoning that exploits the use of short trajectories is discussed, and several applications are described.
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1. Introduction
This review is concerned with computer simulations of kinetics in molecular biophysics. In the last few years, there were
numerous advances in theories of molecular simulations and this review focuses on one class of them. These advances
made it possible to investigate time scales of biological processes rigorously and in detail. The use of simulations in conjunc-
tion with experimental tests makes it possible to construct comprehensive models of biological function. This is a useful
opportunity since understanding kinetics is critical to the study of life at the molecular level.

The direction of many life processes is determined by kinetic selection. The next biochemical process to occur in a cellular
environment is not necessarily the one leading to the most stable products. Instead, the selected process is progressing most
rapidly as living systems exploit kinetics to pick desired outcomes. The role of enzymes, transporters, and molecular machines
is to respond to diverse environmental changes quickly, according to the system needs, and with an appropriate set of tools.
Therefore time scales and rates of biochemical reactions and biophysical processes are of considerable interest.

Computer simulations are an approach for studying biomolecular kinetics in atomistic detail. The quality of the results
depends on the accuracy of the models and, hence, must be compared with experiment. If the comparison is favorable,
the simulations are used to extract additional information on specific and complex mechanisms. Kinetics in biological systems
are frequently modeled as a set of individual processes or as a collection of coupled reactions (a network) responsible for
phenotypic behavior. Studies of biological networks are another important direction in which time scales are manipulated
to ensure stability and specificity of collective behavior.

Thermodynamics and energy analysis determine the maximum amount of (free) energy available to a process, which moti-
vates static investigations of biochemical systems. Thermodynamic considerations constrain kinetic pathways to those that
satisfy the laws of thermodynamics. The last statement that seems a cliché is nevertheless problematic. Biological systems
function far from equilibrium. For example, concentration and potential gradients across biological membranes are used
as fuels for the production of biological energy (ATP) (Hochachka & Somero, 2002) and directly influence transport pro-
cesses. The requirements for fast reactions and retention of non-equilibrium conditions put biochemical and biophysical
kinetics at variance with the frequently used kinetic models that assume near-equilibrium conditions. Nevertheless, equilib-
rium studies are useful for many biochemical processes due to the wide range of time scales in biology. Early works considered
transitions between energy minima (Czerminski & Elber, 1990; Wales & David, 2003) assuming local equilibrium in the
minima and metastability of these states. More elaborate exploitations of the metastability idea were put forward in the
Macrostate approach of Shalloway (Shalloway, 1996) and in the Markov State Models (Chodera et al. 2007; Noe et al.
2007; Sarich et al. 2010). Separation of temporal scales implies that the fastest processes are at quasi or local equilibrium,
while slower processes are not. For example, rapid folding of small proteins is completed in microsecond time scale
(Prigozhin & Gruebele, 2013), while passive permeation events of peptides through membranes continue seconds and min-
utes (Cardenas et al. 2015). The secondary structure of a peptide that permeates a membrane is in equilibrium during trans-
location through the membrane. We, therefore, seek a computational methodology that models a broad range of biophysical
and biochemical kinetic data at extended time scales. This technology should also handle non-equilibrium states, as dictated
by the problems at hand.

Atomically detailed simulations (Frenkel & Berend, 1996; McCammon & Harvey, 1987; Schlick, 2002) offer the most com-
prehensive, simulation method of biological activity. We focus on classical mechanic models of biological molecules in which
empirical force fields are used to integrate equations of motions or sample configurations from desired ensembles (Allen &
Tildesley, 1987). Such models and simulations, called Molecular Dynamics or MD for brevity, have been around for decades,
providing considerable insight into a diverse set of problems. It is a significant question what motivated the author to write the
present review given the extensively documented successes of MD simulations. More careful examination of past MD studies
reveals a strong emphasis on equilibrium and thermodynamics, (Frenkel & Berend, 1996) making the study of kinetics the
challenge of the present time.

2. Computer simulations of kinetics
The most straightforward computational approach to study kinetics is to run a large number of trajectories initiated at
the reactant and to follow their population as a function of time. Let the number of trajectories be N. At the starting time
t = 0, all the trajectories are found in the reactant, distributed in that state according to pre-set conditions. Typically the initial
distribution follows local equilibrium hypothesis, and the Boltzmann distribution is used. Metastability of the reactant and
product implies that the relaxation times within the states are much shorter than the time scale for exiting the metastable
state and for a transition to the product. After initiation, the trajectories are integrated as a function of time using a concrete
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model for the particle motions. The model for the dynamics can be deterministic, like the Newton’s equations of motion or
stochastic, like the Langevin equation (Allen & Tildesley, 1987). As the time advances some of the trajectories make it to the
product state and complete a successful reaction. To measure the rate or the typical time of the reaction we consider the Mean
First Passage Time (MFPT), which is the average time that it takes a collection of trajectories to reach the product state for the
first time. We denote the MFPT also by 〈τ〉. In the simulation, we set an absorbing boundary condition at the product state, or
in other words every trajectory that reaches the product state and ‘touches’ the boundary surrounding the products vanishes.
As some of the trajectories disappear the population, N(t), decays as a function of time t. If the decay is of the form N(t) =N
exp(− t/〈τ〉) then a rate coefficient of the reaction is k = 1/〈τ〉. Alternatively, the MFPT can also be estimated as the average
time that it takes for the trajectory to reach the absorbing boundary kτl = 1/N

∑
i=1,...,N ti where ti is the termination time of

the i-th trajectory. We comment that while the rate coefficient k is more widely used in the chemical and biochemical liter-
ature, it is less general than the MFPT. The reason is that the MFPT is a well-defined quantity for any type of kinetics, expo-
nentially decaying as a function of time, or not. The rate coefficient is meaningful only for reactions that follow exponential
kinetics. For example, if the process is diffusive the population may decay as a power law in time – N(t)∝ t−α. The most com-
prehensive view of the kinetics is provided by ρ(τ), the probability density of the first passage time; i.e. the probability that in a
single trajectory we will observe a first passage time between τ and τ + dτ. However, this information is difficult to obtain
experimentally. Typically only the first moment of the distribution of the first passage time, 〈τ〉, is available.

The approach described above of running multiple trajectories from reactants to products is the most straightforward way to
estimate the MFPT; however, it is not feasible in numerous cases. The problem is that the MFPT can be long compared with
the time scale accessible to straightforward MD simulations. The typical time scale of simulation is sub-microseconds while
many biological processes such as enzyme reactions (Warshel, 1997), slow folding events (Aronsson et al. 1997) and confor-
mational transitions (Elber & West, 2010), can be of milliseconds or even longer. Hence, trajectories that start at the reactant
state will not reach the product in the time accessible to MD simulations. How to estimate the MFPT? One famous approx-
imate computational approach to estimate the rate coefficient (and the MFPT) is the Transition State Theory (TST)
(Vanden-Eijnden & Tal, 2005). It is beyond the scope of the present review to discuss TST in details. We only note that
the most frequent applications of TST requires a well-defined transition state (a single dominant high barrier), an assumption
that is not satisfied in many biophysical processes.

3. The use of short trajectories to simulate long time kinetics
In the last few years, several new approaches have emerged that replace the long trajectories between reactants and products by a
large number of short trajectories. At first sight, this idea seems absurd. How can short trajectories of typically picosecond length
provide information on millisecond dynamics? The answer is in a theory of how to initiate and terminate these short trajectories
and how to combine the information the short trajectories generate. The theory estimates local transition rates between nearby
positions in coarse space or milestones (see also Fig. 1). For example, we compute the typical time to achieve a small change in
distance (e.g. 0·1 Å). Using the theory the accumulation of these small changes provides a global view of the kinetics.

We briefly describe the theory below and more information can be found in the literature (Kirmizialtin & Elber, 2011). The
few paragraphs below are technical. Readers that are less interested in the description of the method are encouraged to skip to
the paragraph of Summary of Equations

Fig. 1. A schematic illustration of how short trajectories can be used to estimate long time behavior of the system. We plot a two-
dimensional energy surface with an entropic barrier at the center. In approaches that utilized short trajectories, the space is divided into
cells and short trajectories (red curved arrowed lines) are initiated at boundaries of cells (black lines). The trajectories are continued until
they hit another boundary, which we call a “milestone” (Faradjian & Elber, 2004).
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3.1 Statement of the challenges

Consider Fig. 1 of a model two-dimensional system describing a transition from a well on the left to a minimum on the right.
There is only a narrow channel leading from the minimum on the left to the minimum on the right. As a result the probability
of a stochastic trajectory to reach the narrow pipe is very low. In practice it means that many stochastic trajectories must be
tried before we identify a reactive trajectory. Alternatively, we may need to simulate a single trajectory for an exceptionally
long time, bouncing from the red walls of the minimum on the left many times before making it to the entry or the
‘pipe’ by a rare event.

The simulations would be more efficient if we can initiate the trajectory closer to the ‘pipe’ in improbable positions. There are
two challenges in this proposition. The first challenge is of identifying the pipe and a pathway that leads to it (reaction coor-
dinate – RC), and the second challenge is of modeling the kinetic along the pipe. While in the present simple case the RC can
be identified visually as the coordinate x, this is not case for complex conformational transitions of proteins, and additional
calculations are required (see Section 3.3).

3.2 Milestoning

To address the second challenge we divide the space along the RC into compartments that are separated by milestones
(thin black lines in Fig. 1). We consider transitions between these compartments and will combine the information on
local transitions, using consistency criterion, to obtain global information. Short trajectories (here we consider Brownian
dynamics (Bello-Rivas & Elber, 2015, 2016)) are initiated on milestones and chart paths between different interfaces. The
original initiating milestone can be re-crossed, and the trajectory is stopped only when it hits for the first time another
milestone.

Selective initiation of trajectories at the milestones can enhance the sampling at reaction bottlenecks such as the narrow bridge
between the two minima of Fig. 1. It makes it possible to efficiently observe a short trajectory that starts at the top of the
barrier and glides to the left. It will be less likely to observe such a transition in a single long trajectory. The question remains,
however, how to combine these short trajectories to obtain the kinetics from the reactant to the product. This is where the-
ories like Partial Path Transition Interface Sampling (Moroni et al. 2004), Non-Equilibrium Umbrella Sampling (Warmflash
et al. 2007), and Milestoning (Faradjian & Elber, 2004) are helpful.

Algorithms that were discussed extensively in the literature (Aristoff et al. 2016; Bello-Rivas & Elber, 2015; Vanden-Eijnden &
Venturoli, 2009a; Warmflash et al. 2007; Zhang et al. 2010) show that the simulations with short trajectories can be made
exact or as accurate as desired. By ‘exact’, we mean that given sufficient statistics kinetic observables would be the same
using long or short trajectories. Several approaches exploiting short trajectories are available, such as Weighted Ensemble
(Zhang et al. 2010), Partial Path Transition Interface Sampling (Moroni et al. 2004), and Milestoning (Kirmizialtin &
Elber, 2011). For clarity and brevity, we focus on the versatile method of Milestoning. Milestoning can handle deterministic
(Newtonian) or stochastic (Langevin) dynamics. It can handle equilibrium or non-equilibrium processes and reaction space
that include several coarse variables. For processes near thermal equilibrium, a highly efficient variant of Milestoning is avail-
able (Kirmizialtin & Elber, 2011). For non-equilibrium flow, an exact (but more expensive) implementation is in place
(Bello-Rivas & Elber, 2016). The expensive version is still more efficient than straightforward MD simulations. All of these
variants are based on a single theoretical formulation making the transitions between alternative approaches simple to use,
understand, and code. It is available in the software MOIL (Ruymgaart et al. 2011) and recently was added to NAMD
(Phillips et al. 2005). The simplicity of the algorithm makes it possible to implement it as a script that drives general MD
software (Bello-Rivas and Elber, to be published).

Figure 1 captures the essence of the new technology – running short trajectories between cell boundaries that are called mile-
stones. Utilizing these trajectories to compute the MFPT, we evaluate two functions. The first, the kernel Kij, is the probability
of reaching a boundary j given that the initial boundary was i. It is estimated from the short trajectories initiated at interface
i, Kij≅ nij/ni, where ni is the number of trajectories initiated at interface i and nij the number of trajectories initiated at mile-
stone i that ended up at milestone j. The second function is the lifetime of a milestone – ti. It is the average time that takes a
trajectory initiated at milestone i to terminate at any other milestone. It is remarkable that these two local functions, which are
confined to two cells, are sufficient to determine the global thermodynamics and kinetics of the system. Of course, we need to
determine the transition matrix and the local lifetimes for all the milestones; even so, the calculation is profoundly cheaper
than straightforward MD (West et al. 2007).

With these two functions at hand we determine first the eigenvector of the matrix K with an eigenvalue of one – qtK = qt .
The i-th element of the vector qi = (q)i is the number of trajectories that cross milestone i under stationary (steady state)
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conditions. This is also a consistency condition that merges the local information of transitions between nearby milestones
(the non-zero elements of the K matrix) to obtain a global picture of steady flow throughout the cells. The condition that the
flux is stationary imposes relationships on all the fluxes through the milestones and the result is the linear equation.

We define a state of a trajectory by the last milestone that it crossed. The free energy of state i is given by Fi =−kBT ln[qiti],
and the MFPT is given by kτl = ∑

i qiti/qf where f is the final milestone leading to the product state.

So far we have not addressed the question of how the partitions or milestones are chosen. A reasonable choice of the mile-
stones is important for efficiency and correctness of the calculations. When placing milestones, we have to make sure that the
trajectories between the cell boundaries are indeed short and can be sampled with routine MD. We also need to make sure
that the transition matrix Kij has a sequence of milestones with non-zero transition probability connecting the reactant and
product. Otherwise, we cannot estimate the MFPT or the free energy profile. Nevertheless, there is no need for high precision
in milestone placement. There are numerous correct choices and as long as the above two conditions are satisfied; different
placement leads to the same free energies and rates.

3.3 Reaction coordinates (RC)

One highly efficient approach to place milestones is along a one-dimensional RC. In the reaction path approach we assume
that the process follows a ‘pipe’ or a tube along a complex curvilinear coordinate in the full phase space of the system. In the
simplest case it can be the position of a ligand (Yu et al. 2015), a particular distance, or a few torsion angles (Elber et al. 2009).
In more complex processes it is a collective motion that may include thousands of atoms and internal degrees of freedom
(Kirmizialtin et al. 2012). Despite the potential complexity, reaction coordinates are very useful computationally and concep-
tually. Conceptually they suggest a mechanism for the reaction. Computationally, they restrict the required space to sample
trajectories to the neighborhood of the pipe, a significant computational saving.

The RC can be guessed using chemical intuition (e.g. the distance between a ligand and an enzyme) or computed. We rou-
tinely compute the RC using a chain of configurations that connects the reactant and product. We seek to identify a pipe or a
valley in the (free) energy space in which most of the trajectories pass. It is typically identified as a minimum energy or a
minimum free energy pathway (see also Fig. 2). The problem is therefore to identify these coordinates in the full space of
variables. One of the approaches we use is an exact algorithm to compute minimum energy paths (Ulitsky & Elber, 1990)
between a known reactant and product. The RC is presented as a set of discrete points along the reaction coordinate. This
algorithm is called LUP or Locally Updated Planes. Vanden Eijnden and E proposed an extension of this algorithm for
the calculation of minimum free energy pathways (Weinan et al. 2002), which is called the String method. The minimum

Fig. 2. The use of a minimum energy path to define milestones (Cardenas & Elber, 2012). The model energy landscape is the Mueller
potential (Mueller & Brown, 1979), a two-dimensional energy landscape designed as a challenge for computational chemists. There are
three minima and two saddle points. The black line connecting the upper and lower minima is the minimum energy path. The dots
along the line are the discrete configurations Zi that represent the pathway. To define milestones we use the Zi as the centers of Voronoi
cells (Vanden-Eijnden & Venturoli, 2009b). A Voronoi cell i is defined as the set of points that are closer to Zi than to any other point
Zj≠i. The blue lines are the dividers of the Voronoi cells or the milestones. The position of the first and the final configurations (reactants
and products) are fixed. Reproduced from Alfredo E. Cardenas and Ron Elber, “Enhancing the capacity of molecular dynamics simula-
tions with trajectory fragments”, a chapter in “Innovation in Biomolecular Modeling and Simulation: Vol 1”, RSC Biomolecular Sciences
23. Ed. T. Schlick, Royal Society of Chemistry, London, UK, 2012 with permission from Royal Society of Chemistry.
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free energy pathway is essentially a minimum energy path in an effective landscape (the potential of mean force) of coarse
variables denoted by the vector Z. We note that the choice of the coarse space Z is important and far from trivial. It is nec-
essary to include all relevant and slow degrees of freedom in Z to obtain accurate result. In some cases the Cartesian position
of a ligand is sufficient (see Section 4.4). In other cases thousands of variables are required to correctly describe a collective
motion (see Section 4.1). In general, if the reaction space is not known or obvious from chemical intuition, it is better to
include a large set of coarse variables in the search algorithm of Eq. (1). The equations in Z space to minimize the chain
of structures and provide a discrete representation of the RC are

dZi

dt
= −k∇ZiUl I− ζ iζ

t
i

( )
i = 1, . . . , L (1)

where U is the potential energy, I the identity matrix, i is the index of the point along the path, and ζ is a unit vector along
the current slope of the path. The last vector is estimated computationally by a finite difference ζi≅ (Zi+1− Zi)/|Zi+1− Zi|.
The average 〈…〉 is over all degrees of freedom not included in the reaction space (e.g. the position of the water molecules).
The set of all coupled differential equations for i = 1, …, L structures along the path are solved simultaneously until a fixed
curve is found (dZi/dt = 0), which is the steepest descent path in energy or free energy spaces. The structures in coarse space,
with monotonically increasing indices, defined the RC (Fig. 2). Note that the first and last structures are fixed. We also
comment that other definitions of the RC are possible, for example the path of maximum flux (Berkowitz et al. 1983;
Huo & Straub, 1997).

3.3.1 Summary of equations

1. The probability of a transition between two milestones i and j is Kij and is estimated from many short trajectories as nij/ni
where ni is the number of trajectories initiated at milestone i, and nij is the number of trajectories initiated at milestone i
that terminate at milestone j (Fig. 1).

2. The average lifetime of a milestone is ti, which is estimates as ti = (1/ni)
∑

l=1,...,ni til , where til is the time that took tra-
jectory l, initiated at milestone i to hit another milestone and terminate.

3. The number of trajectories that pass through milestone i in unit time is qi. The steady state qi is given by a solution of the
linear equations
∑

i

qiKij = qj ∀j (2)

where Kij is estimated in 1.
4. The free energy of trajectories that passed milestone i last, and the overall MFPT are given by

Fi = −kBT ln(qiti) (3)
and

kτl =
∑

i

qiti/qf (4)

where qf is the number of trajectories that enter to the product state.
5. The RC is represented by a set of discrete points spreads along the valley of the minimum free energy path between reac-

tants and products in which the trajectories are likely to pass. It satisfies the quench equation: dZi/dt = −k∇ZiUl(I− ζ iζ
t
i )

for all intermediate structures i in coarse space (the structures of the reactant and product must be given and they are
fixed). The average 〈…〉 is for the degrees of freedom not in Z. At the limit of t→∞ and/or dZi/dt = 0 ∀i the structures
provide a discrete representation of the reaction coordinate.

4. Applications
Below we list several interesting and different biological processes studied with the Milestoning approach and quote their typ-
ical time scale:

1. Conformational transitions and enzyme selectivity (milliseconds) (Kirmizialtin et al. 2012, 2015).
2. Substrate translocation and ATPase motion (milliseconds) (Ma & Schulten, 2015).
3. Water permeation through membrane (microseconds) (Cardenas & Elber, 2014, 2016).
4. Ligand diffusion in a protein (microseconds) (Yu et al. 2015).
5. Rapid ligand-protein binding (kon≃ 109 M−1 s−1) (Votapka & Amaro, 2015).
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These problems are discussed below at some length.

4.1 Selectivity of a polymerase

One of the intriguing questions in enzymology is the role of the protein conformational transition in determining the spe-
cificity of the enzyme and the rate. By specificity, we mean its ability to pick up the correct substrate. Enzymatic reactions
typically consist of several elementary steps

E + SO
k1

k−1

ESO
k2

k−2

E′S�k3 E + P

The symbol E denotes the bare enzyme, S is the substrate, ES is the enzyme-substrate complex while the substrate is only
weakly (physically) bound to the protein, E′S is the complex after a conformational transition of the protein, and P is the
product. Each of these steps can make a significant contribution to the speed of the reaction or to the specificity. In
(Kirmizialtin et al. 2012, 2015) we focused on the impact of the conformational transition (step 2). We consider the enzyme
HIV Reverse Transcriptase (HIV RT) that synthesizes one strand of DNA (or RNA), according to a template. Copying genetic
information must be done accurately and efficiently.

The first step of the calculation must decide on the partition of space or the definition of milestones. Here we use a calculation
of a reaction coordinate. It is not obvious that a single one-dimensional RC is sufficient to exhaustively explore the enzyme
dynamics. Alternative pathways may exist. However, for enzymes and other molecular machines, we expect a design such that
the motions of the protein are focused in a low dimension space. We expect these systems to follow a minimum free energy
pathway (or a valley in free energy that guides them efficiently from reactants and products). If the number of soft modes or
valleys accessible to a machine is large, and the system can proceed in many different directions, then the machine will be less
efficient and specific. Imagine a car, a machine in the macroscopic world, which is responding to the wheel stochastically in
more than one way. Clearly, such a wheel is a flawed design. It is, therefore, no surprise that models of the dynamics of bio-
logical machines in a neighborhood of a one-dimensional RC are working quite well.

We compute the RC for the conformational transition with the ligand bound (step 2) using the initial and final structures of
the complexes as input (structures 1RTD (Huang et al. 1998) and 1J50 (Sarafianos et al. 2009) of the PDB (Berman et al.
2000)). Since the motions are collective and extended over many atoms it is important to include a large number of coordi-
nates in the coarse space. This inclusion avoids missing slow and relevant degrees of freedom when computing the RC. The
coarse variables that define the reaction space Z (in which the RC is embedded) include all the alpha carbons of the protein
and all the heavy atoms of the fingers domain (residues 1–85 and 115–150). To determine the reaction coordinate, we seek a
curve that connects the reactant and product in coarse space and satisfies the equations of motion for a quenched chain (Fig. 2
and Eq. (1)).

Once the RC was at hand, we set milestones as hypersurfaces orthonormal to the curvilinear coordinate and initiated trajec-
tories at the milestones (see Fig. 1). The initial and termination points of the trajectories are recorded and are used to estimate
the matrix K. We also record the local lifetimes of the milestones in the vector t ti = (t)i (see Summary of Eqs. (1) and (2)).

We then use Eqs. (3) and (4) to extract the free energy profile of the conformational transition and the MFPT along the reac-
tion pathway. The position along the RC is the index i of the structure Zi of the curve. In Fig. 3 we report the free energy at
position i. We also provide insets of the MFPT with initial condition at the reactant (left inset) or starting at the product and
proceeding backward (right inset). Both directions are reported up to a position i along the reaction coordinate. If we use the
inverse of the MFPT as an estimate for the rate constant our numbers compared favorably with experiment (Kirmizialtin et al.
2012). For example, the forward rate coefficient for the correct nucleotide, k2, is estimated computationally and experimentally
at 2500 s−1, and the reverse rate, k−2 is estimated as 4 s−1 experimentally and 40 s−1 computationally. The statistical errors of
the simulations are shown in Fig. 3 as bars and are estimated by averaging over independent samples of the short trajectories.
They are smaller than the differences between simulations and experiments. Nevertheless, systematic errors of the simulations
that include inaccuracies in the model (e.g. force fields) are likely to exceed the difference between simulations and experi-
mental measurements.

The conformational transition with the correct nucleotide (Fig. 3, red circles) is leading to a deep minimum around position
55 that commits the complex towards the right and to the chemical step. The incorrect nucleotide (blue) binds with a shallow
minimum and is ready to transition back to the solvent. Hence, this study illustrates the importance of an ‘induced fit’
model for enzyme selectivity. The incorrect substrate is rejected since it does not fit and unable to induce the conformation
change, while the correct nucleotide binds strongly and support the final structure of the conformational transition or the
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induced fit. This is not to say that the conformational transition is the only factor that influences selectivity, but it is clearly an
important one.

4.2 RNA translocation and ATPase motion

Enzymes facilitate biochemical reactions by selecting particular substrates and by speeding up reaction. However, there is no
investment of energy and the relative free energy of reactants and products remains the same. It is the kinetics and not the
thermodynamics that is modified. In contrast, a large class of molecular machines uses biological ATP to drive processes
uphill against the passive free energy slope. An intriguing motor is the ring-shaped ATPase, Rho that was investigated recently
by Ma & Schulten (2015).

The system is highly complex. It consists of a hexamer that forms a channel. The channel translocates RNA by a functional
rotation induced by a release of ADP. Each of the six monomers can bind an ATP and process it to ADP + Pi. The sites at the
monomers can be occupied by ATP, by ADP + Pi, or be empty. Therefore, their respective conformations are different
depending on their binding states, leading to asymmetry of the hexamer. In particular, the interactions of Lysine 326 of
each monomer with the RNA are modified. It is this asymmetry that is argued to induce the spectacular functional rotation
(Boyer, 1993) of ATPase motors in which the state of the units is changing in a way resembling a rotational motion.

The kinetics and thermodynamics of the process were analyzed with a similar set of tools that were described in the first
example. Different implementations of the String method (trajectory swarm (Pan et al. 2008)) and Milestoning
(Markovian Milestoning (Vanden-Eijnden & Venturoli, 2009b)) were used instead of those discussed in Section 1.
However, the basic concepts as described are the same. The authors partition the configuration space along the RC into
cells, estimate the fluxes at the cell boundaries by trajectories confined to the Voronoi cells, and solve linear equations for
the MFPT by matching the boundary results. For the String method, we need to identify the collective variables, which is
challenging in such a complex system similarly to the challenges in determining the RC in HIV RT. When the process is
truly collective it is hard to guess a few internal degrees of freedom (e.g. bonds, angles, and torsions) that are sufficient to
define the reaction space Z in which the RC is computed with Eq. (1). When our prior knowledge is limited, it is better
to use an inclusive approach and define as collective variables a large part of the entire coordinate set. This inclusion reduces

Fig. 3. The free energy profile for a conformational transition in HIV-RT following the physical binding of a substrate is shown. Two
curves are computed. The red curve is the binding of a nucleotide that matches the template, and the blue curve is the binding of a mis-
match. On the left we find the open conformation and the minima on the right are for the closed state. Also shown are two insets with
MFPT for the transition. The free energy is in kBT where T = 300° K and the time is in nanoseconds. Hence, while the short trajectories
between milestones never exceed a nanosecond, we are able to predict reaction times of ∼100 ms. Reproduced from Serdal Kirmizialtin,
Virginia Nguyen, Kenneth A Johnson, and Ron Elber, “How Conformational Dynamics of DNA Polymerase Select Correct Substrates:
Experiments and Simulations”, Structure, 20, 618–627 (2012) with the permission of Elsevier.
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the probability of missing relevant motions. Missing variables may cause us to select a wrong mechanism and to predict erro-
neous rates. Therefore, the positions of 660 key residues were used as coarse variables in the optimization of the reaction
pathway. The key residues were selected according to their interaction energies. The study is impressive in its ability to depict
a detailed step-wise mechanism for the process. The calculations estimate barriers of up to 10 kcal mole−1 and time scales in
the sub-milliseconds (Fig. 4). The estimates are consistent with experiments (Adelman et al. 2006).

4.3 Water permeation through membrane

Permeation of water molecules through a biological membrane is an important process that counters concentration gradients
of solutes and induces osmotic pressure. Water molecules permeate into the volume with higher ion concentration, attempt-
ing to lower the ratio of the number of ions to volume. We are interested in the kinetics and thermodynamics of water trans-
port, and we have used Milestoning to accelerate the simulations of the transport.

The first step in Milestoning is the choice of coarse variables, and here we are facing a challenge. There are obviously
many water molecules to consider and the degeneracy of which molecule to transport is an issue. Furthermore, it is not
clear if a water molecule is being transported on its own or as a cluster. Simulations of thermodynamics illustrate the
presence of ‘water fingers’ (Benjamin, 1993). That is the equilibrium simulations of water-membrane system suggest the
presence of clusters of water molecules inside the membrane forming ‘wires’. Based on these studies it is possible to spec-
ulate that kinetics of transport may be collective as well. Zhou and Karplus use water density (the number of water mol-
ecules per unit volume) at the interface of Scapharca hemoglobin as an order parameter to study the allosteric transition
(Zhou et al. 2003). The number of water molecules at the interface is changing when the hemoglobin conformation is
progressing from R to T. Another inspiring, computational study that considers density as an order parameter is the inves-
tigation of the hydrophobic collapse of a chain (Miller et al. 2007). In the last study, the space was divided into cells and
each cell has its own density as an order parameter. This is the approach we have taken. We divided the simulation box by
milestones (Fig. 5) and consider the density fluxes through the milestones (Fig. 6). The Milestoning formulation, summa-
rized in Eqs. (1)–(3) is the same for a system with a network of reaction pathways to describe diffusion and density flow.

The Milestoning formulation makes it possible to collect the local fluxes at the boundaries of the cells and compute the free
energy along with the transition times. In Fig. 7, we show the free energy profile as a function of two coordinates (i) the mem-
brane depth, z, and (2) the number of water molecules per cell (water density).

This study illustrates the power and flexibility of the Milestoning approach in investigating a diverse set of problems that do
not necessarily conform to the picture of a one-dimensional reaction coordinate.

4.4 Ligand diffusion in a protein

After the experiments exploiting high pressure of Xe in myoglobin were published (Tilton et al. 1984) it was recognized that
myoglobin structure included empty hydrophobic cavities. The simulations of Tilton et al. (1984), and of Elber & Karplus
(1990) illustrate that xenon or small ligands, like oxygen or a carbon monoxide penetrate into protein matrices. The diffusion
process of the small molecules follows a network of existing cavities and is conducted at sub-microsecond time scales.
Time-resolved crystallography added vital information about the process (Aranda et al. 2006). Nevertheless, attempts of

Fig. 4. An illustration of the coupling between the functional rotation of the ATPase hexamer, Rho, and the translocation of RNA. The
RNA on the right is closer to the viewer. The free energy profile for the machine operation is shown. The figure was kindly provided by
Mr Wen Ma.
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Fig. 5. A lattice representation of phospholipid membrane embedded in aqueous solution is shown. Small red spheres attached to two
even smaller white spheres are the water molecules. We investigate the transport of water molecules through the blue-green lipid at the
center. The large red spheres are the phosphate groups. Atomically detailed simulations are conducted in which atoms can exchange
between the different cells. The density changes are monitored and are fed to the Milestoning Eqs. (1)–(3) to obtain the free energy and
the MFPT. The coarse variables are types of densities of each cell (number of carbon atoms, number of water molecules, etc.). Reprinted
(adapted) with a permission from Alfredo E. Cardenas and Ron Elber, “Markovian and non-Markovian Modeling of Membrane
Dynamics with Milestoning”, Journal of Physical Chemistry B, 120, 8208–8216 (2016). Copyright 2016 American Chemical Society.

Fig. 6. A schematic representation of density fluxes between spatial cells. Three cells are illustrated at positions R, R′ and R″. The num-
bers of water molecules (densities of the cells) are ρ(R), ρ(R′), ρ(R′′) respectively. The milestones are the cell boundaries at r and r′. We
monitor the number of water molecules that pass in an MD simulation through those interfaces, given that they were initiated earlier at
another interface. Hence we determine the kernel K for mass density changes for transitions between milestones r and r′. Reproduced
from Alfredo E. Cardenas and Ron Elber, “Modeling kinetic and equilibrium of membranes with fields: Milestoning analysis and implica-
tion to permeation”, Journal of Chemical Physics, 141, 054101 (2014), with the permission of AIP publishing.
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fully quantifying the rate coefficients for transitions between the cavities and outside to the solvent were not reported until
recently. The reason was the lack of statistics in straightforward MD simulations for all the possible migration pathways. Also
puzzling was the apparent disagreement between experiment and theory on a system that is considered the hydrogen atom of
biophysics (Austin et al. 1975).

Yu et al. used a combination of the String method to determine reaction coordinate, TPT (Weinan & Vanden-Eijnden, 2010))
and a variant of Milestoning (Markovian Milestoning (Vanden-Eijnden & Venturoli, 2009b)) to quantitatively determine the
rate of transitions between the cavities in myoglobin (Yu et al. 2015). They consider seven internal cavities and multiple exit
pathways to the solvent. Between two cavities, only a single direct path was generated with the String method.

As in previous examples, a critical step in conducting the simulations is the choice of the coarse variables. The simplest selec-
tion, which was used in (Yu et al. 2015), is the three Cartesian coordinates of the center of mass of the small ligand. The
authors further examined the ‘histidine gate’ proposed by inspections of the crystal structure (Perutz & Mathews, 1966).
They found it to be a significant contributor to the overall kinetics. The collection of all the rate coefficients for the diffusion
network of carbon monoxide in myoglobin made it possible to determine the overall rate of entry and escape from the protein
matrix. The comparisons of the simulation results with experimental data were encouraging.

This study illustrates one of the promising applications of Milestoning – namely, the quantification and analysis of a network
of reactions between metastable states. The example here is a ligand migrating between cavities in a protein matrix and its
escape to the solvent, where the trapping of a ligand in a cavity is a metastable state. This is similar in spirit to the applications
of the Markov State Model (MSM (Sarich et al. 2010)). In MSM we may consider the spatial location of the ligand in one of
the cavities (or in the solvent) as a state and construct a corresponding kinetic model for it.

MSM constructs a Master Equation (ME) for transitions between the states. The ME is of the form

dPi
dt

=
∑

j

kijPj

where Pi is the probability of being at a metastable state i and kij is the rate coefficient for a transition between state i and state
j. Use of the ME is appealing since it is simple and reduces the system complexity to a Markov model of a few states. It relies
on the assumption that the relaxation times within the metastable state are rapid compared with the times of the transitions.

Fig. 7. The free energy profile for water permeation through membranes is shown as a function of two coarse variables, the membrane
depth z and the number of water molecules in a cell. The calculations were conducted in the full space of coarse variables and the results
are projected onto two dimensions. The membrane thickness is about 40 angstrom and the center is set to zero. At large values of abso-
lute z (out of the membrane), the entity that approaches the membrane to start the permeation process is a cluster of about 4 water mol-
ecules. The cluster size decreases as it approaches the membrane center in which it is of size one. The zigzag purple and black lines are
max flux pathways (Viswanath et al. 2013) projected to the plane defined by z and water density. The dotted lines are pathways second
and third in flux magnitude compared with the solid lines. The interesting observation is the strong coupling between cluster size and
permeation into the membrane. Reproduced from Alfredo E. Cardenas and Ron Elber, “Modeling kinetic and equilibrium of membranes
with fields: Milestoning analysis and implication to permeation”, Journal of Chemical Physics, 141, 054101 (2014), with the permission of
AIP publishing.
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As a result every transition occurs from a metastable state at local equilibrium. The Markov limit implies that the transition
between two states i and j can be modeled by a single rate coefficient – kij.

For a total of seven cavities that include among others the heme pocket and the four cavities occupied by xenon, the set of
kinetic equations is small and can be investigated in details. Milestoning makes the calculation of individual rate coefficients
possible even if the transitions are rare events. In that sense, Milestoning is a complementary algorithm to MSM. It is also
interesting to note that Milestoning can be used without a Markov assumption, simply breaking the free volume accessible
to the ligand to cells and use milestones as cell boundaries. We then probe the fluxes between cells, simultaneously, using
a network of transitions between the cells like the study of membrane density fluctuations. The last approach makes it possible
to study the diffusion in a local equilibrium, or in a non-equilibrium state.

4.5 Ligand diffusion to a protein

By now it is quite clear that Milestoning is also a procedure to coarse-grained atomically detailed simulations. By partitioning the
space into cells, we decrease the spatial resolution to the cell size. We identify a trajectory by the last milestone that it crossed and
not the precise coordinate of the trajectory within the cell. This is (again) similar to a MSM description in which we provide the
probability of a trajectory to be in a cell (or a state) but not the precise location within the cell. A significant difference between
MSM and Milestoning is that MSM requires the cells to be metastable state while Milestoning does not.

Coarse graining can be done in multiple ways, by (1) decreasing the spatial resolution, as MSM and Milestoning do, or (2)
collecting several particles and representing them as a single point mass (e.g. the Martini force field (Marrink et al. 2007)). Yet
another approach to coarse-grained atomic models is to replace the solvent by continuum. Indeed a pioneering study to sim-
ulate a forward association of a small ligand and a protein was constructed for continuum solvent using Brownian dynamics
(Ermak & Mccammon, 1978). This approach was successful in reproducing the flux of ligand approaching the protein, and
overall rate coefficients. Furthermore, it was also successful in depicting the long-range spatial behavior of the trajectories.

How to correctly bridge between coarse-grained models and atomistic simulations remains a challenging problem which is
still under investigation. Coarse-grained approaches have to rely on phenomenology to estimate kinetics. An example is
the use of a friction constant in diffusive dynamics. The value of the microscopic friction is sometimes unknown, and the
estimate of the rate may be uncertain. The authors of the last application we discuss (Votapka & Amaro, 2015) took an inter-
esting route to the problem of merging atomistic models and coarse-grained approaches. They made the observation that the
ligand fluxes estimated from Brownian dynamics calculations at interfaces can be matched with an atomistic theory of fluxes
at the milestones. The system they investigate superoxide dismutase has been a target for Brownian simulations in the past
and was now refined using atomistic simulations. The use of spherical interfaces around the protein (or a choice of a RC

Fig. 8. A schematic representation of matching Brownian dynamics (red) with atomically detailed simulations by Milestoning (green) as
outlined in reference (Votapka & Amaro, 2015). The protein is a blue filled object. The red circle denotes the boundaries used by
Brownian dynamics and the twisted arrowed line denotes a Brownian trajectory terminating at the red interface. It is used to generate the
distribution of initial conditions for flux sampling using atomically detailed trajectories in Milestoning. A sample Milestoning trajectory is
the green arrowed line that is terminated at a green curve.
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which is the radial distance from the protein center) makes this intriguing and hierarchical model successful in bridging atom-
ically detailed simulation in a focus area with a coarse-grained description on a larger scale (Fig. 8).

5. Conclusions
In this paper, we present a new paradigm for atomically detailed simulations of kinetics in biophysical systems. While MD
simulations of one or a few trajectories have been proven useful for many problems, they have significant limitations describ-
ing kinetics. MD trajectories suggest detailed molecular mechanisms. They allow the computations of thermodynamic observ-
ables that are tested against experiment. However, their time scales are too short for direct calculations of kinetics. Methods
for enhanced sampling of kinetics that are based on the use of a large number of short trajectories have emerged. In the pre-
sent review, we described one of these methods, Milestoning, and provide several examples that exploit different formulations
and address different problems. We consider processes that include reactions constrained to a ‘tunnel’, following a one-
dimensional RC as expected from molecular machines. We also considered mass density fluctuations and transport.
Finally, a bridging tool between coarse-grained studies and atomically detailed simulations is described.

As a closing note, we mention an important limitation of the approach. It is difficult to model with Milestoning states with
high entropy. For example, we did not mention the famous kinetic problem of protein folding. A significant difficulty in mod-
eling the unfolded state is to identify and sample a sufficient number of cells. States that are characterized with large internal
entropy (or a broad distribution of alternative conformations), are difficult to sample. There is no obvious atomically detailed
solution to this problem at present besides using exceptionally long trajectories to study folding of small proteins
(Lindorff-Larsen et al. 2011). Alternatively we may give up atomically detailed simulations and conduct approximate coarse-
grained calculations (Kmiecik et al. 2016).
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