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On Sha’s Secondary Chern–Euler Class

Zhaohu Nie

Abstract. For a manifold with boundary, the restriction of Chern’s transgression form of the Euler

curvature form over the boundary is closed. Its cohomology class is called the secondary Chern–

Euler class and was used by Sha to formulate a relative Poincaré–Hopf theorem under the condition

that the metric on the manifold is locally product near the boundary. We show that the secondary

Chern–Euler form is exact away from the outward and inward unit normal vectors of the boundary by

explicitly constructing a transgression form. Using Stokes’ theorem, this evaluates the boundary term

in Sha’s relative Poincaré–Hopf theorem in terms of more classical indices of the tangential projection

of a vector field. This evaluation in particular shows that Sha’s relative Poincaré–Hopf theorem is

equivalent to the more classical law of vector fields.

1 Introduction

Let X be a smooth oriented compact Riemannian manifold with boundary M.

Throughout the paper we fix dim X = n ≥ 2 and hence dim M = n − 1. On

M, one has a canonical decomposition

(1.1) TX|M ∼= ν ⊕ TM,

where ν is the rank 1 trivial normal bundle of M.

In his famous proof of the Gauss–Bonnet theorem, Chern [1, 2] constructed a

differential form Φ (see (2.6)) of degree n − 1 on the tangent sphere bundle STX,

consisting of unit vectors in TX satisfying the following two conditions:

(1.2) dΦ = −Ω,

where Ω is the Euler curvature form of X (pulled back to STX) when dim X is even

and 0 otherwise, and

Φ̃0 = d̃σn−1,

i.e., the 0-th term Φ̃0 of Φ is the relative unit volume form for the fibration Sn−1 →
STX → X (see (2.7)).

By (1.2), one has dΦ = 0 on STX|M , since even if dim X is even, Ω|M = 0 by

dimensional reason. Following [6], Φ on STX|M is called the secondary Chern–Euler

form, whose cohomology class is called the secondary Chern–Euler class.

Secondary Chern–Euler classes are useful in studying the relative Poincaré–Hopf

theorem. Let V be a smooth vector field on X. We assume that V has only isolated
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On Sha’s Secondary Chern–Euler Class 587

singularities, i.e., the set Sing V := {x ∈ X | V (x) = 0} is finite, and that the restric-

tion V |M is nowhere zero. Define the index Indx V of V at an isolated singularity x as

usual (see [3, p. 136]), and let Ind V =
∑

x∈Sing V Indx V denote the sum of the local

indices. Also define

αV : M → STX|M ; x 7→
V (x)

|V (x)|
.

by rescaling V .

Following [6], we assume throughout the paper the following condition:

(1.3) the metric on X is locally product near the boundary M,

which in particular implies that M is a totally geodesic submanifold of X. The general

case is addressed in [5].

Under condition (1.3), Sha [6] proved his version of the relative Poincaré–Hopf

theorem

(1.4) Ind V −

∫

αV (M)

Φ =

{
χ(X) if dim X is even,

0 if dim X is odd.

The starting point of this paper is to study Φ, or rather its certain restriction de-

fined as follows. Let~n denote the outward unit normal vector field of M. The images

~n(M) and (−~n)(M) in STX|M are the spaces of outward and inward unit normal

vectors of M. Define

(1.5) CSTM := STX|M\(~n(M) ∪ (−~n)(M))

(C for cylinder) to be the complement.

Theorem 1.1 Under condition (1.3), Φ is exact on CSTM (1.5). More precisely, there

is a differential form Γ of degree n − 2 on CSTM such that Φ = dΓ.

The definition of Γ is in Definition 2.4, and the above theorem is proved right

after that.

Theorem 1.1 and Stokes’ theorem then allow the following concrete evaluation of

Sha’s term
∫
αV (M)

Φ in (1.4) in terms of more classical local indices. For a generic

vector field V , let ∂V be the projection of V |M to TM according to (1.1), and let ∂−V

(resp. ∂+V ) be the restriction of ∂V to the subspace of M, where V points inward

(resp. outward) to X. Generically ∂±V have isolated singularities. (A non-generic

V can always be modified by adding an extension to X of a normal vector field or a

tangent vector field to M.)

Theorem 1.2 Under condition (1.3) and for a generic vector field V , one has

(1.6)

∫

αV (M)

Φ =

{
− Ind ∂−V if dim X is even,
1
2
(Ind ∂+V − Ind ∂−V ) if dim X is odd.
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Remark 1.3 Generically Ind ∂+V + Ind ∂−V = Ind ∂V = χ(M) by the Poincaré–

Hopf theorem. When dim X is even and hence dim M is odd, since χ(M) = 0, one

has equality between the two formulas in (1.6).

When dim X is odd, since χ(M) = 2χ(X) by basic topological knowledge, one has

the following reformulation of the odd case in (1.6)

(1.7)

∫

αV (M)

Φ =
1

2
χ(M) − Ind ∂−V = χ(X) − Ind ∂−V, if dim X is odd.

We finish this introduction by explaining the relation of our result with the law

of vector fields. For a generic vector field V , using the flow along −V and counting

fixed points with multiplicities, one has the following law of vector fields:

(1.8) Ind V + Ind ∂−V = χ(X).

This was first proved by Morse [4] and later on publicized by Gottlieb, who also

coined the term.

Our result (1.6) and the reformulation (1.7) of the odd case then directly show that

the two relative Poincaré–Hopf theorems, (1.4) and (1.8), are equivalent. Therefore,

following the route of the relative Poincaré–Hopf theorem of Sha [6] under condition

(1.3), our result (1.6) gives a purely differential-geometric proof of the law of vector

fields. Other differential-geometric proofs are given in [5].

2 Differential Forms

Throughout the paper, c j−1 denotes the volume of the unit ( j − 1)-sphere S j−1.

Chern’s transgression form Φ is defined as follows. Choose oriented local or-

thonormal frames {e1, e2, . . . , en} for the tangent bundle TX. Let (ωi j) and (Ωi j)

be the so(n)-valued connection forms and curvature forms for the Levi–Civita con-

nection ∇ of the Riemannian metric on X defined by

∇ei =

n∑

k=1

ωi je j ,(2.1)

Ωi j = dωi j −

n∑

k=1

ωikωk j .(2.2)

(In this paper, we closely follow Chern’s notation and convention in [1, 2]. In par-

ticular we follow his convention in choosing the row and column indices in (2.1),

which may not be the most standard. Also, products of differential forms always

mean “exterior products”, although we omit the notation ∧ for simplicity.)

Let the ui be the coordinate functions on STX in terms of the frames defined by

(2.3) v =

n∑

i=1

ui(v)ei , ∀v ∈ STX.

https://doi.org/10.4153/CMB-2011-089-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-089-1


On Sha’s Secondary Chern–Euler Class 589

Let the θi be the 1-forms on STX defined by

(2.4) θi = dui +

n∑

k=1

ukωki .

For k = 0, 1, . . . , [ n−1
2

] (with [ · ] standing for the integral part), define the degree

n − 1 forms on STX

(2.5) Φk =

∑

τ

ǫ(τ )uτ1
θτ2

· · · θτn−2k
Ωτn−2k+1τn−2k+2

· · ·Ωτn−1τn
,

where the summation runs over all permutations τ of {1, 2, . . . , n}, and ǫ(τ ) is the

sign of τ . (The index k stands for the number of curvature forms involved. Hence the

restriction 0 ≤ k ≤ [ n−1
2

]. This convention applies throughout the paper.) Define

Chern’s transgression form as

(2.6) Φ =
1

(n − 2)!!cn−1

[ n−1
2

]∑

k=0

(−1)k 1

2kk!(n − 2k − 1)!!
Φk

=:
1

(n − 2)!!cn−1

[ n−1
2

]∑

k=0

Φk =:

[ n−1
2

]∑

k=0

Φ̃k.

(See (2.22) for an explanation, in the case of M with dimension n − 1, for the coeffi-

cients involved.) The Φk and hence Φ are invariant under SO(n)-transformations of

the local frames and hence are intrinsically defined. Note that the 0-th term

(2.7) Φ̃0 =
1

(n − 2)!!cn−1

1

(n − 1)!!
Φ0 =

1

cn−1
dσn−1 = d̃σn−1

is the relative unit volume form of the fibration Sn−1 → STX → X, since by (2.5)

(2.8) Φ0 =

∑

τ

ǫ(τ )uτ1
θτ2

· · · θτn
= (n − 1)!dσn−1

(see [1, (26)]).

Now we start to transgress Φ (2.6) on CSTM (1.5). At TX|M , we choose oriented

local orthonormal frames {e1, e2, . . . , en} such that e1 = ~n is the outward unit nor-

mal vector of M. Therefore {e2, . . . , en} are oriented local orthonormal frames for

TM. Let φ be the angle coordinate on STX|M defined by

φ(v) = ∠(v, e1) = ∠(v,~n), ∀v ∈ STX|M .

One has from (2.3)

(2.9) u1 = cosφ.
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Let

(2.10) p : CSTM = STX|M\(~n(M) ∪ (−~n)(M)) → STM; v 7→
∂v

|∂v|
,

(in coordinates) (cosφ, u2, . . . , un) 7→
1

sinφ
(u2, . . . , un)

be the projection to the equator STM. By definition,

for x ∈ M, ∂V (x) = 0 ⇔ αV (x) = ±~n(x),(2.11)

p ◦ αV = α∂V when ∂V 6= 0.(2.12)

The locally product metric (1.3) near M means that ∇e1 = ∇~n = 0. Hence from

(2.1) one has

(2.13) ω1∗ = −ω∗1 = 0.

From (2.4), (2.9), and (2.13), one has

(2.14) θ1 = − sinφ dφ.

From (2.2) and (2.13), one also has

(2.15) Ω1∗ = −Ω∗1 = 0.

We use the convention that τ is a permutation of (1, 2, . . . , n) and ρ is a permuta-

tion of (2, . . . , n).

In view of (2.15) on STX|M , the index 1 in the formula (2.5) for Φk appears in

either uτ1
or one of the θτi

for 2 ≤ i ≤ n−2k. There are totally n−2k−1 possibilities

for the second case.

Therefore, on STX|M , one has the following more concrete

(2.16) Φk = u1Ξk − (n − 2k − 1)θ1Υk, k = 0, . . . ,
[ n − 1

2

]
,

where

Υk =

∑

ρ

ǫ(ρ)uρ2
θρ3

· · · θρn−2k
Ωρn−2k+1ρn−2k+2

· · ·Ωρn−1ρn
,

k = 0, . . . ,
[ n − 2

2

]
,

(2.17)

Ξk =

∑

ρ

ǫ(ρ)θρ2
θρ3

· · · θρn−2k
Ωρn−2k+1ρn−2k+2

· · ·Ωρn−1ρn
,

k = 0, . . . ,
[ n − 1

2

]
.

(2.18)
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The negative sign in (2.16) is from ǫ(τ ) in (2.5) when one moves θ1 in front of uτ1
.

(When [ n−1
2

] = [ n−2
2

] + 1, one can either define Υ[ n−1
2

] = 0 by dimensional reason

or observe its coefficient in (2.16) n − 2k − 1 = 0 for k = [ n−1
2

]. This observation

applies throughout the section.)

We use the convention to write superscript e for functions and forms defined on

the equator STM of STX|M . Using the {e2, . . . , en} as oriented local orthonormal

frames for TM, we define ue
i , θ

e
i ,and Φ

e
k as functions and forms on STM in the same

way as in (2.3), (2.4), and (2.5). Note that Ωe
i j = Ωi j for 2 ≤ i, j ≤ n by (2.2) and

(2.13). Therefore one has the degree n − 2 forms on STM

(2.19) Φ
e
k =

∑

ρ

ǫ(ρ)ue
ρ2
θe
ρ3
· · · θe

ρn−2k
Ωρn−2k+1ρn−2k+2

· · ·Ωρn−1ρn
,

k = 0, . . . ,
[ n − 2

2

]
.

Following [1], also define the degree n − 1 forms on STM

(2.20)

Ψ
e
k =

∑

ρ

ǫ(ρ)θe
ρ2
θe
ρ3
· · · θe

ρn−2k
Ωρn−2k+1ρn−2k+2

· · ·Ωρn−1ρn
, k = 0, . . . ,

[ n − 1

2

]
.

Note that the Φ
e
k and the Ψ

e
k are just the Υk in (2.17) and the Ξk in (2.18) with the

superscript e. By dimensional reasoning one has

Ψ
e
0 = 0.(2.21)

On STM, Chern’s basic formulas [1] are

(2.22) dΦe
k = Ψ

e
k +

n − 2k − 2

2(k + 1)
Ψ

e
k+1, k = 0, . . . ,

[ n − 2

2

]
.

(This also explains, over M with dimension n − 1, the construction of Φ in (2.6) for

the purpose of consecutive cancellations.)

Lemma 2.1 One has on CSTM (1.5), for k = 0, . . . , [ n−1
2

],

(2.23) Φk = sinn−2k−1 φ cosφ p∗
Ψ

e
k + (n − 2k − 1) sinn−2k−2 φ dφ p∗

Φ
e
k.

Proof For 2 ≤ i ≤ n and from (2.10), one has

(2.24) p∗ue
i =

1

sinφ
ui .

Differentiating the above and using (2.4) and (2.13), one has

(2.25) p∗θe
i =

1

sinφ
θi −

cosφ

sin2 φ
dφ ui
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Because of the presence of dφ and in view of (2.19), (2.24), and (2.25), one has

dφ p∗
Φ

e
k =

1

sinn−2k−1 φ
dφΥk ⇒ dφΥk = sinn−2k−1 φ dφ p∗

Φ
e
k,(2.26)

where n − 2k − 1 is the number of u and θ’s in (2.19). Hence by (2.14), one has

θ1Υk = − sinn−2k φ dφ p∗
Φ

e
k.(2.27)

Now the pullback of Ψe
k in (2.20) is slightly harder, since dφ may come up as in

(2.25), but only once among the (n − 2k − 1) θe’s. Therefore

p∗
Ψ

e
k =

1

sinn−2k−1 φ
Ξk − (n − 2k − 1)

cosφ

sinn−2k φ
dφΥk.

Using (2.9) and (2.26), one then has

(2.28) u1Ξk = sinn−2k−1 φ cosφ p∗
Ψ

e
k + (n − 2k − 1)

cos2 φ

sinφ
dφΥk

= sinn−2k−1 φ cosφ p∗
Ψ

e
k + (n − 2k − 1) sinn−2k−2 φ cos2 φ dφ p∗

Φ
e
k.

Combining (2.16), (2.27), and (2.28), one has

Φk = u1Ξk − (n − 2k − 1)θ1Υk

= sinn−2k−1 φ cosφ p∗
Ψ

e
k + (n − 2k − 1) sinn−2k−2 φ cos2 φ dφ p∗

Φ
e
k

+ (n − 2k − 1) sinn−2k φ dφ p∗
Φ

e
k

= sinn−2k−1 φ cosφ p∗
Ψ

e
k + (n − 2k − 1) sinn−2k−2 φ dφ p∗

Φ
e
k,

= the right-hand side of (2.23)

by cos2 φ + sin2 φ = 1.

Since Ψe
0 = 0 (2.21), one has, from (2.23),

(2.29) Φ0 = (n − 1) sinn−2 φ dφ p∗
Φ

e
0.

Remark 2.2 In view of (2.8), (2.29) is just the relation (due to condition (1.3))

between the relative volume forms dσn−1 of Sn−1 → STX|M → M and dσn−2 of

Sn−2 → STM → M,

dσn−1 = sinn−2 φ dφ p∗dσn−2.

On one fixed sphere and its equator, this is an easy fact and follows from using spher-

ical coordinates, which also accounts for the basic formula

(2.30) cn−1 = cn−2

∫ π

0

sinn−2 φ dφ.
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Our goal is to find a differential form Γ such that dΓ = Φ. We do this inductively

starting from the above Φ0 in (2.29). Therefore we need to use an antiderivative of

sinn−2 φ.

Definition 2.3 For a non-negative integer b, define functions of φ,

Ib(φ) =

∫
sinb φ dφ,

where we require the arbitrary constants to be 0. More precisely,

(2.31) Ib(φ) =





∫ φ

0

sinb t dt if b is even,

∫ φ

π
2

sinb t dt if b is odd.

Integration by parts gives

(2.32) bIb(φ) + sinb−1 φ cosφ = (b − 1)Ib−2(φ), b ≥ 2.

Clearly I0(φ) = φ and I1(φ) = − cosφ. These also inductively determine Ib(φ).

Definition 2.4 We define the following differential forms of degree n−2 on CSTM:

Γk = In−2k−2(φ)p∗
Φ

e
k, k = 0, . . . ,

[ n − 2

2

]
,(2.33)

Γk = (−1)k 1

2kk!(n − 2k − 3)!!
Γk

= (−1)k 1

2kk!(n − 2k − 1)!!
(n − 2k − 1)Γk

(2.34)

(with the convention (−1)!! = 1), and

(2.35) Γ =
1

(n − 2)!!cn−1

[ n−2
2

]∑

k=0

Γk

=
1

(n − 2)!!cn−1

[ n−2
2

]∑

k=0

(−1)k 1

2kk!(n − 2k − 3)!!
In−2k−2(φ)p∗

Φ
e
k.

With this definition of Γ, now we prove Theorem 1.1.

Proof of Theorem 1.1 First by Chern’s basic formula (2.22), for k = 0, . . . , [ n−2
2

],

(2.36) dΓk = sinn−2k−2 φ dφ p∗
Φ

e
k + In−2k−2(φ)p∗

Ψ
e
k

+
n − 2k − 2

2(k + 1)
In−2k−2(φ)p∗

Ψ
e
k+1.
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Define

(2.37) Lk = (−1)k n − 2k

2kk!(n − 2k − 1)!!
In−2k(φ)p∗

Ψ
e
k, k = 0, . . . ,

[ n

2

]

(L for leftover).

Claim 2.5 For k = 0, . . . , [ n−2
2

], one has

(2.38)

k∑

i=0

Φi − d(

k∑

i=0

Γi) = Lk+1.

Proof of the Claim We proceed by induction. Actually (2.38) clearly holds for k =

−1, since both sides are zero by natural reasons, (2.37) and (2.21). (One can also

check the k = 0 case using the same reasoning as in the following induction step.)

Now assume (2.38) holds for k−1. Then using this induction hypothesis, plugging

in all the formulas (2.37), (2.36), (2.34), (2.23), and by (2.32), one has

k∑

i=0

Φi − d(

k∑

i=0

Γi) = Lk + Φk − dΓk

= (−1)k 1

2kk!(n − 2k − 1)!!

[
((n − 2k)In−2k(φ) + sinn−2k−1 φ cosφ)p∗

Ψ
e
k

+ (n − 2k − 1) sinn−2k−2 φ dφ p∗
Φ

e
k − (n − 2k − 1) sinn−2k−2 φ dφ p∗

Φ
e
k

− (n − 2k − 1)In−2k−2(φ)p∗
Ψ

e
k

−
(n − 2k − 2)

2(k + 1)
(n − 2k − 1)In−2k−2(φ)p∗

Ψ
e
k+1

]

= (−1)k+1 n − 2k − 2

2k+1(k + 1)!(n − 2k − 3)!!
In−2k−2(φ)p∗

Ψ
e
k+1 = Lk+1.

When n = 2m for m ≥ 1, [ n−2
2

] = [ n−1
2

] = m − 1. Therefore to prove Φ = dΓ,

in view of (2.6) and (2.35), it suffices by (2.38) to proceed as follows:

m−1∑

i=0

Φi − d
(m−1∑

i=0

Γi

)
= Lm = 0,

since Lm = 0 from (2.37) due to the coefficient n − 2k on the top.

When n = 2m + 1 for m ≥ 1, [ n−2
2

] = m − 1 and [ n−1
2

] = m. In view of (2.6),

(2.35), (2.38), (2.37), and (2.23), one has

m∑

i=0

Φi − d(

m−1∑

i=0

Γi) = Lm + Φm =(−1)m 1

2mm!
(I1(φ) + cosφ)p∗

Ψ
e
m = 0,

since I1(φ) = − cosφ by Definition 2.3. The proof is now complete.
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3 Indices

Now we are ready for the proof of Theorem 1.2 using Stokes’ theorem.

Proof of Theorem 1.2 Let BM
r (Sing ∂V ) (resp. SM

r (Sing ∂V )) denote the union of

small open balls (resp. spheres) of radii r in M around the finite set of points Sing ∂V .

Then by (2.11), αV (M\BM
r (Sing ∂V )) ⊂ CSTM. By Theorem 1.1 and Stokes’ theo-

rem,

(3.1)

∫

αV (M)

Φ = lim
r→0

∫

αV (M\BM
r (Sing ∂V ))

Φ = lim
r→0

∫

αV (M\BM
r (Sing ∂V ))

dΓ

= − lim
r→0

∫

αV (SM
r (Sing ∂V ))

Γ

= − lim
r→0

∫

αV (SM
r (Sing ∂V ))

1

(n − 2)!!cn−1
Γ0,

since all the other Γk for k ≥ 1 in (2.35) involve curvature forms and hence do not

contribute in the limit when integrated over small spheres (see [2, §2]).

One has by Definition 2.4

(3.2)
1

(n − 2)!!cn−1
Γ0 =

1

(n − 2)!!cn−1

1

(n − 3)!!
In−2(φ)p∗

Φ
e
0

=
1

cn−1
In−2(φ)p∗dσn−2

with dσn−2 being the relative volume form of Sn−2 → STM → M, since Φ
e
0 =

(n − 2)!dσn−2 (see (2.8)).

Continuing (3.1) and using (3.2), one has
∫

αV (M)

Φ = −
1

cn−1
lim
r→0

∫

αV (SM
r (Sing ∂+V )∪SM

r (Sing ∂
−

V ))

In−2(φ)p∗dσn−2

= −
1

cn−1

[
In−2(0) lim

r→0

∫

α∂V (SM
r (Sing ∂+V ))

dσn−2(3.3)

+ In−2(π) lim
r→0

∫

α∂V (SM
r (Sing ∂

−
V ))

dσn−2

]

= −
cn−2

cn−1
(In−2(0) Ind ∂+V + In−2(π) Ind ∂−V )(3.4)

=

{
− Ind ∂−V if n = dim X is even,
1
2
(Ind ∂+V − Ind ∂−V ) if n = dim X is odd.

(3.5)

Here equality (3.3) uses (2.12) and

φ(αV (x)) → π for x ∈ SM
r (Sing ∂−V ), as r → 0,

φ(αV (x)) → 0 for x ∈ SM
r (Sing ∂+V ), as r → 0.
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Equality (3.4) is by the definition of index. In view of (2.31), one has

In−2(0) = 0, In−2(π) =

∫ π

0

sinn−2 φ dφ, if n is even,

In−2(0) = −
1

2

∫ π

0

sinn−2 φ dφ, In−2(π) =
1

2

∫ π

0

sinn−2 φ dφ, if n is odd,(3.6)

where (3.6) uses symmetry of integrals. Then equality (3.5) follows from (2.30).

Remark 3.1 If, instead of (2.31), one also defines Ib(φ) =
∫ φ

0
sinb t dt for the odd

case, it can be checked that one gets formulas different from, but equivalent to, ours.
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