An Approximation connected with e^{-x}

By E. T. Copson, St Andrews University.

(Received 20th September, 1932. Read 4th November, 1932.)

§ 1. Introduction.

One of the many interesting problems discussed by Ramanujan ${ }^{1}$ is concerned with the effect of truncating at its maximum term n^{n} / n ! the exponential series for e^{n}, where n is a positive integer. When n is large, the sum of the first n terms is, roughly speaking, half the sum of the whole series. More precisely, Ramanujan's conjecture was that, if

$$
1+\frac{n}{1!}+\frac{n^{2}}{2!}+\ldots+\frac{n^{n-1}}{(n-1)!}+\frac{n^{n}}{n!} \theta_{n}=\frac{1}{2} e^{n}
$$

then θ_{n} lies between $\frac{1}{2}$ and $\frac{1}{3}$, and that, when n is large, θ_{n} may be represented asymptotically by the formula

$$
\theta_{n} \sim \frac{1}{3}+\frac{4}{135 n}-\frac{8}{2835 n^{2}}-\ldots
$$

The first rigorous proofs of these results and of the fact that θ_{n} decreases steadily as n increases, were published independently by Szegö ${ }^{2}$ and Watson. ${ }^{3}$

Dr A. C. Aitken recently informed me that he possessed strong numerical evidence for the existence of similar results in connexion with e^{-n}. He had defined the number ϕ_{n} by the equation

$$
1-\frac{n}{1!}+\frac{n^{2}}{2!}-\ldots+(-1)^{n} \frac{n^{n}}{n!} \phi_{n}=e^{-n}
$$

[^0]and had calculated the values of ϕ_{n} given in the table below.

n	ϕ_{n}
0	$1 \cdot 0 \ldots$
1	$\cdot 63212055 \ldots$
2	$\cdot 56766764 \ldots$
8	$\cdot 51609845 \ldots$
9	$\cdot 51425871 \ldots$
10	$\cdot 51280208 \ldots$
11	$\cdot 51161414 \ldots$
12	$\cdot 51062785 \ldots$
100	$\cdot 50125310 \ldots$

The present note is concerned with proving three theorems which Dr Aitken had conjectured on this numerical evidence.

§ 2. Theorem 1. If ϕ_{n} be defined $b y$

$$
1-\frac{n}{1!}+\frac{n^{2}}{2!}-\ldots+(-1)^{n} \frac{n^{n}}{n!} \phi_{n}=e^{-n}
$$

then $\phi_{n} \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$.
Let us consider the sum of the exponential series for e^{-n}, truncated at its maximum term; it is

$$
\begin{aligned}
1 & -\frac{n}{1!}+\frac{n^{2}}{2!}-\ldots+(-1)^{n} \frac{n^{n}}{n!} \\
& =(-1)^{n} \frac{n^{n}}{n!} \sum_{r=0}^{n}(-1)^{r} \frac{n!}{(n-r)!} n^{-r} \\
& =(-1)^{n} \frac{n^{n}}{n!} \int_{0}^{\infty} e^{-u}\left(1-\frac{u}{n}\right)^{n} d u \\
& =(-1)^{n} \frac{n^{n}}{n!} I, \text { say } .
\end{aligned}
$$

We split up the integral I into two parts, viz.

$$
\begin{aligned}
I & =\int_{0}^{n} e^{-u}\left(1-\frac{u}{n}\right)^{n} d u+\int_{n}^{\infty} e^{-u}\left(1-\frac{u}{n}\right)^{n} d u \\
& =I_{1}+I_{2}
\end{aligned}
$$

and consider the behaviour of I_{1} and I_{2} for large values of the integer n.

Now, since

$$
\left(1-\frac{u}{n}\right)^{n} \rightarrow e^{-u}
$$

as $n \rightarrow \infty$, we have, by a formal limiting process,

$$
\lim _{n \rightarrow 0} I_{1}=\int_{0}^{\infty} e^{-2 u} d u=\frac{1}{2}
$$

That this process is valid follows from the use of Tannery's Theorem for integrals. ${ }^{1}$ On the other hand, if we make the substitution $u=n+v$ in I_{2}, we obtain

$$
I_{2}=(-1)^{n} \frac{e^{-n}}{n^{n}} \int_{0}^{\infty} e^{-v} v^{n} d v=(-1)^{n} \frac{e^{-n}}{n^{n}} n!
$$

We have thus shewn that

$$
1-\frac{n}{1!}+\frac{n^{2}}{2!}-\ldots+(-1)^{n} \frac{n^{n}}{n!}=(-1)^{n} \frac{n^{n}}{n!} I_{1}+e^{-n}
$$

which is the result stated in Theorem 1.
§3. Theorem 2. ϕ_{n} decreases steadily from 1 to $\frac{1}{2}$ as the integer n increases from 0 to ∞.

It follows from § 2 that

$$
\begin{aligned}
\phi_{n} & =1-\int_{0}^{n} e^{-u}\left(1-\frac{u}{n}\right)^{n} d u \\
& =1-n \int_{0}^{1}\left[e^{-v}(1-v)\right]^{n} d v
\end{aligned}
$$

Now, as v increases from 0 to $1, e^{-t}=e^{-v}(1-v)$ decreases from 1 to 0 , so that t increases from 0 to ∞. Thus ${ }^{2}$ we have

$$
\phi_{n}=1-n \int_{0}^{\infty} e^{-n t} \frac{d v}{d t} d t
$$

A second formula for ϕ_{n} may be obtained by integration by parts, which gives

$$
\phi_{n}=1+\left[e^{-n t} \frac{d v}{\bar{d} \bar{t}}\right]_{0}^{\infty}-\int_{0}^{\infty} e^{-n t} \frac{d^{2} v}{\overline{d t^{2}}} d t
$$

But since

$$
t=v-\log (1-v)
$$

[^1]we have
$$
\frac{d v}{d t}=\frac{1-v}{2-v}, \quad \frac{d^{2} v}{d t^{2}}=-\frac{(1-v)}{(2-v)^{3}}
$$
hence
$$
\phi_{n}=\frac{1}{2}+\int_{0}^{\infty} e^{-n t} G(t) d t
$$
where $G(t)=(1-v) /(2-v)^{3}$ is positive. From this formula the monotonic character of ϕ_{n} at once follows. To complete the theorem, we note that ϕ_{0} is obviously 1 , and that we have already shewn that $\phi_{n} \rightarrow \frac{1}{2}$.
§4. Theorem 3. ϕ_{n} possesses the asymptotic expansion
$$
\phi_{n} \sim \frac{1}{2}+\frac{1}{8 n}+\frac{1}{32 n^{2}}-\frac{1}{128 n^{3}}-\frac{13}{256 n^{4}}+\ldots
$$

We obtain the asymptotic expansion of

$$
\phi_{n}=1-n \int_{0}^{\infty} e^{-n t} \frac{d v}{d t} d t
$$

by applying to the integral

$$
J=\int_{0}^{\infty} e^{-n t} \frac{d v}{d t} d t
$$

the following lemma, due to Watson. ${ }^{1}$
Lemma. Let $F^{\prime}(t)$ be analytic when $|t| \leqq a+\delta$, where $a>0, \delta>0$, save possibly for a branch point at the origin; and let

$$
F(t)=\sum_{m=1}^{\infty} a_{m} t^{(m / r)-1}
$$

when $|t| \leqq a, r$ being positive; also let $|F(t)|<K e^{b t}$, where K and b are positive numbers independent of t, when t is positive and $t \geqq a$. Then the asymptotic expansion

$$
\int_{0}^{\infty} e^{-\nu t} F(t) d t \sim \sum_{m=1}^{\infty} a_{m} \Gamma(m / r) \nu^{-m / r}
$$

holds when $|\nu|$ is sufficiently large and $|\arg \nu| \leqq \frac{1}{2} \pi-\Delta$, where Δ is an arbitrary positive number.

The function $v(t)$ which occurs in the integrand of J was defined to be the solution of the equation in w,

$$
t=w-\log (1-w)
$$

[^2]which vanishes at $t=0$. By reversion of series, it can be found, with little difficulty, that
$$
v=\frac{t}{2}-\frac{t^{2}}{16}-\frac{t^{3}}{192}+\frac{t^{4}}{3072}+\frac{13 t^{5}}{30720}+\ldots
$$
is the formal power series expansion of v.
To determine the radius of convergence of this power series, we make use of the theory of functions of a complex variable. When t is complex, v is one branch of the many-valued function w defined by the equation
$$
t=w-\log (1-w)
$$

The singular points of w are the points where $d w / d t$ is infinite or zero. But since

$$
\frac{d w}{d t}=\frac{1-w}{2-w}
$$

the singularities are the points where w takes the values 1 and 2 , and so are the point at infinity and the points $t=2 \pm(2 p+1) \pi i$, where $p=0,1,2, \ldots$

It follows, then, that $v(t)$ is regular when $|t|<|2+\pi i|$, and that the power series converges there. But this implies that $d v / d t$ is also regular there, and possesses the power series expansion

$$
\frac{d v}{d t}=\frac{1}{2}=\frac{t}{8}-\frac{t^{2}}{64}+\frac{t^{3}}{768}+\frac{13 t^{4}}{6144}+\ldots
$$

Lastly, we observe that, when $t \geqq 0$,

$$
0 \leqq \frac{d v}{d t}=\frac{1-v}{2-v} \leqq \frac{1}{2}
$$

so that all the conditions of Watson's lemma are satisfied.
Applying the lemma, we have

$$
J \sim \frac{1}{2 n}-\frac{1}{8 n^{2}}-\frac{1}{32 n^{3}}+\frac{1}{128 n^{4}}+\frac{13}{256 n^{5}}+\ldots .
$$

and hence, since $\phi_{n}=1-n J$,

$$
\phi_{n} \sim \frac{1}{2}+\frac{1}{8 n}+\frac{1}{32 n^{2}}-\frac{1}{128 n^{3}}-\frac{13}{256 n^{4}}+\ldots
$$

It is, perhaps, of interest to point out that Dr Aitken conjectured correctly the first two coefficients in this asymptotic expansion and suggested that the third was either $1 / 32$ or $7 / 225$.
§5. Dr Aitken also observes that " Ramanujan's result, enunciated in § 1 , has an application to the theory of rare frequency. It implies that, as the mean m of Poisson's function $y=e^{-m} m^{x} / \Gamma(x+1)$ increases, the median (which is the abscissa of the ordinate which bisects the area under the curve) tends, quite rapidly, to $m-\frac{1}{6}$; so that, since the mode (the abscissa of maximum ordinate) can readily be proved to tend to $m-\frac{1}{2}$, we have here an instance of the property, observed empirically in many skew curves of frequency, that the distances of the mode, median and mean are approximately in the ratio 2:1."

[^0]: ${ }^{1}$ Collected Papers of Srinivasa Ramanujan (1927), xxvi.
 ${ }^{2}$ Journal London Math. Soc., 3 (1928), 225-232.
 ${ }^{3}$ Proc. London Math. Soc., (2), 29 (1928), 293-308.

[^1]: ${ }^{1}$ Bromwich, Infinite Series (1926), 485.
 ${ }^{2} \mathrm{Cf}$. Watson, loc. cit.

[^2]: ${ }^{1}$ Proc. London Math. Soc. (2), 17 (1918), 133. It also occurs in his treatise on Bessel Functions (1922), 236.

