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Abstract

Let P be the set of primes and π(x) the number of primes not exceeding x. Let P+(n) be the largest prime
factor of n, with the convention P+(1) = 1, and Tc(x) = #{p ≤ x : p ∈ P, P+(p − 1) ≥ pc}. Motivated by a
conjecture of Chen and Chen [‘On the largest prime factor of shifted primes’, Acta Math. Sin. (Engl. Ser.)
33 (2017), 377–382], we show that for any c with 8/9 ≤ c < 1,

lim sup
x→∞

Tc(x)/π(x) ≤ 8(1/c − 1),

which clearly means that

lim sup
x→∞

Tc(x)/π(x)→ 0 as c→ 1.
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1. Introduction

The investigation of shifted primes with large prime factors began in a brilliant article
of Goldfeld [12]. Historically, this topic had aroused great interest because of its
unexpected connection with the first case of Fermat’s last theorem, thanks to the
theorems of Fouvry [11] and Adleman and Heath-Brown [1].

For any positive integer n, let P+(n) be the largest prime factor of n with the
convention P+(1) = 1. Let P be the set of primes and π(x) the number of primes not
exceeding x. For 0 < c < 1, let Tc(x) = #{p ≤ x : p ∈ P, P+(p − 1) ≥ pc}. As early as
1969, Goldfeld [12] proved

lim inf
x→∞

T1/2(x)/π(x) ≥ 1/2.
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Goldfeld further remarked that his argument also leads to

lim inf
x→∞

Tc(x)/π(x) > 0, (1.1)

provided that c < 7/12. It turns out that exploring large c which satisfy (1.1) is rather
difficult and important. For improvements on the values of c, see Motohashi [21],
Hooley [15, 16], Deshouillers and Iwaniec [7], and Fouvry [11]. Up to now, the best
numerical value of c satisfying (1.1), with a cost of replacing π(x) with π(x)/ log x, is
0.677, obtained by Baker and Harman [3].

In an earlier note [8] on this topic, I showed that

lim sup
x→∞

Tc(x)/π(x) < 1/2 (1.2)

holds for some absolute constant c < 1. As a corollary, I disproved a 2017 conjecture
of Chen and Chen [6] that

lim inf
x→∞

Tc(x)/π(x) ≥ 1/2

for any c with 1/2 ≤ c < 1. The proof in my earlier note is based on the following deep
result which is a corollary of the Brun–Titchmarsh inequality.

PROPOSITION 1.1 [24, Lemma 2.2]. There exist two functions K2(θ) > K1(θ) > 0,
defined on the interval (0, 17/32) such that for each fixed real A > 0 and all sufficiently
large Q = xθ, the inequalities

K1(θ)
π(x)
ϕ(m)

≤ π(x; m, 1) ≤ K2(θ)
π(x)
ϕ(m)

hold for all integers m ∈ (Q, 2Q] with at most O(Q(log Q)−A) exceptions, where the
implied constant depends only on A and θ. Moreover, for any fixed ε > 0, these
functions can be chosen to satisfy the following properties:

• K1(θ) is monotonic decreasing and K2(θ) is monotonic increasing;
• K1(1/2) = 1 − ε and K2(1/2) = 1 + ε.

The constant c in (1.2) is not specified because of the indeterminate nature of K1(θ)
in Proposition 1.1. In fact, K1(θ) (and hence c) can be explicitly given if one checks
carefully the articles of Baker and Harman [2] for 1/2 ≤ θ ≤ 13/25, and Mikawa [19]
for 13/25 ≤ θ ≤ 17/32. This gives K1(θ) ≥ 0.16 for 1/2 ≤ θ ≤ 13/25 [2, Theorem 1]
and K1(θ) ≥ 1/100 for Mikawa’s range [19, (4)]. However, it seems that the constant c
in (1.2) obtained in this way will be very close to 1 (see the proofs in [8]).

In [8], I also pointed out that Chen and Chen’s conjecture is already in contradiction
with the Elliott–Halberstam conjecture (from Pomerance [22], Granville [13], Wang
[23] and Wu [24]). In fact,

lim sup
x→∞

Tc(x)/π(x) = lim
x→∞

Tc(x)/π(x) =
(
1 − ρ

(1
c

))
→ 0 as c→ 1, (1.3)
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under the assumption of the Elliott–Halberstam conjecture, where ρ(u) is the Dickman
function, defined as the unique continuous solution of the differential-difference
equation ⎧⎪⎪⎨⎪⎪⎩

ρ(u) = 1 for 0 ≤ u ≤ 1,
uρ′(u) = −ρ(u − 1) for u > 1.

However, there are earlier results related to the conjecture of Chen and Chen, and
my earlier result (1.2). In fact, as indicated by the proof of a result of Erdős [9, Lemma
4], as early as 1935, one could already conclude from Erdős’ proof combined with
Lemma 2.2 of Wu (see below) that (1.3) is true in part.

THEOREM 1.2 (Erdős). Unconditionally,

lim sup
x→∞

Tc(x)/π(x)→ 0 as c→ 1.

Essentially, Theorem 1.2 can be deduced from Erdős’ proof by adding Wu’s lemma
(see Erdős’ argument in [9, from page 212, line 6 to page 213, line 4]). Since Erdős’
conclusion is not clearly formulated, it is meaningful to restate it explicitly as Theorem
1.2. It is also of interest to pursue Erdős’ theorem a little further to reach the following
quantitative form.

THEOREM 1.3. For 8/9 ≤ c < 1,

lim sup
x→∞

Tc(x)/π(x) ≤ 8(1/c − 1).

We note that the restriction on c ≥ 8/9 in our theorem is natural since otherwise,
the upper bound would exceed 1 which is certainly meaningless. Theorem 1.3 can also
be compared with the results of Goldfeld [12], Luca et al. [18], and Chen and Chen [6]
which state that

lim inf
x→∞

Tc(x)/π(x) ≥ 1 − c

for 0 < c ≤ 1/2. These bounds were recently improved in part by Feng and Wu [10],
and Liu, Wu and Xi [17]. From Theorem 1.3, we clearly have two corollaries, one of
which is Erdős’ theorem (Theorem 1.2) while the other revisits the main result (1.2) of
my earlier note in a quantitative form.

COROLLARY 1.4. For c > 16/17,

lim sup
x→∞

Tc(x)/π(x) < 1/2.

2. Proofs

From now on, p will always be a prime. The proof of Theorem 1.3 is based on the
following lemma deduced from the sieve method (see, for example, [14, Theorem 5.7,
page 172]).
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LEMMA 2.1. Let g be a natural number and let ai, bi (i = 1, 2, . . . , g) be integers
satisfying

E :=
g∏

i=1

ai

∏
1≤r<s≤g

(arbs − asbr) � 0.

Let ρ(p) denote the number of solutions in n modulo p of
g∏

i=1

(ain + bi) ≡ 0 (mod p),

and suppose that

ρ(p) < p for all p.

If the real numbers y and z satisfy 1 < y ≤ z, then

|{n : z − y < n ≤ z, ain + bi prime for i = 1, 2, . . . , g}|

≤ 2gg!
∏

p

(
1 − ρ(p) − 1

p − 1

)(
1 − 1

p

)−g+1 y
logg y

(
1 + O

( log log 3y + log log 3|E|
log y

))
,

where the constant implied by the O-symbol depends at most on g.

We also need the following important relation established by Wu [24, Theorem 2].

LEMMA 2.2. For 0 < c < 1, let

T ′c(x) = #{p ≤ x : p ∈ P, P+(p − 1) ≥ xc}.
Then for sufficiently large x,

Tc(x) = T ′c(x) + O
(x log log x

(log x)2

)
.

We now turn to the proof of Theorem 1.3.

PROOF OF THEOREM 1.3. Let x be a sufficiently large number throughout the proof.
Instead of investigating Tc(x), we first deal with T ′c(x). For 1/2 ≤ c < 1, it is easy to see
that

T ′c(x) =
∑

xc≤q<x
q∈P

∑
p≤x

q|p−1

1. (2.1)

On putting p − 1 = qh in the sum (2.1) and then exchanging the order of summation,

T ′c(x) =
∑

xc≤q<x
q∈P

∑
h<x/q

qh+1∈P

1 ≤
∑

h<x1−c

2|h

∑
2<q<x/h
q,qh+1∈P

1. (2.2)

For any h with 2 | h and h < x1−c, let ρ(p) denote the number of solutions of

n(hn + 1) ≡ 0 (mod p).
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Then

ρ(p) =

⎧⎪⎪⎨⎪⎪⎩
1 if p | h,
2 otherwise.

Now, by Lemma 2.1 with g = 2, a1 = 1, b1 = 0, a2 = h, b2 = 1 and z = y = x/h,

3|E| = 3h 
 x, 3y = 3x/h 
 x and y = x/h ≥
√

x,

from which it follows that∑
2<q<x/h
q,qh+1∈P

1 ≤ 16S
∏
p|h
p>2

(
1 +

1
p − 2

) x/h

log2(x/h)

(
1 + O

( log log x
log x

))
, (2.3)

where an empty product for
∏

p|h,p>2 above denotes 1 as usual and

S =
∏
p>2

(
1 − 1

p − 1

)(
1 − 1

p

)−1
=
∏
p>2

(
1 − 1

(p − 1)2

)
.

Inserting (2.3) into (2.2) gives

T ′c(x) ≤ (1 + o(1))16S
∑

h<x1−c

2|h

∏
p|h
p>2

(
1 +

1
p − 2

) x/h

log2(x/h)
. (2.4)

Note that ∏
p|h
p>2

(
1 +

1
p − 2

)
≤ 2
∏
p|h
p>2

(
1 +

1
p

)
(2.5)

since the gaps between odd primes are at least 2, from which we can already give
a nontrivial upper bound of T ′c(x) via partial summations. To make our bound more
explicit than (2.5), we employ a nice result of Banks and Shparlinski [4, Lemma 2.3]
(on taking a = 1 therein), which states that for z ≥ 2,

S(z) :=
∑
h<z
2|h

1
h

∏
p|h
p>2

(
1 +

1
p − 2

)
=

1 + o(1)
2S

log z. (2.6)

For 1 ≤ z < 2, we set S(z) = 0. By partial summation,

∑
h<x1−c

2|h

∏
p|h
p>2

(
1 +

1
p

) 1/h
log2(x/h)

=
S(x1−c)

(log xc)2 −
∫ x1−c

1
S(z) d

(
log

x
z

)−2
. (2.7)

Note also that for z ≥ 2,

S(z) ≤
∑
h<z

1
h

∏
p|h
p>2

(
1 +

1
p − 2

)
≤
∑
h<z

1
h

∏
p|h

(
1 +

3
p

)
=
∑
h<z

1
h

∑
d|h

3ω(d)μ2(d)
d

,
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where μ(d) is the Möbius function and ω(d) is the number of distinct prime factors of
d. Exchanging the order of summation,

S(z) ≤
∑
d<z

3ω(d)μ2(d)
d

∑
h<z
d|h

1
h
≤ 3
∑
d<z

3ω(d)μ2(d)
d2 log z < 3K log z, (2.8)

where

K = 3
∞∑

d=1

3ω(d)μ2(d)
d2 .

From (2.8),
∫ log x

1
S(z) d

(
log

x
z

)−2

K

log log x
(log x)2 = o((log x)−1). (2.9)

Now, routine computations yield

S(x1−c)
(log xc)2 =

1 + o(1)
S

(1 − c)
2c2 (log x)−1 (2.10)

and ∫ x1−c

log x
S(z) d

(
log

x
z

)−2
=

1 + o(1)
S

∫ x1−c

log x

log z
z

(
log

x
z

)−3
dz

=
1 + o(1)
S

∫ x1−c

1

log z
z

(
log

x
z

)−3
dz + o((log x)−1)

=
1 + o(1)
S

∫ x

xc

log x − log u
u

(log u)−3 du + o((log x)−1)

=
1 + o(1)
S

(1 − c
2c2 +

1
2
− 1

2c

)
(log x)−1, (2.11)

thanks to the estimate (2.6). Combining (2.9), (2.10) and (2.11), one sees that the
right-hand side of (2.7) equals

1 + o(1)
S

( 1
2c
− 1

2

)
(log x)−1. (2.12)

Taking (2.12) into (2.4), we immediately obtain

T ′c(x) ≤ (1 + o(1))8
(1

c
− 1
) x
log x

.

Therefore, by Lemma 2.2,

Tc(x) = T ′c(x) + O
(x log log x

(log x)2

)
≤ (1 + o(1))8

(1
c
− 1
) x
log x

.

Our theorem now follows from the prime number theorem. �
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3. Remarks

Under the assumption of the Elliott–Halberstam conjecture, it is reasonable to
predict that the exact value of c in Corollary 1.4 should be e−1/2 = 0.60653 . . . from
(1.3) and the recursion formula (see, for example, [20, (7.6)]) for Dickman’s function:

ρ(v) = u −
∫ v

u

ρ(t − 1)
t

dt (1 ≤ u ≤ v).

It therefore seems to be of interest to improve, as far as possible, the numerical value
of c in Corollary 1.4. We leave this as a challenge to readers.

Though we provided nontrivial upper bounds on Tc(x) for 8/9 ≤ c < 1 in
Theorem 1.3, the extension of these bounds to 1/2 ≤ c < 1 is an unsolved problem.
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