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Dietary protein and bone health

Fiona Ginty

The effects of dietary protein on bone health are paradoxical and need to be considered in context
of the age, health status and usual diet of the population. Over the last 80 years numerous studies
have demonstrated that a high protein intake increases urinary Ca excretion and that on average
1mg Ca is lost in urine for every 1g rise in dietary protein. This relationship is primarily
attributable to metabolism of S amino acids present in animal and some vegetable proteins,
resulting in a greater acid load and buffering response by the skeleton. However, many of these
carly studies that demonstrated the calciuric effects of protein were limited by low subject
numbers, methodological errors and the use of high doses of purified forms of protein.
Furthermore, the cross-cultural and population studies that showed a positive association between
animal-protein intake and hip fracture risk did not consider other lifestyle or dietary factors that
may protect or increase the risk of fracture. The effects of protein on bone appear to be biphasic
and may also depend on intake of Ca- and alkali-rich foods, such as fruit and vegetables. At low
protein intakes insulin-like growth factor production is reduced, which in turn has a negative effect
on Ca and phosphate metabolism, bone formation and muscle cell synthesis. Although growth and
skeletal development is impaired at very low protein intakes, it is not known whether variations
in protein quality affect the achievement of optimal peak bone mass in adolescents and young
adults. Prospective studies in the elderly in the USA have shown that the greatest bone losses occur
in elderly men and women with an average protein intake of 16-50 g/d. Although a low protein
intake may be indicative of a generally poorer diet and state of health, there is a need to evaluate
whether there is a lower threshold for protein intake in the elderly in Europe that may result in
increased bone loss and risk of osteoporotic fracture.

Dietary protein: Calcium metabolism: Insulin-like growth factor 1: Osteoporosis:
Bone health
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Over the last 80 years research into the importance of
dietary protein for bone health has been dominated by a
focus on the potential negative effects. Intervention studies
have shown that a higher protein intake is associated with
increased urinary Ca excretion, and cross-sectional and
prospective population studies have demonstrated a link
between a high protein intake and a greater risk of fracture.
A paradox emerges with more recent evidence that a higher
protein intake may actually benefit bone health by reducing
bone loss and fracture risk in older adults. The present
review will attempt to summarise and re-evaluate the earlier
evidence for the negative effects of protein on bone health,
and identify some of the issues that might affect the interpre-
tation of the earlier findings. It will also address the more
recent evidence on the positive effects of protein on bone
health and identify some areas of research that may permit a
clearer consensus to be reached.

Mechanistic basis for the calciuric effects of protein

Hepatic oxidation of the S-containing amino acids
methionine and cysteine to H,SO4 and the consequent
reduction in blood pH is thought to be the primary mech-
anism by which bone resorption is increased and urinary Ca
losses occur in response to a higher dietary protein intake
(Remer, 2000; Fig. 1). There is a misconception that animal
protein (i.e. meat, eggs and dairy products) is the primary
source of S amino acids, but nuts and cereals are also
important sources (Paul et al. 1980; Oh, 2000; Table 1). The
P and chloride content of the diet also determine the dietary
acid load. However, the potential of the dietary acid load to
increase bone resorption and urinary Ca excretion depends
in part on the dietary alkali load (K, Na, Ca and Mg), which
has been shown to neutralise the pH-lowering effects of a
higher dietary acid load (Buclin et al. 2001). The dietary
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Fig. 1. The hepatic production, physiological buffering and renal
excretion of acid equivalents. (Adapted from Remer, 2000.)

Table 1. Protein and sulphur amino acid contents (g/kg) of a selec-
tsfcommonly-eaten foods (from Paul et al. 1980; Holland et al. 1991)

Food* Protein Methionine  Cysteine
Hard and soft cheeses 255 6-10 2-3-5
Lean beef steak 282 7-4 35
White fish (cod) 186 6-2 2:4
Oily fish (salmon) 168 5-8 2:4
Chicken breast 320 5-2 2-8
Peanuts 245 32 36
Boiled egg 125 39 2:2
Wheat breakfast cereal 107 20 30
Wholemeal bread 92 15 24
White bread 84 1-4 2:2
Fresh milk 32 0-94 0-31
Boiled spaghetti 36 0-74 1-2
Boiled rice 26 0-48 0-37
Peas 67 0-48 0-56
Potatoes 18 0-23 0-18
Onions 23 0-20 1
Oranges 11 0-12 0-10
Carrots 6 0-07 0.07
Apples 4 0-02 0-03

*All values are for cooked foods.
tNegligible amount.

acid—alkali balance has been quantified in different ways,
including animal:vegetable protein (Frassetto et al. 2000;
Sellmeyer et al. 2001), protein:K (Frassetto et al. 1998) and
the potential renal acid load (Remer & Manz, 1995). When
dietary alkali is insufficient there are several acute physio-
logical response mechanisms, including the release of Na,
carbonate and citrate from the hydration shell of bone
and stimulation of bone resorption (Barzel, 1995; Barzel &
Massey, 1998; Bushinsky et al. 2001). At the renal level
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(Fig. 1) the production of NHj by the proximal tubular cells
is an important defence mechanism against acid load, as it
combines with H to form NH,*. This cation then combines
with sulphate to form (NHy4),SO4, which is excreted in urine,
thus leading to the elimination of both ions (Remer, 2000).

Several other mechanisms by which a higher protein
intake increases urinary Ca excretion have been postulated,
including increased glomerular filtration rate and reduced
tubular reabsorption of Ca. Glomerular filtration rate was
increased by approximately 10 % and fractional Ca
reabsorption was decreased by 1 % when six healthy adult
males consumed 142 v. 47 g purified protein/d for 10 d (Kim
& Linkswiler, 1979). On the basis that approximately 10 g
Ca/d are filtered by the glomeruli, it was estimated that the
increase in glomerular filtration rate might increase the
filtered Ca load by 1 g/d and urinary Ca losses by 110 mg/d.
Allen et al. (1979) suggested that the decrease in tubular
reabsorption of Ca may be attributed to saturation of the
renal transport process for Ca. Other researchers have
suggested that reabsorption of Ca may be reduced when Ca
is complexed to citrate, phosphate, sulphate, bicarbonate or
ammonium ions (Lemann et al. 1966; Kim & Linkswiler,
1979). However, >20 years after these theories were put
forward there is still no definitive evidence for the mecha-
nisms by which a higher protein intake might impair renal
Ca transport. Furthermore, it is likely that the extent of
impairment is dependent on the age and hormonal status of
an individual.

Evidence from short-term intervention studies

Numerous short-term intervention studies have investigated
the effects of increased protein intake on Ca excretion, and
details of a number of these studies are outlined in Table 2.
On the basis of these and other studies it has been estimated
that there is a 1 mg rise in urinary Ca for each 1g rise in
dietary protein (Kerstetter & Allen, 1990). This empirical
formula cannot be applied to all protein sources because
many of the intervention studies utilised purified protein,
including lactalbumin, wheat gluten and casein. The effects
of meat protein have been found to be less exaggerated,
which may be related to its higher P content (Hegsted et al.
1981; Heaney, 1993). Hegsted et al. (1981) showed that
simultaneous increases in protein (from 50 g to 150 g) and P
(from 1010 mg to 2525 mg) intakes caused a 28 % increase
in urinary Ca, whereas an increase in protein intake alone
caused a 115 % increase in urinary Ca. One of the most-
widely quoted studies on the effects of meat intake on Ca
excretion and balance (Spencer et al. 1978) showed, in a
series of twenty-six studies of fourteen male patients over
periods of 16-72d, that increasing meat intake from an
average of 200 g (approximately 83 g protein)/d to 300 g
(approximately 140 g protein)/d did not increase urinary Ca
excretion or modify intestinal Ca absorption (determined
using 47Ca). However, a criticism of this study is that the
subjects had a variety of disorders, including hypo-
thyroidism, psychoneurosis, osteoporosis, hypercalciuria
and obesity, and so the findings cannot be generalised to
the population. Draper et al. (1991) studied the effect of
increasing the protein intake of postmenopausal women
(n 8) from 58 g/d to 92 g/d for 15 d at each protein level. In
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contrast to earlier studies a range of commonly-eaten high-
protein foods (high-protein cereal, wholewheat bread, meat,
eggs, protein, fish) was used to increase the protein content
of the diet. The higher-protein diet did not have a significant
effect on urinary Ca excretion or Ca balance and there
was no change in serum parathyroid hormone. However,
urinary cAMP was higher (indicating increased parathyroid
hormone activity at the renal level), which led the authors to
conclude that the 46 % increase in P intake on the high-
protein diet may have stimulated parathyroid hormone renal
reabsorption of Ca, thus partially offsetting the calciuric
effects of the higher-protein diet.

There are several difficulties in the interpretation of many
of the protein intervention studies, including small numbers
of subjects, short duration and wide variations in Ca and Na
intake. The necessity of having complete faecal and urine
collections for calculation of apparent Ca absorption and Ca
balance can result in calculation errors. In addition, the use
of creatinine for estimating glomerular filtration rate has
limitations when the meat intake is increased, since meat
contains a high level of creatine, which is readily converted
to creatinine (Chu et al. 1975).

In the most-recently published study, in which post-
menopausal women consumed either low- or high-meat
diets (45 g v. 297 g, equivalent to 68 v. 117 g protein/d) for
8 weeks in a controlled crossover design, the high-meat diet
was found to have no effect on bone and Ca metabolism
markers, Ca retention or Ca absorption (Roughead et al.
2003). Urinary titratable acidity and pH were initially lower
on the high-meat diet, but by 8 weeks the levels of both
indicators were similar to those observed for the low-
protein diet, suggesting that adaptation may have occurred.
Although glomerular filtration rate was increased by
approximately 14 % on the high-meat diet, the authors
concluded that this difference was most likely to be a result
of the higher creatine intake from meat. At 8 weeks, this
study is the longest investigation of the effects of increased
meat intake on Ca retention and other relevant bone
measurements, and the findings suggest that adaptation may
occur. It is therefore questionable whether the current
estimations of the calciuric effects of protein are
appropriate, particularly in the absence of estimates of the
effects of protein in a broader age-range of subjects from
different ethnic groups.

The protein and hip fracture controversy

The calciuric effect of dietary protein was also believed to
provide the mechanistic basis for the association found
between cross-cultural hip fracture incidence in women > 50
years of age and animal-protein intake (Abelow ef al. 1992).
The highest rate of hip fracture was found to occur in indus-
trialised Western countries, which had animal-protein
intakes per capita between 60 and 80 g/d. On the other hand,
the lowest incidence occurred in indigenous Asian and
African populations in which animal-protein intakes were
considerably lower. Frasetto et al. (2000) extended the same
cross-cultural analysis to thirty-three countries and reached
a similar conclusion, with the additional finding that hip

https://doi.org/10.1079/PNS2003307 Published online by Cambridge University Press

fracture incidence was inversely related to vegetable-protein
intake. There are several obvious limitations to both studies,
not least the poor applicability of population food
consumption data to women > 50 years of age. Furthermore,
Asian and African ethnic groups are recognised to have a
reduced risk of osteoporotic fracture (Aspray et al. 1996;
Yan et al. 1999), which may be attributable to a multiplicity
of factors, including differences in bone structure, genotype
and lifestyle. Frassetto er al. (2000) attempted to overcome
this factor by limiting the analysis to predominantly
Caucasian populations, and the positive association between
hip fracture rate and animal-protein intake remained.

Whether vegetarians have a skeletal advantage in terms
of better bone mineral status or reduced fracture incidence
has not been established (Department of Health, 1998).
Higher consumption of cereal grains and nuts could
potentially provide a similar dietary acid load to that of
animal protein (Table 1). However, this effect may be
counteracted by higher consumption of alkali foods. Most of
the studies examining differences between vegetarians and
non-vegetarians have been conducted in very specific
population groups (Marsh et al. 1980, 1983, 1988;
Tylavsky & Anderson, 1988), which does not permit
generalisation to the wider population.

Prospective evidence for a negative effect of protein on
bone health

There are two prospective studies providing evidence that
fracture incidence is related to higher protein intake
(Feskanich et al. 1996; Meyer et al. 1997). The Nurse’s
Health Study (Feskanich er al. 1996) was a 12-year survey
of 85 900 women aged 35-59 years. Protein intake was
assessed by a mailed food-frequency questionnaire at three
time-points (baseline, year 4 and year 6) and fracture inci-
dence was self-reported biennially. Women who consumed
> 95 g total protein (i.e. animal and vegetable protein)/d had
a greater risk of forearm fracture compared with those who
consumed <68 ¢g/d. A higher intake of vegetable protein
alone was not associated with increased risk, but women
consuming five or more servings of beef, pork or lamb had
an increased risk of forearm fracture compared with women
who consumed less than one serving per week. Meyer et al.
(1997) found no association between non-dairy animal-
protein intake and hip fracture incidence in a prospective
study of 40 000 Norwegian men and women (aged 3549
years at baseline) conducted over an average period of 11
(range 0-01-13-8) years. At one time point during the study
subjects completed a food-frequency questionnaire, which
they filled in at home and returned by post. Intake of non-
dairy animal protein was not found to be associated with hip
fracture, but women in the lowest quartile of Ca intake and
highest quartile of non-dairy animal-protein intake (values
not provided) had an elevated risk of fracture. This pattern
was not observed with total protein intake. A major
limitation of both studies was the use of a mailed food-
frequency questionnaire on a limited number of occasions
and limited evaluation of other lifestyle and dietary factors
that may have contributed to fracture risk.


https://doi.org/10.1079/PNS2003307

Optimum nutrition for osteoporosis prevention 871

Effects of protein intake on calcium recommendations
for developing countries

Although the impact of protein intake on Ca requirements
and bone health has not been established conclusively, the
recently revised dietary Ca recommendations for developing
countries (Food and Agriculture Organization/World Health
Organization Expert Consultation, 2002) accounted for the
lower protein intake (20—40 g/d) of developing countries in
their estimations of theoretical Ca requirements. By using
the estimated 1mg increment in Ca for every 1g protein
intake, the recommendation for adults was calculated to
be 750 mg/d, as compared with the 1000 mg/d recommend-
ation that was based on Western European, American and
Canadian data. Although this downward adjustment
attempts to account for ethnic differences in Ca require-
ments, it is not known whether a higher protein intake
results in calciuria in non-Caucasian individuals. As with
the cross-cultural associations found between protein intake
and hip fracture, there are likely to be numerous other
factors that influence bone health and Ca requirements in
developing countries.

Protein supplementation and reduced bone loss

In parallel with the controversy that grew over the negative
effects of protein on bone health, there were also studies that
suggested that certain segments of the population could
benefit from increasing their protein intake. Geinoz et al.
(1993) observed that patients with higher protein intakes
during their hospital stay had higher femoral neck and
Iumbar spine bone mineral densities (BMD). After 4 weeks
in hospital women with a higher protein intake had better
muscle strength and stair-climbing performance. Such
findings do not suggest a specific effect of protein intake
per se, but may reflect better general health status and thus
better appetite in these patients. However, two further
studies substantiated the observational evidence by
demonstrating that protein supplementation for 5 weeks
reduced the medical complication rate and duration of hip
fracture in patients with a recent hip fracture (Delmi et al.
1990; Tkatch et al. 1992). Further convincing evidence of
the benefits of protein supplementation in this age-group
was provided by Schurch er al. (1998) in a randomised
double-blind protein supplementation trial with elderly
Swiss patients with hip fracture (thirty-seven women and
four men, aged 81-1 (SD 7-4) years) who had a baseline
protein intake of 45-0 (SD 15-2) g/d. All patients received
one oral dose of cholecalciferol (5mg) to correct any
possible vitamin D deficiency and were randomised to
receive either a protein supplement (containing 900 g milk
proteins/kg and providing (/d) 300ug vitamin A, 30ug
vitamin K, 20 mg vitamin C, 550 mg Ca, 91 mg Mg, 429 mg
P) or an isoenergetic placebo containing maltodextrins, but
not the multinutrients. After 6 months of supplementation
the protein-supplemented group were found to have higher
levels of insulin like-growth factor 1 (IGF-1) and reduced
proximal femur bone loss compared with the placebo
group. Hospital stay was also reduced by 21 d in the protein-
supplemented group. Much emphasis has been placed on the
independent effects of protein in this study, but it is
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also possible that they may be a result of the combined or
additive effects of protein and the various nutrients
contained in the supplement. No other intervention studies
have been conducted in this age-group and there is an
immediate need for longer-term studies to determine
whether increasing protein intake would be an effective
means of reducing fracture-related morbidity and main-
taining bone health in elderly men and women.
Identification of the upper intake limit and interactions with
other nutrients in relation to bone is also essential.

Bone loss is reduced in elderly men and women with high
animal-protein intake

Two large prospective studies have shown that higher
animal-protein intake is associated with reduced bone loss
over a 4-year period in elderly men and women who
were participants of the Framingham Osteoporosis Cohort
(Hannan et al. 2000) and The Rancho Bernardo Heart and
Chronic Disease Study (Promislow et al. 2002). In a third
study of elderly women from the Iowa Women’s Health
Study (Munger et al. 1999) those who had the highest
animal-protein intake had a decreased risk of hip fracture. In
the Framingham cohort the mean total protein intake for the
men (n 224) was 69-3 (SD 23-9) g/d and that for the women
(n 392) was 68-0 (SD 23-5) g/d. After adjustment for all
potential confounders, including age, height, weight and
weight changes, total energy intake, smoking, physical
activity, those in the lowest quartile of percentage protein
intake showed the greatest BMD losses at the femur and
spine sites and lower percentage animal protein was related
to greater bone loss at the femur and spine. There were
similar findings in Rancho Bernardo Study (Promislow et
al. 2002), with a high animal-protein intake also appearing
to have a protective effect against bone loss. It was
surprising, however, that the greatest bone losses occurred
in women with the highest vegetable-protein intake and a
similar non-significant trend was found in men. The Iowa
Women’s Health Study (Munger et al. 1999) also reported
an increase in age-adjusted hip fracture risk with increasing
quartile of vegetable-protein consumption. This finding is in
conflict with the evidence that higher fruit and vegetable
intake has a positive effect on bone (New et al. 1997, 2000;
Muhlbauer & Li, 1999; Tucker et al. 1999). It is difficult to
explain the greater bone loss with the higher-vegetable-
protein diet, because the components of the diet were not
described in either study, nor were the associated lifestyle
factors discussed, although animal-protein intake was
shown to be positively associated with vegetable-protein
intake in the Rancho Bernardo Study. Further research is
needed in order to elucidate the interactions between animal
and vegetable protein and their relative importance for
maintaining bone health in the elderly.

Mechanisms by which protein positively affects bone
health

Albright et al. (1941) wrote: ‘a diet inadequate in protein
might lead to a negative nitrogen balance and this in turn
might make it impossible for the osteoblasts to lay down
the necessary organic matrix, which is the first step in the
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formation of bone. We believe that some of the osteopathies
which have been attributed to a lack of calcium and
phosphorus in the diet are really due to protein starvation.’
Since this statement was made, the understanding of the
mechanisms of action of dietary protein has expanded to
encompass a regulatory role in growth hormone and IGF-1
metabolism.

IGF-1 is an essential mediator of tissue anabolism,
stimulating growth of multiple cell types, transport of amino
acids and protein synthesis in muscle and skeletal tissues
(Clemmons & Underwood, 1991). During growth it
stimulates proliferation and differentiation of chondrocytes
in the epiphyseal plate (Wang et al. 1999) and it is thus an
essential factor for longitudinal growth. IGF-1 has been
shown in vitro to increase osteoblast activity (Mohan er al.
1992; Langdahl er al. 1998) and production of type I
collagen (McCarthy et al. 1989) and to act as a coupling
factor for bone resorption and bone formation (Rubin et al.
2002). IGF-1 also has an important role in the regulation
of Ca and P metabolism by stimulating renal transport
of inorganic phosphate and kidney production of 1,25-
dihydroxycholecalciferol (Caverzasio & Bonjour, 1989).
This function may be of paramount importance during
growth, when the high rate of collagen synthesis and
mineralisation results in high requirements for Ca and
phosphate. More recently, it has been shown that selective
knock-out of the IGF-1 receptor gene in mouse osteoblasts
results in mice with normal bone size and weight but a
decrease in the rate of mineralisation of osteoid (Zhang et al.
2002). The authors suggested that osteoblast-derived IGF-1
might be essential for coupling collagen synthesis to
sustained mineralisation.

Regulation of insulin-like growth factor 1 production by
dietary protein

Given its essential role in growth and protein synthesis it is
not surprising that hepatic IGF-1 production, plasma IGF-1
concentration and the proportion of free or active IGF-1 (i.e.
the portion not bound to its principal binding protein IGF-
binding protein 3) is regulated by dietary protein intake
(Clemmons & Underwood, 1991; Thissen er al. 1994,
Fig. 2). In animal studies protein fasting has been shown to
induce a decrease in hepatic growth hormone-binding sites
(Maiter et al. 1989) and protein restriction results in growth
hormone-receptor defects (Thissen et al. 1992). The conse-
quences of this effect include decreased hepatic production
of IGF-1 and a lowering of the circulating concentration.
Elevated production of IGF-binding protein 3 exacerbates
the effect by decreasing the proportion of free IGF-1, thus
decreasing its anabolic capacity (Clemmons & Underwood,
1991) and increasing IGF-1 clearance (Thissen et al. 1992).
In protein-restricted rats normalisation of plasma IGF-1 by
infusion failed to promote growth (Thissen et al. 1991),
indicating that in the absence of an adequate protein supply
end-organ resistance occurs. Several animal studies have
shown that the IGF-1 deficit caused by protein restriction
has adverse consequences for bone, including osteoporosis,
impaired cortical bone formation and osteoblast resistance
(Bourrin et al. 2000a,b).
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1 Dietary protein intake

1 GH secretion

| Hepatic GH receptors (fasting)
T Hepatic GH receptor resistance
(protein restriction) v

L IGFBP-3

1 IGF-1 gene expression

\4

Accelerated IGF-1

H H -
l Circulating IGF-1 ——» clearance

T Target tissue resistance
to anabolic effects of
IGF-1

Fig. 2. The effects of protein on insulin-like growth factor (IGF)
production and plasma concentration. GH, growth hormone; IGFBP,
IGF-binding protein; |, decreased; T, increased. (Adapted from
Thissen et al. 1994.)

In human subjects cross-sectional studies in older women
have shown a positive association between plasma IGF-1
and BMD (Langlois et al. 1998) and muscle strength and
mobility (Cappola et al. 2001). It has also been shown that
serum concentrations of IGF-1 and IGF-binding protein 3
are lower in osteoporotic patients with spinal fractures
compared with those without fractures (Sugimoto et al.
1997). However, with the exception of the study described
earlier by Schurch et al. (1998), which showed that protein
supplementation increased the IGF-1 concentration in
elderly patients with hip fracture, there are no other human
intervention studies that have evaluated the effects of
modifying protein intake from different sources on IGF-1 in
this age-group. IGF-1 production is also influenced by sex
steroid hormone status, and the relative importance of the
age-related decline in oestrogen and androgen status
compared with the influence of protein intake remains
undetermined in man.
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Calcium balance

Although many of the early studies focused on the negative
effects of a high protein intake on Ca balance, more recent
evidence suggests that a low protein intake has a negative
effect on Ca metabolism and balance. Short-term inter-
vention trials in healthy women have shown that a low
protein intake (0-7 g/kg) is associated with an increase in
serum parathyroid hormone and a reduction in both urinary
Ca excretion and Ca absorption. The latter finding was not
anticipated, as it was expected that increased parathyroid
hormone would be associated with greater production of
1,25-dihydroxyvitamin D and increased Ca absorption
(Kerstetter et al. 1997, 2000, 2003). These findings led the
authors to suggest that intestinal and/or skeletal handling of
Ca is altered by a low-protein diet. Although the duration of
these studies was too short (4d) to indicate whether
adaptation could occur, it is possible that the negative
effects of a low protein intake on bone loss in the elderly
(Hannan et al. 2000; Promislow et al. 2002) could be
mediated by similar perturbations in Ca metabolism and
absorption. However, this mechanism remains to be proven.
It has been suggested that the essential amino acid lysine
may play a role in Ca metabolism. Studies in animals and
human subjects have shown that Ca absorption is higher
when lysine intake is increased (Wolinsky & Fosmire, 1982;
Civitelli et al. 1992; Civitelli, 1993), but the underlying
mechanism has not been identified.

Protein—calcium interaction

In recent years there has been a focus on the possible inter-
action between dietary Ca and protein intake. Although the
possible negative effects of a higher protein intake may be
compensated by a high Ca intake or exacerbated by a low Ca
intake, the potential anabolic effects of protein may be
maximised by a higher Ca intake. Evidence in favour of the
former theory has been suggested in the Nurse’s Health
Study (Feskanich et al. 1996), which found that women with
a high-total-protein (> 95 g/d) high-Ca diet (> 827 mg/d) had
a lower risk of fracture than women with a high-total-protein
low-Ca diet (< 531 mg/d). Limited evidence is also available
from the study by Meyer et al. (1997), which showed that
women with a low Ca and high non-dairy animal-protein
intake had a greater risk of fracture.

Dawson-Hughes & Harris (2002) showed that Ca-
supplemented older men and women (=65 years of age) in
the highest tertile of protein intake (as % energy) had the
greatest increases in whole-body and femoral neck BMD
compared with those in the lowest tertile. No association
was found between protein intake and bone change in the
placebo group. Most recently, Rapuri ef al. (2003) examined
the effects of protein intake (also as % energy) on baseline
BMD and rate of subsequent bone loss in 65-77-year old
women. The highest quartile of protein intake was
associated with higher BMD at the spine, mid radius and
whole body. Among women in the lowest quartile of Ca
intake (<480mg/d) no significant association was found
between spine BMD and protein intake. However, in the
upper two quartiles of Ca intake an association was
observed between spine BMD and protein intake. A similar
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association was also seen at the whole body level.
Longitudinally, bone loss did not differ by quartile of
protein intake and Ca intake showed no effect. A point
worth noting from this study was that dietary vitamin D
increased with increasing protein intake, suggesting that the
benefits of a higher protein intake may also be explained by
other factors.

For the purposes of the present review a preliminary
analysis of our own data from the Cambridge Bone
Studies was carried out to examine whether there was an
interaction between Ca supplementation and baseline
protein intake in 16—18-year-old boys (n 110) and girls (n
101) who participated in two separate Ca intervention
studies (Prentice et al. 2002; Stear et al. 2003). In these
studies Ca supplementation (1000mg Ca as CaCOs/d)
increased bone mineral content of the whole body, hip and
spine in boys supplemented for 12-7 (SD 0-5) months.
Similar results were observed in girls with higher
compliance supplemented for 15-5 (SD 0-7) months. No
significant interaction was found between baseline dietary
protein intake (as % energy) and Ca supplementation in
relation to bone mineral content change in either the boys or
the girls, and there was no significant effect of protein intake
on bone changes in the placebo group (F Ginty and A
Prentice, unpublished results). However, as with the studies
described earlier, the interpretation is limited by the post
hoc nature of the analysis. It is necessary to conduct studies
that specifically set out to address the mechanistic basis for
an interaction between protein and Ca in different age-
groups.

Effects of protein on peak bone mass

Although an adequate intake of protein is essential for
growth, it is not known whether variations in protein intake
and quality contribute to variations in bone size, mineral
content and ultimately the achievement of optimal peak
bone mass. Studies have shown a positive association
between protein intake and bone mineral status in children
(Hoppe et al. 2000), adolescents (Rizzoli, 1998) and young
women aged 18-31 years (Teegarden et al. 1998). However,
the findings in the younger subjects do not necessarily
indicate a causal relationship, since protein intake is likely
to be driven by growth requirements. Furthermore, BMD is
not independent of size, and such associations may be
artefacts (Prentice er al. 1994). Cadogan et al. (1998) found
that supplementation of 12-year-old girls with 568 ml
(1 pint) milk daily for 18 months was associated with an
increase in plasma IGF-1 and bone mineral status compared
with control subjects. It was proposed that the higher protein
content of milk mediated a rise in plasma IGF-1 that, in turn,
may have had a stimulatory affect on osteoblast activity, or
may have promoted bone mineralisation, as suggested
recently by Zhang et al. (2002). Bone growth is site-specific
and varies with the stage of puberty, and it has been
hypothesised that disruptions to growth through illness, poor
diet etc. may result in site-specific deficits in bone mineral
status and quality (Bass et al. 1999; Seeman et al. 2000).
IGF-1 is a major determinant of bone growth and mineral
content (Yakar et al. 2002), and plasma concentrations are
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approximately four to five times higher in adolescents than
in adult (Juul et al. 1994). However, there are no data on the
extent to which IGF-1 production is regulated by protein
intake during puberty and whether variations in IGF-1 as a
result of lower protein intake result in site-specific deficits,
thus increasing risk of fragility later in life.

Summary and conclusions

Although there is much supporting evidence and a mecha-
nistic basis for the calciuric effects of a high protein intake,
there is a lack of evidence from long-term studies in differ-
ent age-groups of continued urinary Ca losses and bone loss.
Further information is required on the compensatory effects
of a Ca- and/or alkali-rich diet. It is important in terms of
public health to determine whether a low protein intake in
the elderly predisposes them to a greater rate of bone loss. It
is also necessary to identify the protective aspects of a
higher-protein diet and whether there are other underlying
dietary or lifestyle characteristics that may also explain the
lower rate of bone loss observed in prospective studies. The
finding that protein, multimineral and vitamin supple-
mentation of elderly patients with hip fracture increases
recovery time and reduces bone loss is also important.
However, more studies are needed to support these findings
and to determine whether it is an effect of protein per se, or
a multi-nutrient effect. Although there is no doubt that an
adequate protein intake during childhood and adolescence
is essential to support normal growth and skeletal
development, more research is needed to evaluate the role of
protein quality and protein-diet interactions in the achieve-
ment of optimal peak bone mass. The available evidence
appears to suggest that protein may have a biphasic effect on
bone health. However, the upper and lower thresholds are
difficult to define without taking overall diet, health status
and age into account.
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