Attracting Cantor set of positive measure for a $\mathbf{C}^{\boldsymbol{0}}$ map of an interval

MICHAK MISIUREWICZ
Institute of Mathematics, Warsaw University, PKiN IX p.00-901, Warsaw, Poland

(Received 20 November 1981)
I dedicate this paper to the memory of V. M. Alexeyev
Abstract. We give an example of a smooth map of an interval into itself, conjugate to the Feigenbaum map, for which the attracting Cantor set has positive Lebesgue measure.

0 . Introduction

Let us consider a one-parameter family of smooth unimodal (i.e. with 'one hump') maps of an interval into itself. As an example one can take $f_{\mu}(x)=\mu x(1-x)$. If a map depends on a parameter continuously and if the family contains maps with both zero and positive topological entropy, it also contains a map f with periodic points of periods $1,2,2^{2}, 2^{3}, \ldots$, and no other periods. Suppose that f has no homtervals (i.e. open intervals, on which all iterates of f are homeomorphisms). Denote by I_{n} the interval between the periodic point of period 2^{n}, closest to the critical point, and the second point with the same image under f. Assume also that one of the endpoints of the whole interval is a fixed point and the second endpoint is mapped to the first one. Then $\left.f^{2 n}\right|_{I_{n}}$ is topologically conjugate to f. Feigenbaum [3] conjectured that for a 'good' map f, the sequence $\left(\left.f^{2 n}\right|_{I_{n}}\right)_{n=0}^{\infty}$, after rescaling (i.e. an affine change of a coordinate) converges to a certain map F. We shall call this limit map the Feigenbaum map. The detailed description of this and other connected problems can be found in [2].

For the Feigenbaum map, $\left.F^{2^{n}}\right|_{I_{n}}$, after rescaling, is equal to F. The existence of this (real analytic) map was proved by Campanino and Epstein [1] and Lanford [5].

From the kneading theory we know that if a map f has the same kneading invariant as F (i.e. the images of the critical point lie to the left or right of the critical point for the same iterates of both f and F) and f has no homtervals, then f is topologically conjugate to F (see [2]).

The set of non-wandering points for a map f, topologically conjugate to F, consists of a Cantor set (more exactly, a set homeomorphic to the Cantor set) $\mathrm{C}=\bigcap_{n=1}^{\infty} \bigcup_{k=0}^{2 n-1} f^{k}\left(I_{n}\right)$, and periodic points, lying in the gaps of C. This Cantor set attracts all points which are not eventually periodic ([6]).

In connection with the general question about the Lebesgue measure of attractors, one can ask, what the measure of C is. If f satisfies the Feigenbaum conjecture,
then the answer is zero. Since the rescaling constant for F is $\delta<\frac{1}{2}$, the set $\bigcup_{k=0}^{2 n-1} f^{k}\left(I_{n}\right)$ consists of 2^{n} intervals, the longest of which has a length of approximately $\alpha \delta^{m}$ (for some constant α). Since $2^{n} \alpha \delta^{n} \rightarrow 0$ as $n \rightarrow \infty, C$ has Lebesgue measure zero.

The results for diffeomorphisms would suggest that the answer should be zero for all $C^{1+\varepsilon}$ maps. However, here the situation is different. Namely, we prove the following theorem:
Theorem. There exists a C^{∞} concave map f, conjugate to the Feigenbaum map, with the attracting Cantor set C of positive Lebesgue measure.

This result does not give the complete solution to the problem. One can ask, whether there is an example of such a map with some additional properties. The desired properties would be, for instance:
(a) polynomial behaviour in a neighbourhood of a critical point (i.e. a critical point not 'flat');
(b) absolute continuity of the unique invariant probabilistic measure on C with respect to the Lebesgue measure.
Notice that (a) implies that the map is 'almost symmetric' (for x, y with $f(x)=f(y)$, the ratio of distances of x and y from the critical point is bounded). It can be shown that even this 'almost symmetry' cannot be obtained by the technique used in this paper. Lemma 4 shows that our example does not have property (b).

1. Construction

We start by defining two sequences of points of the interval [0, 1]: $0=a_{2}<b_{2}<a_{4}<$ $b_{4}<a_{6}<b_{6}<\cdots<b_{7}<a_{7}<b_{5}<a_{5}<b_{3}<a_{3}<b_{1}<a_{1}=1$, by setting:

$$
\left|a_{n}-b_{n}\right|=\frac{1}{(n+1)^{2}}, \quad\left|a_{n+2}-b_{n}\right|=\frac{1}{n(n+1)^{2}}
$$

Since

$$
\sum_{n=1}^{\infty}\left(\frac{1}{(n+1)^{2}}+\frac{1}{n(n+1)^{2}}\right)=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=1
$$

we see that all points with even indices lie to the left of all points with odd indices and there exists a common limit lying between even and odd points

$$
c=\lim _{n} a_{n}=\lim _{n} b_{n} .
$$

Now we begin to define f :

$$
f(c)=1, \quad f\left(a_{n}\right)=1-\frac{1}{n \cdot n!}, \quad f\left(b_{n}\right)=1-\frac{1}{n \cdot(n+1)!}
$$

Notice that

$$
0=f\left(a_{1}\right)<f\left(b_{1}\right)<f\left(a_{2}\right)<f\left(b_{2}\right)<f\left(a_{3}\right)<f\left(b_{3}\right)<\cdots
$$

and

$$
\lim _{n} f\left(a_{n}\right)=\lim _{n} f\left(b_{n}\right)=f(c)=1
$$

We define f as a linear (we use this word instead of the more precise 'affine') map on each interval:

$$
L_{n}= \begin{cases}{\left[a_{n}, b_{n}\right]} & \text { if } n \text { is even }, \\ {\left[b_{n}, a_{n}\right]} & \text { if } n \text { is odd. }\end{cases}
$$

We also set

$$
M_{n}= \begin{cases}{\left[b_{n}, a_{n+2}\right]} & \text { if } n \text { is even } \\ {\left[a_{n+2}, b_{n}\right]} & \text { if } n \text { is odd }\end{cases}
$$

Since

$$
[0,1]=\{c\} \cup \bigcup_{n \geq 1} L_{n} \cup \bigcup_{n \geq 1} M_{n}
$$

it remains to define f on intervals ('gaps') M_{n}. Before doing it, we compute the slope (i.e. the absolute value of the derivative) of f on L_{n}. Denote this slope by λ_{n}. Then

$$
\lambda_{n}=\frac{\left|f\left(b_{n}\right)-f\left(a_{n}\right)\right|}{\left|b_{n}-a_{n}\right|}=\frac{n+1}{n!} .
$$

Set

$$
\mu_{n}=\lambda_{n-1}^{20} \cdot \lambda_{n-2}^{21} \cdot \lambda_{n-3}^{22} \cdot \ldots \cdot \lambda_{1}^{2 n-2}
$$

We have $\mu_{1}=1$ and $\mu_{n+1}=\lambda_{n} \cdot \mu_{n}^{2}$. From this it is easy to check by induction that $\mu_{n}=n!$ (this result may be surprising at a first glance - the numbers λ_{k} are mainly very small, but their product μ_{n} is large).

Consider the intervals L_{n} and L_{n+2} and the gap M_{n} between them. We already can draw the graphs of f on L_{n} and L_{n+2}; they are segments of straight lines. Let us see where these lines intersect each other. Denote this point by

$$
p_{n}= \begin{cases}\left(a_{n+2}-x_{n}, f\left(a_{n+2}\right)-y_{n}\right) & \text { if } n \text { is even, } \\ \left(a_{n+2}+x_{n}, f\left(a_{n+2}\right)-y_{n}\right) & \text { if } n \text { is odd. }\end{cases}
$$

We have then:

$$
\left\{\begin{aligned}
y_{n} / x_{n} & =\lambda_{n+2} \\
\frac{f\left(a_{n+2}\right)-f\left(b_{n}\right)-y_{n}}{1 /\left(n(n+1)^{2}\right)-x_{n}} & =\lambda_{n} .
\end{aligned}\right.
$$

Solving this system of equations we get

$$
\begin{equation*}
x_{n}=1 /(n+2)\left[(n+1)^{2}(n+2)-(n+3)\right] \tag{1}
\end{equation*}
$$

For every $n \geq 1$ we have $0<x_{n}<\frac{1}{2}\left|M_{n}\right|$. To check it, it is enough to notice that the first inequality is equivalent to

$$
(n+1)^{2}>1+1 /(n+2)
$$

and the second one to

$$
\left(n^{2}+2 n+1\right)\left(n^{2}+2 n+4\right)>(n+2)(n+3)
$$

We consider an auxiliary function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\varphi(x)= \begin{cases}x & \text { if } x \leq 0 \\ \int_{0}^{x}(1-\psi(y)) d y & \text { if } 0<x<1 \\ \frac{1}{2} & \text { if } x \geq 1\end{cases}
$$

where

$$
\psi(y)=\int_{0}^{y} \eta(t) d t / \int_{0}^{1} \eta(t) d t \quad \text { and } \quad \eta(t)=\exp \frac{1}{t(t-1)} .
$$

It is easy to check that φ is of class C^{∞} and concave.
We show how to use φ for filling the gaps. If a function g defined on $(a-\varepsilon, a] \cup$ $[b, b+\varepsilon)$ is such that

$$
g(x)= \begin{cases}g(a)+\alpha(x-a) & \text { for } x \in(a-\varepsilon, a] \tag{2}\\ g(b)+\beta(x-b) & \text { for } x \in[b, b+\varepsilon)\end{cases}
$$

where

$$
\begin{equation*}
\frac{g(a)-g(b)}{a-b}=\frac{\alpha+\beta}{2} \tag{3}
\end{equation*}
$$

and $a<b, \alpha>\beta$, then we can extend it to a concave function of class C^{∞} on $(a-\varepsilon, b+\varepsilon)$ by setting for $x \in(a, b)$

$$
\begin{equation*}
g(x)=g(a)+\beta(x-a)+(\alpha-\beta)(b-a) \varphi\left(\frac{x-a}{b-a}\right) \tag{4}
\end{equation*}
$$

To prove this, it is enough to show that the formulae (2) and (4) coincide on $(a-\varepsilon, a] \cup[b, b+\varepsilon)$. This is a simple computation and we omit it. Concavity of g follows from the fact that

$$
g^{\prime \prime}(x)=\frac{\alpha-\beta}{b-a} \varphi^{\prime \prime}\left(\frac{x-a}{b-a}\right)
$$

and the concavity of φ.
We estimate the derivative of g

$$
\begin{equation*}
\left|g^{\prime}(x)\right| \leq \max (|\alpha|,|\beta|) \tag{5}
\end{equation*}
$$

by the concavity of g. For $k>1$, we have

$$
g^{(k)}(x)=(\alpha-\beta)(b-a)^{1-k} \varphi^{(k)}\left(\frac{x-a}{b-a}\right) .
$$

Thus,

$$
\begin{equation*}
\sup _{[a, b]}\left|g^{(k)}\right|=(\alpha-\beta)(b-a)^{1-k} \cdot \sup _{[0,1]}\left|\varphi^{(k)}\right| \text { for } k>1 \tag{6}
\end{equation*}
$$

Notice that condition (3) is equivalent to the fact that the point of intersection of the lines defined by

$$
y=g(a)+\alpha(x-a) \quad \text { and } \quad y=g(b)+\beta(x-b)
$$

has the first coordinate $(a+b) / 2$.

Now we are ready to define f on M_{n}. On the interval ($b_{n}, a_{n+2}-2 x_{n}$] (if n is even) or $\left[a_{n+2}+2 x_{n}, b_{n}\right.$) (if n is odd), we define it as the same linear function as on L_{n}. Then the gap which remains is such that the procedure described above may be used. We do it and get f defined on the whole interval $[0,1]$.

2. Properties

From the construction it follows that f is continuous and concave on $[0,1]$ and of class C^{∞} on $[0, c) \cup(c, 1]$. To see that it is of class C^{∞} on the whole interval [0,1], we use (5) and (6). Since $\lim _{n} \lambda_{n}=0$, we get by (5),

$$
\lim _{x \rightarrow c}\left|f^{\prime}(x)\right|=0
$$

For $k>1$, we have

$$
\lim _{n}\left(\lambda_{n}-\lambda_{n+2}\right)\left(2 x_{n}\right)^{1-k} \sup _{[0,1]}\left|\varphi^{(k)}\right|=0
$$

because $\left(2 x_{n}\right)^{1-k}$ is a polynomial function of n and

$$
\lambda_{n}-\lambda_{n+2}=\frac{1}{n!}\left(n+1-\frac{n+3}{(n+1)(n+2)}\right) .
$$

Hence, by (6),

$$
\lim _{x \rightarrow c}\left|f^{(k)}(x)\right|=0
$$

Now the smoothness of f follows from the inductive use of the following fact: if ψ is continuous on $[0,1]$ and of class C^{1} on $[0, c) \cup(c, 1]$, and the limit $\lim _{x \rightarrow c} \psi^{\prime}(x)$ exists, then ψ is of class C^{1} on $[0,1]$.

Hence, we have proved the following properties of f :

$$
\text { (A) } f \text { is concave and of class } C^{\infty} \text { on }[0,1] .
$$

Remark. Our function is defined on [$f^{2}(c), f(c)$]. If we want it to be defined on some $[a, b]$ such that $f(a)=f(b)=a$ then we can take $a=-\frac{3}{2}, b=\frac{7}{4}$, and set

$$
f(x)=\left\{\begin{array}{l}
\frac{3}{2} x+\frac{3}{4} \quad \text { for } x \in\left[-\frac{3}{2}, 0\right) \\
-2 x+2 \quad \text { for } x \in\left(1, \frac{7}{4}\right]
\end{array}\right.
$$

and f remains C^{∞} and concave. Notice also that outside $[0,1]$ the slope of f defined in this way is larger than 1.

We continue investigating the properties of f. For $n \geq 1$ we set $g_{n}=\left.f^{2 n-1-1}\right|_{\left[f\left(a_{n}\right), 1\right]}$ and $h_{n}=f^{2 n-1}$.
Lemma 1. For every $n \geq 1$ we have:
(a) $h_{n}\left(a_{n}\right)=a_{n+1}$;
(b) $h_{n}\left(b_{n}\right)=a_{n+2}$;
(c) $h_{n}\left(a_{n+1}\right)=b_{n}$;
(d) $h_{n}(c)=a_{n}$;
(e) g_{n} is linear and has slope μ_{n};
(f) g_{n} is orientation-reversing if n is even and orientation-preserving if n is odd;
$(g) f$ is linear on $f^{i}\left(\left[f\left(a_{n}\right), 1\right]\right), i=0,1,2, \ldots, 2^{n-1}-2$.

Proof. Notice first that since

$$
f\left(a_{n}\right)<f\left(b_{n}\right)<f\left(a_{n+1}\right)<1=f(c),
$$

(e) implies:

$$
\begin{gathered}
\left|h_{n}\left(a_{n}\right)-h_{n}\left(b_{n}\right)\right|=\left|g_{n}\left(f\left(a_{n}\right)\right)-g_{n}\left(f\left(b_{n}\right)\right)\right|=\frac{1}{n+1}, \\
\left|h_{n}\left(b_{n}\right)-h_{n}\left(a_{n+1}\right)\right|=\left|g_{n}\left(f\left(b_{n}\right)\right)-g_{n}\left(f\left(a_{n+1}\right)\right)\right|=\frac{1}{n(n+1)^{2}}
\end{gathered}
$$

and

$$
\left|h_{n}\left(a_{n}\right)-h_{n}(c)\right|=\left|g_{n}\left(f\left(a_{n}\right)\right)-g_{n}(1)\right|=\frac{1}{n}
$$

Consequently, $(a),(e)$ and (f) imply (b), (c) and (d).
Now we shall prove $(a),(e),(f)$ and (g) by induction. For $n=1$, we have $2^{n-1}=1$ and $g_{n}=f^{0}=$ id. Hence, $(e),(f)$ and (g) hold for $n=1$. We have $f\left(a_{1}\right)=0=a_{2}$ and therefore also (a) holds for $n=1$.

We assume that $(a),(e),(f)$ and (g) hold for $n=k$ and shall prove them for $n=k+1$. We have shown already that (b), (c) and (d) hold for $n=k$. By (b) and (c),

$$
f^{2 k}\left(a_{k+1}\right)=f^{2^{k-1}}\left(b_{k}\right)=a_{k+2}
$$

and thus (a) holds for $n=k+1$. By (e) (for $n=k$), g_{k} is monotone, and hence by (c) and (d) (also for $n=k$), we have $g_{k}\left(\left[f\left(a_{k+1}\right), 1\right]\right)=L_{k}$. Therefore

$$
g_{k+1}=\left.g_{k} \circ f \circ g_{k}\right|_{\left[f\left(a_{k+1}\right), 1\right]}
$$

is a composition of three linear maps, and consequently is linear itself. Its slope is equal to

$$
\lambda_{k} \cdot \mu_{k}^{2}=\mu_{k+1}
$$

and this proves (e) for $n=k+1$. It is affecting the orientation in the same way as $\left.f\right|_{L_{k}}$, and this proves (f) for $n=k+1$. To prove (g) (for $n=k+1$), notice that for $i=0,1,2, \ldots, 2^{k-1}-2$ it follows immediately from (g) for $n=k$ that f is linear on $f^{i}\left(\left[f\left(a_{k+1}\right), 1\right]\right)$. For $i=2^{k-1}-1$ we know already that $f^{i}\left(\left[f\left(a_{k+1}\right), 1\right]\right)=L_{k}$. For $i=2^{k-1}, 2^{k-1}+1, \ldots, 2^{k}-2$ we also have to use the fact that

$$
\left.f^{i}\right|_{\left[f\left(a_{k+1}\right), 1\right]}=\left.f^{i-2 k-1} \circ f \circ g_{k}\right|_{\left[f\left(a_{k+1}\right), 1\right]}
$$

and

$$
f \circ g_{k}\left(\left[f\left(a_{k+1}\right), 1\right]\right)=f\left(L_{k}\right) \subset\left[f\left(a_{k}\right), 1\right]
$$

and (g) for $n=k+1$ follows.
Set

$$
K_{n}= \begin{cases}{\left[a_{n}, a_{n+1}\right]} & \text { if } n \text { is even, } \\ {\left[a_{n+1}, a_{n}\right]} & \text { if } n \text { is odd },\end{cases}
$$

$n=1,2, \ldots$

Lemma 2. The sets K_{n} have the following properties:
(a) The sequence $\left(K_{n}\right)_{n=1}^{\infty}$ is descending;
(b) $h_{n}\left(K_{n+1}\right)=L_{n}$;
(c) $h_{n}\left(K_{n}\right)=K_{n}$;
(d) The sets $f^{i}\left(K_{n}\right), i=1,2,3, \ldots, 2^{n-1}$ (for n fixed) are disjoint;
(e) $\left.f\right|_{f^{i}\left(K_{n}\right)}$ is linear for $i=1,2,3, \ldots, 2^{n-1}-1$;
(f) $f^{2^{n-1+i}}\left(K_{n+1}\right) \cap f^{i}\left(K_{n+1}\right)=\varnothing \quad$ for $i=1,2,3, \ldots, 2^{n-1}$;
(g) $\frac{\bigcup_{i=1}^{2^{n}} f^{i}\left(K_{n+1}\right) \mid}{\| \bigcup_{i=1}^{2 n-1} f^{i}\left(K_{n}\right) \mid}=1-\left(\frac{1}{n+1}\right)^{2}$
(where $|\cdot|$ denotes the Lebesgue measure of a set).
Proof. (a) follows from the definition of the points a_{n}. (b) follows from lemma 1(c), (d) and (e).

By the definition of the points a_{n}, b_{n} and their images, we have $f\left(L_{n}\right) \cap f\left(K_{n+1}\right)=$ \varnothing. Now, (f) follows from this, (b) and lemma $1(g)$. Since $L_{k} \cup K_{k+1} \subset K_{k},(d)$ for $n=k+1$ follows from (f) and (d) for $n=k$ (for $n=1$ it is obvious). (e) is equivalent to lemma $1(g)$. (c) follows from lemma $1(a),(d),(e)$. To prove (g), we have to make computations, using $(b)-(f)$:

$$
\begin{aligned}
\left|\bigcup_{i=1}^{2^{n}} f^{i}\left(K_{n+1}\right)\right| & =\sum_{i=1}^{2 n}\left|f^{i}\left(K_{n+1}\right)\right|=\sum_{i=1}^{2 n-1}\left(\left|f^{i}\left(K_{n+1}\right)\right|+\left|f^{i}\left(L_{n}\right)\right|\right) \\
& =\frac{\left|f\left(K_{n+1}\right)\right|+\left|f\left(L_{n}\right)\right|}{\left|f\left(K_{n}\right)\right|} \cdot \sum_{i=1}^{2 n-1}\left|f^{i}\left(K_{n}\right)\right| \\
& =\frac{\left|f\left(K_{n+1}\right)\right|+\left|f\left(L_{n}\right)\right|}{\left|f\left(K_{n}\right)\right|} \cdot\left|\bigcup_{i=1}^{2 n-1} f^{i}\left(K_{n}\right)\right| .
\end{aligned}
$$

But we have

$$
\frac{\left|f\left(K_{n+1}\right)\right|+\left|f\left(L_{n}\right)\right|}{\left|f\left(K_{n}\right)\right|}=\frac{\left(1-a_{n+1}\right)+\left(f\left(b_{n}\right)-f\left(a_{n}\right)\right)}{1-a_{n}}=1-\left(\frac{1}{n+1}\right)^{2} .
$$

We claim that
$(B) f$ has the same kneading invariant as the Feigenbaum map.
To prove this, we have to know the trajectory of c. By lemma $1, h_{n}(c)=a_{n}$ and h_{n} is monotone on [a_{n}, c] (or $\left[c, a_{n}\right.$]). Besides, $h_{n}\left(a_{n}\right)=a_{n+1}$, and hence c belongs to $h_{n}\left(\left(a_{n}, c\right)\right)$ (or $h_{n}\left(\left(c, a_{n}\right)\right)$). Consequently, if we set

$$
\xi_{n}= \begin{cases}+1 & \text { if } f^{n}(c)<c \\ -1 & \text { if } f^{n}(c)>c\end{cases}
$$

then

$$
\xi_{2^{n-1}+i}=\xi_{i} \quad \text { for } i=1,2,3, \ldots, 2^{n-1}-1
$$

and

$$
\xi_{2^{n}}=-\xi_{2^{n-1}}
$$

Hence, $\xi_{1} \cdot \xi_{2} \cdot \ldots \cdot \xi_{2^{n}}=-1$ and

$$
\xi_{1} \cdot \xi_{2} \cdot \ldots \cdot \xi_{2^{n+i}}=-\xi_{1} \cdot \xi_{2} \cdot \ldots \cdot \xi_{i} \text { for } i=1,2,3, \ldots, 2^{n}-1
$$

By the results of [4], this is equivalent to the existence of periodic points of all periods being powers of 2 , and of no other periods. This proves (B).

Define

$$
S=\bigcap_{n=1}^{\infty} \bigcup_{i=1}^{2 n-1} f^{i}\left(K_{n}\right)
$$

By lemma 2, and since

$$
\bigcup_{i=1}^{21-1} f^{i}\left(K_{1}\right)=K_{1}=[0,1]
$$

we have

$$
|\boldsymbol{S}|=\prod_{n=1}^{\infty}\left(1-\left(\frac{1}{n+1}\right)^{2}\right)>0
$$

i.e. the set S has positive Lebesgue measure.

Lemma 3. The measures of the sets $S \cap f^{i}\left(K_{n}\right), i=1,2,3, \ldots, 2^{n-1}$, are

$$
|S| \cdot \prod_{k=1}^{n-1} \frac{k \cdot \varepsilon_{k}+1}{k+2}
$$

where $\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right)$ runs over all $0-1$ sequences of length $n-1$.
Proof. We use induction with respect to n. For $n=1$, the conclusion of the lemma obviously holds. Suppose now that it holds for $n=m$; we shall prove it for $n=m+1$.

Every set of form $S \cap f^{i}\left(K_{m}\right), i=1,2,3, \ldots, 2^{m-1}$, is a union of two disjoint sets: $S \cap f^{i}\left(\boldsymbol{K}_{m+1}\right)$ and $S \cap f^{i}\left(\boldsymbol{L}_{m}\right)$. Since

$$
S \cap f^{i}\left(K_{m}\right)=f^{i-1}\left(S \cap f\left(K_{m}\right)\right)
$$

and all $f^{i-1}, i=1,2,3, \ldots, 2^{m-1}$, are linear on $f\left(K_{m}\right)$, we have

$$
\frac{\left|S \cap f^{i}\left(K_{m+1}\right)\right|}{\left|S \cap f^{i}\left(L_{m}\right)\right|}=\frac{\left|f\left(K_{m+1}\right)\right|}{\left|f\left(L_{m}\right)\right|}=\frac{1}{m+1} .
$$

Hence, the measures of $S \cap f^{i}\left(K_{m+1}\right)$ and $S \cap f^{2 m-1+i}\left(K_{m+1}\right)$ are

$$
\frac{1}{m+2}\left|S \cap f^{i}\left(K_{m}\right)\right| \quad \text { and } \quad \frac{m+1}{m+2}\left|S \cap f^{i}\left(K_{m}\right)\right| .
$$

But if

$$
\left|S \cap f^{i}\left(K_{m}\right)\right|=|S| \cdot \prod_{k=1}^{m-1} \frac{k \cdot \varepsilon_{k}+1}{k+1}
$$

then these measures are

$$
|S| \cdot \prod_{k=1}^{m} \frac{k \cdot \varepsilon_{k}+1}{k+2}, \quad \varepsilon_{m}=0,1
$$

Lemma 4. (a) S is a Cantor set.
(b) The measure ν on S, defined by $\nu\left(f^{i}\left(K_{n}\right)\right)=1 / 2^{n-1}$ for $i=1,2,3, \ldots, 2^{n-1}$, is not absolutely continuous with respect to the Lebesgue measure.

Proof. (a) By the definition of S, it is enough to show that $\max _{1 \leq i \leq 2^{n-1}}\left|S \cap f^{i}\left(K_{m}\right)\right| \rightarrow$ 0 as $n \rightarrow \infty$. But indeed,

$$
\max _{1 \leq i \leq 2^{n-1}}\left|S \cap f^{i}\left(K_{n}\right)\right|=\prod_{k=1}^{n-1} \frac{k+1}{k+2}=\prod_{j=3}^{n+1}\left(1-\frac{1}{j}\right) \rightarrow 0
$$

as $n \rightarrow \infty$. This proves (a).
(b) follows from the fact that for every n, one can find a set of ν-measure $\frac{1}{2}$ and Lebesgue measure $|S| /(n+1)$. This set is the union of these intervals $f^{i}\left(K_{n}\right)$ (intersected with S), for which the corresponding ε_{n-1} is equal to 1 .

Now we shall prove that

$(C) f$ is topologically conjugate to the Feigenbaum map.

For this we have to prove that f has no homtervals. Consider again the gap M_{m} between L_{n} and L_{n+2}. It is mapped by f monotonically and then by $f^{2 n-1-1}$ linearly (by lemma $1(e)$ and since $f\left(M_{n}\right) \subset\left[f\left(a_{n}\right), 1\right]$). Since we have $f\left(a_{n}\right)<f\left(b_{n}\right)<f\left(a_{n+1}\right)<$ $f\left(a_{n+2}\right), h_{n}\left(b_{n}\right)=a_{m+2}$ and $h_{n}\left(a_{n+1}\right)=b_{n}$, our interval M_{n} is mapped by h_{n} homeomorphically onto some interval containing M_{n}. By lemma $1(f),\left.h_{n}\right|_{M_{n}}$ reverses orientation. Hence, $\left.h_{n}\right|_{M_{n}}$ has a unique fixed point. Call this point u_{n}.

We know that f has slope λ_{n} on L_{n}, λ_{n+2} on L_{n+2}, and $f^{2 n-1-1}$ has slope μ_{n} on [$\left.f\left(a_{n}\right), 1\right]$. Therefore (taking into account the orientation), we get:

$$
\begin{gather*}
\left.h_{n}^{\prime}\right|_{L_{n}}=-\lambda_{n} \mu_{n}=-(n+1) \tag{7}\\
\left.h_{n}^{\prime}\right|_{L_{n+2}}=-\lambda_{n+2} \mu_{n}=-(n+3) /(n+1)(n+2) \tag{8}
\end{gather*}
$$

By the construction, f (and consequently, also h_{n}) is linear on the interval $\left[a_{n+2}+2 x_{n}, a_{n}\right]$ (if n is odd) or [$\left.a_{n}, a_{n+2}-2 x_{n}\right]$ (if n is even), where x_{n} is given by (1). If h_{n} has a fixed point on this interval, this fixed point has to be equal to u_{n}. To find it we have to solve the equation (where $u_{n}=b_{n}+t_{n}$):

$$
b_{n}+t_{n}=a_{n+2}-t_{n}(n+1)
$$

(remember that the derivative is given by (7)). We get for t_{n} :

$$
t_{n}=\left(a_{n+2}-b_{n}\right) / n+2 .
$$

This implies that the sign of t_{n} is the same as of $a_{n+2}-b_{n}$. Hence, to prove that u_{n} lies on the considered interval, it is enough to show that $\left|t_{n}\right|+2 x_{n} \leq\left|a_{n+2}-b_{n}\right|$ (cf. figure 1). This inequality is equivalent to $(n+1)\left(n^{2}+n+2\right) \geq n+3$, which holds because $n+1>1$ and $n^{2}+2 \geq 3$. Hence, we have shown that

$$
\begin{equation*}
h_{n}^{\prime}\left(u_{n}\right)=-(n+1) \tag{9}
\end{equation*}
$$

Since h_{n} is monotone on $\left[c, b_{n}\right]$ (or $\left[b_{n}, c\right]$) and

$$
h_{n}\left(b_{n}\right)=a_{n+2}, \quad h_{n}(c)=a_{n}
$$

the interval M_{n} is mapped by h_{n} homeomorphically onto some sub-interval of $M_{n} \cup L_{n}$. The interval $M_{n} \cup L_{n}$ is divided by u_{n} into two parts. By (7), (8), (9) and the facts that f is concave and h_{n} is linear on $f\left(M_{n} \cup L_{n}\right)$, the slope of h_{n} on one of these parts is constant and equal to $n+1$ and on the other one is at least $(n+3)$ / $(n+1)(n+2)$. Since

$$
(n+1) \cdot \frac{n+3}{(n+1)(n+2)}>1
$$

Figure 1
and h_{n} reverses orientation on $M_{n} \cup L_{n}$, we have

$$
\begin{equation*}
\left|h_{n}^{\prime}\right|_{M_{n}} \mid>1 . \tag{10}
\end{equation*}
$$

Suppose now that J is a homterval. Since S is a Cantor set, J has to intersect some of its gaps (or an 'outer gap'). If it also intersects S, then it has to contain some $f^{i}\left(K_{n}\right)$ (remember that J is open). But some image of $f^{i}\left(K_{n}\right)$ contains c, and we get a contradiction. Hence J (and all its images) is disjoint from S.

Since, by lemma 1, all points a_{n} and b_{n} are images of c, they all belong to S (S is invariant). Consequently, none of these points belong to J, or its images. We have

$$
[0,1]=\{c\} \cup \bigcup_{n \geq 0}\left(M_{n} \cup L_{n}\right) .
$$

We take the subsequence of images of $J,\left(f^{k(n)}(J)\right)_{n=1}^{\infty}$, defined by induction: first, $k(0)=0$, second if $f^{k(n)}(J) \subset M_{n}$, then $k(n+1)=k(n)+2^{m}$; if $f^{k(n)}(J) \subset L_{m}$, then $k(n+1)=k(n)+2^{m-1}$. By (7) and (10), we get

$$
\begin{equation*}
\left|\left(f^{k(n+1)-k(n)}\right)^{\prime}\right|_{f^{k(n)}(f)} \mid>1 . \tag{11}
\end{equation*}
$$

Therefore, for all $n,\left|f^{k(n)}(J)\right| \geqslant|J|$. This is possible only if J is contained in a basin of a sink. But this contradicts (11).

Hence, f has no homtervals, and consequently, (C) is proved.
To complete the proof of the theorem, we need to prove only that $S=C$ where the set C was defined in the introduction. But this follows from the straightforward remark that for every descending sequence $\left(Q_{n}\right)_{n=1}^{\infty}$ of neighbourhoods of c with $\bigcap_{n=1}^{\infty} Q_{n}=\{c\}$, the set $\bigcap_{n=1}^{\infty} \bigcup_{k=0}^{\infty} f^{k}\left(Q_{n}\right)$ is the same.

A part of this research was accomplished during my visit to the University of Geneva and Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France. I would like to acknowledge their hospitality and support.

REFERENCES

[1] M. Campanino \& H. Epstein. On the existence of Feigenbaum's fixed point. Preprint I.H.E.S. 1980.
[2] P. Collet \& J.-P. Eckmann. Iterated maps on the interval as dynamical systems. Progr. in Phys., vol. I, Birkhäuser: Boston, 1980.
[3] M. J. Feigenbaum. Quantitative universality for a class of non-linear transformations. J. Stat. Phys. 19 (1978), 25-52.
[4] L. Jonker. Periodic orbits and kneading invariants. Proc. London Math. Soc. 39 (1979), 428-450.
[5] O. Lanford III. A computer-assisted proof of Feigenbaum conjectures. Preprint I.H.E.S. 1981.
[6] M. Misiurewicz. Structure of mappings of an interval with zero entropy. Publ. I.H.E.S. 53 (1981), 5-16.

