TRIPLET INVARIANCE AND PARALLEL SUMS

TSIU-KWEN LEE ${ }^{\otimes}{ }^{\otimes}$, JHENG-HUEI LIN© and TRUONG CONG QUYNH©

(Received 19 August 2020; accepted 2 December 2020; first published online 25 January 2021)

Abstract

Let R be a semiprime ring with extended centroid C and let $I(x)$ denote the set of all inner inverses of a regular element x in R. Given two regular elements a, b in R, we characterise the existence of some $c \in R$ such that $I(a)+I(b)=I(c)$. Precisely, if $a, b, a+b$ are regular elements of R and a and b are parallel summable with the parallel sum $\mathcal{P}(a, b)$, then $I(a)+I(b)=I(\mathcal{P}(a, b))$. Conversely, if $I(a)+I(b)=I(c)$ for some $c \in R$, then $\mathrm{E}[c] a(a+b)^{-} b$ is invariant for all $(a+b)^{-} \in I(a+b)$, where $\mathrm{E}[c]$ is the smallest idempotent in C satisfying $c=\mathrm{E}[c] c$. This extends earlier work of Mitra and Odell for matrix rings over a field and Hartwig for prime regular rings with unity and some recent results proved by Alahmadi et al. ['Invariance and parallel sums', Bull. Math. Sci. 10(1) (2020), 2050001, 8 pages] concerning the parallel summability of unital prime rings and abelian regular rings.

2020 Mathematics subject classification: primary 16N60; secondary 16E50.
Keywords and phrases: abelian ring, extended centroid, inner inverse, parallel summable, regular element, semiprime (prime) ring, triplet invariance.

1. Introduction

Throughout, rings are associative, not necessarily with unity. Given elements a, b in a ring R, the elements $(1-a) b$ and $b(1-a)$ always mean $b-a b$ and $b-b a$, respectively. An element a in a ring R is called von Neumann regular (or regular for short) if there exists $a^{-} \in R$ such that $a a^{-} a=a$. The element a^{-}is called an inner inverse of a. A ring R is called regular if each element of R is regular. We denote by $\operatorname{Reg}(R)$ the set of all regular elements in the ring R and by $I(a)$ the set of all inner inverses of a in R. Let $a, b \in R$ with $a+b$ regular. Given $(a+b)^{-} \in I(a+b), a(a+b)^{-} b$ is called a parallel sum of a and b. If $a(a+b)^{-} b$ is invariant for all $(a+b)^{-} \in I(a+b)$, then a and b are called parallel summable. In this case, the common value of $a(a+b)^{-} b$ is called the parallel sum of a and b and is denoted by $\mathcal{P}(a, b)$.

Parallel sums originally arose in the study of network synthesis. The concept of parallel sum is analogous to the concept of connecting resistors either in series or in parallel, a basic concept in elementary network theory (see [11, Ch. 9]).

[^0]This notion of parallel summability was also introduced by Anderson and Duffin using Moore-Penrose inverses (see [3]) and was extended by Rao and Mitra in a general setting replacing the Moore-Penrose inverse by an inner inverse (see [12]). Mitra and Odell [11] proved the following theorem (see also [10, Theorem 9.2.14]).

THEOREM 1.1. For matrices a, b in a matrix ring over any field, if a and b are parallel summable, then $I(a)+I(b)=I(\mathcal{P}(a, b))$. Conversely, if a nonzero matrix c satisfies $I(a)+I(b)=I(c)$, then a and b are parallel summable and $c=\mathcal{P}(a, b)$.

We remark that the converse part of Theorem 1.1 is not true if $c=0$ (see [10, Remark 9.2.15] or [7, page 194]). A ring R is called semiprime if, for $a \in R, a R a=0$ implies that $a=0$. When R is a semiprime ring with $I(a)+I(b)=I(c)$, it follows from Theorem 2.8 below that c is uniquely determined. See also [1, Theorem 7] for semiprime rings with unity. A ring R is called a prime ring if, for $a, b \in R, a R b=0$ implies that $a=0$ or $b=0$. It is known that any matrix ring over a field is a prime ring. Hartwig generalised Theorem 1.1 to prime regular rings with unity (see [7]). He also asked whether the prime condition on the prime regular ring can be dropped (see [7, page 197]). Note that every regular ring is semiprime.

In a recent paper [2], Alahmadi et al. showed the following result for unital prime rings.

THEOREM 1.2 [2, Theorem 10]. Let a, b, c be regular elements of a prime ring R with unity. Suppose that $a b=b a$ and that one of the following conditions holds:
(a) $a, b \in U(R)$, the set of all units of R;
(b) $a=u$ and $b=e$, where $u \in U(R)$ and $e=e^{2}$;
(c) $2 \in R$ and a and b are commuting idempotents.

Then $I(c)=I(a)+I(b)$ if and only if a and b are parallel summable and $c=\mathcal{P}(a, b)$.
Motivated by these results, it is natural to raise the following question.
Question 1.3. Let R be a semiprime ring with elements $a, b, a+b$ regular. Can one characterise the existence of some $c \in R$ such that $I(a)+I(b)=I(c)$ if and only if a and b are parallel summable?

In the paper we answer this question. Precisely, let R be a semiprime ring and let $a, b, a+b$ be regular elements of R. If a and b are parallel summable with the parallel sum $\mathcal{P}(a, b)$, then $I(a)+I(b)=I(\mathcal{P}(a, b))$ (see Theorem 2.5). Conversely, if $I(a)+I(b)=I(c)$ for some element $c \in R$ and if $\mathrm{E}[c]=\mathrm{E}[a] \mathrm{E}[b]$, then a and b are parallel summable and $c=\mathcal{P}(a, b)$ (see Theorem 2.9). Here, given $x \in R, \mathrm{E}[x]$ is the smallest idempotent in the extended centroid of R satisfying $x=\mathrm{E}[x] x$ (see the next section for details).

As a consequence, the following result generalises Theorem 1.1, Hartwig's theorem (see [7]) and Theorem 1.2 to the context of prime rings.

THEOREM 1.4. Let R be a prime ring and let $a, b, a+b \in \operatorname{Reg}(R)$. If a and b are parallel summable, then $I(a)+I(b)=I(\mathcal{P}(a, b))$. Conversely, if $I(a)+I(b)=I(c)$ for some nonzero $c \in R$, then a and b are parallel summable and $c=\mathcal{P}(a, b)$.

We remark that the prime ring R in Theorem 1.4 is not in general a regular ring. Our proof is thus different from that given in [7]. A ring R is called abelian if all idempotents of R are central. Clearly, every reduced ring is an abelian semiprime ring but there exists an abelian semisimple ring which is not reduced (see [6, Example 2.12]). Also, R is an abelian regular ring if and only if it is a strongly regular ring, that is, for any $x \in R$, there exists $y \in R$ such that $x=x^{2} y$ (see [5, Theorem 3.5]).

For abelian semiprime rings we obtain the following characterisation of the parallel summability of two given regular elements.

THEOREM 1.5. Let R be an abelian semiprime ring and let $a, b, a+b \in \operatorname{Reg}(R)$. If a and b are parallel summable, then $I(a)+I(b)=I(\mathcal{P}(a, b))$. Conversely, if $I(a)+I(b)=$ $I(c)$ for some $c \in R$, then a and b are parallel summable and $c=\mathcal{P}(a, b)$.

We remark that Alahmadi et al. obtained the same conclusion when R is an abelian regular ring with unity and $\frac{1}{2} \in R$ (see [2, Theorem 13]).

2. Results

Let R be a semiprime ring with $Q_{m r}(R)$ the maximal right ring of quotients of R. It is known that $Q_{m r}(R)$ is also a semiprime ring. The centre of $Q_{m r}(R)$, denoted by C, is called the extended centroid of R. It is known that C is a regular self-injective ring and is a field if and only if R is a prime ring.

The set \mathcal{B} of all idempotents of C forms a Boolean algebra with respect to the binary operations $e \dot{+} h:=e+h-2 e h$ and $e \cdot h:=e h$ for $e, h \in \mathcal{B}$. It is complete with respect to the partial order $e \leq h$ (defined by $e h=e$) in the sense that any subset S of \mathcal{B} has a supremum $\vee S$ and an infimum $\wedge S$. Given $a \in Q_{m r}(R)$, it is known that there exists the smallest central idempotent, denoted by $\mathrm{E}[a]$, in \mathcal{B} such that $a=\mathrm{E}[a] a$. Clearly, $\mathcal{B}=\{0,1\}$ if R is a prime ring. The notion of extended centroids is essential to the study of semiprime rings (see [4]).

Throughout, unless specially stated, R always denotes a semiprime ring. We begin with the following well-known result.

Lemma 2.1. Given $a, b \in Q_{m r}(R)$, we have $a R b=0$ if and only if $\mathrm{E}[a] \mathrm{E}[b]=0$ if and only if $a \mathrm{E}[b]=0$ if and only if $\mathrm{E}[a] b=0$.

The following is also well known (see, for instance, [1, Lemma 3]).
Lemma 2.2. Let R be an arbitrary ring with $a \in \operatorname{Reg}(R)$. Given a fixed $a^{-} \in I(a)$,

$$
I(a)=\left\{a^{-}+\left(1-a^{-} a\right) x+y\left(1-a a^{-}\right) \mid x, y \in R\right\} .
$$

Let $b, c \in Q_{m r}(R)$ and $a \in \operatorname{Reg}(R)$. We say that the triplet $b a^{-} c$ is invariant for all $a^{-} \in I(a)$ if there exists $z \in Q_{m r}(R)$ such that $b a^{-} c=z$ for all $a^{-} \in I(a)$, that is, $b I(a) c=\{z\}$.

Theorem 2.3 [9, Theorem 18]. Let R be a semiprime ring and let $a, b, c \in R$ with $a \in \operatorname{Reg}(R)$. Then the triplet $b a^{-} c$ is invariant for all $a^{-} \in I(a)$ if and only if $\mathrm{E}[c] b=x a$ and $\mathrm{E}[b] c=$ ay for some $x \in \mathrm{E}[c] R$ and $y \in \mathrm{E}[b] R$.

The following result will play a key role in the proof of Theorem 2.5 below.
THEOREM 2.4. Let R be a semiprime ring and let $a, b \in R$ with $a+b \in \operatorname{Reg}(R)$. Then the following are equivalent:
(i) $\quad a$ and b are parallel summable;
(ii) $a, b \in R(a+b) \cap(a+b) R$;
(iii) b and a are parallel summable.

In this case, we have $\mathcal{P}(a, b)=\mathcal{P}(b, a)$.
Proof. (i) \Rightarrow (ii). Since $a(a+b)^{-} b$ is invariant for all $(a+b)^{-} \in I(a+b)$, it follows from Theorem 2.3 that there exist $x \in \mathrm{E}[b] R$ and $y \in \mathrm{E}[a] R$ such that

$$
\begin{equation*}
\mathrm{E}[b] a=x(a+b) \quad \text { and } \quad \mathrm{E}[a] b=(a+b) y . \tag{2.1}
\end{equation*}
$$

By (2.1),

$$
\begin{equation*}
\mathrm{E}[b] a=\mathrm{E}[b] a(a+b)^{-}(a+b) \quad \text { and } \quad \mathrm{E}[a] b=(a+b)(a+b)^{-} \mathrm{E}[a] b \tag{2.2}
\end{equation*}
$$

We compute

$$
\begin{equation*}
a+b=(a+b)(a+b)^{-}(a+b)=a(a+b)^{-}(a+b)+b(a+b)^{-}(a+b) \tag{2.3}
\end{equation*}
$$

Multiplying (2.3) by $\mathrm{E}[b]$ and applying the first equality of (2.2),

$$
\begin{equation*}
b=b(a+b)^{-}(a+b) \in R(a+b) \tag{2.4}
\end{equation*}
$$

It follows from (2.3) and (2.4) that $a=a(a+b)^{-}(a+b) \in R(a+b)$. We next consider $a+b=(a+b)(a+b)^{-} a+(a+b)(a+b)^{-} b$. Applying the same argument as above gives $a, b \in(a+b) R$.
(ii) \Rightarrow (i). Since $a, b \in R(a+b) \cap(a+b) R$, there exist $x, y \in R$ such that $a=x(a+b)$ and $b=(a+b) y$. Therefore, for $(a+b)^{-} \in I(a+b)$,

$$
a(a+b)^{-} b=x(a+b)(a+b)^{-}(a+b) y=x(a+b) y
$$

implying that a and b are parallel summable.
By symmetry, (ii) \Leftrightarrow (iii).
Finally, suppose that (i), (ii) and (iii) hold. Then, for $(a+b)^{-} \in I(a+b)$,

$$
\begin{array}{rlrl}
\mathcal{P}(b, a) & =b(a+b)^{-} a & \\
& =(a+b)(a+b)^{-} a-a(a+b)^{-} a & & \\
& =a-a(a+b)^{-} a & & \text { (by (ii), } a \in(a+b) R) \\
& =a(a+b)^{-}(a+b)-a(a+b)^{-} a & & \text { (by (ii), } a \in R(a+b)) \\
& =a(a+b)^{-} b=\mathcal{P}(a, b) . &
\end{array}
$$

For an element w in a ring R, we denote by $r_{R}(w)$ and $l_{R}(w)$ respectively the right and left annihilators of w in R. We are now ready to prove our first main theorem.

THEOREM 2.5. Let R be a semiprime ring and let $a, b, a+b$ be regular elements in R. If a and b are parallel summable, then $I(a)+I(b)=I(\mathcal{P}(a, b))$.

Proof. Suppose that a and b are parallel summable. Let $c:=\mathcal{P}(a, b)$. From Theorem 2.4, $c=a(a+b)^{-} b=b(a+b)^{-} a$ for all $(a+b)^{-} \in I(a+b)$.

Step 1: $I(a)+I(b) \subseteq I(\mathcal{P}(a, b))$. In view of Theorem 2.4(ii), $c \in R a \subseteq R(a+b)$ and so $c=c(a+b)^{-}(a+b)$. Therefore, for $a^{-} \in I(a)$ and $b^{-} \in I(b)$,

$$
\begin{aligned}
c\left(a^{-}+b^{-}\right) c & =c a^{-} c+c b^{-} c \\
& =\left(b(a+b)^{-} a\right) a^{-}\left(a(a+b)^{-} b\right)+\left(a(a+b)^{-} b\right) b^{-}\left(b(a+b)^{-} a\right) \\
& =b(a+b)^{-} a(a+b)^{-} b+a(a+b)^{-} b(a+b)^{-} a \\
& =c(a+b)^{-} b+c(a+b)^{-} a \\
& =c(a+b)^{-}(a+b)=c .
\end{aligned}
$$

Therefore, $a^{-}+b^{-} \in I(c)$. This proves that $I(a)+I(b) \subseteq I(\mathcal{P}(a, b))$.
Step 2: $r_{R}(c) \subseteq r_{R}(a)+r_{R}(b)$ and $l_{R}(c) \subseteq l_{R}(a)+l_{R}(b)$. We only give the proof of the first inclusion. The other one has a similar argument. In view of Theorem 2.4(ii), $b \in(a+b) R$. Therefore, $b=(a+b)(a+b)^{-} b$ for all $(a+b)^{-} \in I(a+b)$.

Let $z \in r_{R}(c)$ and let $(a+b)^{-} \in I(a+b)$. Then $a(a+b)^{-} b z=c z=0$. Moreover,

$$
b z=(a+b)(a+b)^{-} b z=a(a+b)^{-} b z+b(a+b)^{-} b z=b(a+b)^{-} b z,
$$

implying that $z-(a+b)^{-} b z \in r_{R}(b)$. Hence, $z \in r_{R}(a)+r_{R}(b)$ since $(a+b)^{-} b z \in r_{R}(a)$. So, $r_{R}(c) \subseteq r_{R}(a)+r_{R}(b)$, as desired.

Step 3: $I(c) \subseteq I(a)+I(b)$. Fix $a^{-} \in I(a)$ and $b^{-} \in I(b)$. By Step 1, $c^{-}=a^{-}+b^{-} \in I(c)$. Let $w \in I(c)$. It follows from Lemma 2.2 that there exist $x, y \in R$ such that

$$
w=a^{-}+b^{-}+\left(1-c^{-} c\right) x+y\left(1-c c^{-}\right)
$$

Note that $\left(1-c^{-} c\right) x \in r_{R}(c)$ and $y\left(1-c c^{-}\right) \in l_{R}(c)$. Since $r_{R}(c) \subseteq r_{R}(a)+r_{R}(b)$ and $l_{R}(c) \subseteq l_{R}(a)+l_{R}(b)$, it follows from Step 2 that

$$
\left(1-c^{-} c\right) x=r_{1}+r_{2} \text { and } y\left(1-c c^{-}\right)=t_{1}+t_{2},
$$

where $r_{1} \in r_{R}(a), r_{2} \in r_{R}(b), t_{1} \in l_{R}(a)$ and $t_{2} \in l_{R}(b)$. Therefore,

$$
w=\left(a^{-}+r_{1}+t_{1}\right)+\left(b^{-}+r_{2}+t_{2}\right)
$$

Clearly, $a^{-}+r_{1}+t_{1} \in I(a)$ and $b^{-}+r_{2}+t_{2} \in I(b)$. Therefore, $w \in I(a)+I(b)$. This proves that $I(c) \subseteq I(a)+I(b)$.

By Steps 1 and 3, $I(a)+I(b)=I(c)$.

Lemma 2.6. Let $a, b, c \in \operatorname{Reg}(R)$. If $I(a)+I(b) \subseteq I(c)$, then

$$
c=c a^{-} a=a a^{-} c=c b^{-} b=b b^{-} c
$$

for all $a^{-} \in I(a)$ and $b^{-} \in I(b)$.
Proof. Suppose that $I(a)+I(b) \subseteq I(c)$. Let $a^{-} \in I(a)$ and $b^{-} \in I(b)$. By assumption,

$$
\begin{equation*}
c\left(a^{-}+b^{-}\right) c=c . \tag{2.5}
\end{equation*}
$$

Replacing a^{-}by $a^{-}+\left(1-a^{-} a\right) x+y\left(1-a a^{-}\right) \in I(a)$ in (2.5),

$$
\begin{equation*}
c\left(a^{-}+\left(1-a^{-} a\right) x+y\left(1-a a^{-}\right)+b^{-}\right) c=c \tag{2.6}
\end{equation*}
$$

for all $x, y \in R$. It follows from (2.5) and (2.6) that $c\left(\left(1-a^{-} a\right) x+y\left(1-a a^{-}\right)\right) c=0$ for all $x, y \in R$. Therefore, $c\left(1-a^{-} a\right) R c=0$ and $c R\left(1-a a^{-}\right) c=0$. In view of Lemma 2.1, $c=c a^{-} a=a a^{-} c$. Similarly, $c=c b^{-} b=b b^{-} c$.

As noted in [10, Remark 9.2.15] or [7, page 194], there exist a, b in a matrix ring over a field such that $I(a)+I(b)=I(0)$ but $a(a+b)^{-} b$ is not invariant under all $(a+b)^{-} \in$ $I(a+b)$. We are now ready to prove the second main theorem in the paper.

THEOREM 2.7. Let R be a semiprime ring and let $a, b, a+b$ be regular elements in R. If $I(a)+I(b)=I(c)$ for some $c \in R$, then $\mathrm{E}[c] a(a+b)^{-} b$ is invariant for all $(a+b)^{-} \in$ $I(a+b)$.

Proof. Suppose that $I(a)+I(b)=I(c)$ for some $c \in R$. We claim that

$$
\begin{equation*}
c c^{-} a \in R(a+b) \tag{2.7}
\end{equation*}
$$

for all $c^{-} \in I(c)$. Let $c^{-} \in I(c)$. In view of Lemma 2.6,

$$
\begin{equation*}
c=c a^{-} a=a a^{-} c=c b^{-} b=b b^{-} c \tag{2.8}
\end{equation*}
$$

for all $a^{-} \in I(a)$ and $b^{-} \in I(b)$. Given $c^{-} \in I(c)$, we have $c^{-}=a^{-}+b^{-}$for some $a^{-} \in$ $I(a)$ and $b^{-} \in I(b)$. Applying (2.8),

$$
c c^{-} a=c a^{-} a+c b^{-} a=c+c b^{-} a=c b^{-} b+c b^{-} a=c b^{-}(a+b) \in R(a+b)
$$

Since c^{-}in (2.7) is arbitrary in $I(c)$, replacing c^{-}by $c^{-}+x\left(1-c c^{-}\right) \in I(c)$ in (2.7),

$$
\begin{equation*}
c\left(c^{-}+x\left(1-c c^{-}\right)\right) a \in R(a+b) \tag{2.9}
\end{equation*}
$$

for all $c^{-} \in I(c)$ and $x \in R$. Since $c c^{-} a, c x c c^{-} a \in R(a+b)$, it follows from (2.9) that cxa $\in R(a+b)$ for all $x \in R$. This means that

$$
c R a\left(1-(a+b)^{-}(a+b)\right)=0
$$

for all $(a+b)^{-} \in I(a+b)$. Hence, by Lemma 2.1, $\mathrm{E}[c] a\left(1-(a+b)^{-}(a+b)\right)=0$ for all $(a+b)^{-} \in I(a+b)$. Thus, $\mathrm{E}[c] a \in R \mathrm{E}[c](a+b)$. An analogous argument proves that $\mathrm{E}[c] b \in(a+b) \mathrm{E}[c] R$.

There exist $u, v \in R \mathrm{E}[c]$ such that $\mathrm{E}[c] a=u(a+b)$ and $\mathrm{E}[c] b=(a+b) v$. Therefore,
$\mathrm{E}[c] a(a+b)^{-} b=\mathrm{E}[c] a(a+b)^{-} \mathrm{E}[c] b=u(a+b)(a+b)^{-}(a+b) v=u(a+b) v$
for all $(a+b)^{-} \in I(a+b)$, as desired.
We remark that, in Theorem 2.7, from $I(a)+I(b)=I(c)$ with $c \in \operatorname{Reg}(R)$, we cannot conclude that a and b are parallel summable even if $c \neq 0$. For instance, let $R:=\mathrm{M}_{2}(F) \oplus \mathrm{M}_{2}(F)$, where F is a field. Let $a:=\left(a_{1}, a_{2}\right)$ and $b:=\left(b_{1}, b_{2}\right) \in R$, where

$$
a_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), \quad b_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad a_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad b_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Let $c_{1}=0, c_{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $c:=\left(c_{1}, c_{2}\right)$. Then we have $I\left(a_{1}\right)+I\left(b_{1}\right)=\mathrm{M}_{2}(F)=I\left(c_{1}\right)$ and $I\left(a_{2}\right)+I\left(b_{2}\right)=I\left(c_{2}\right)$. This implies that $I(a)+I(b)=I(c)$. Note that a_{1} and b_{1} are not parallel summable since $a_{1} \notin R\left(a_{1}+b_{1}\right)$ (see [10, Remark 9.2.15]). Therefore, a and b are not parallel summable. Note that $\mathrm{E}[c]=(0,1), \mathrm{E}[a]=(1,1)$ and $\mathrm{E}[b]=(1,1)$. Hence, $\mathrm{E}[c] \neq \mathrm{E}[a] \mathrm{E}[b]$.

The following theorem was first proved by Alahmadi et al. for rings with unity (see [1, Theorem 7]).

THEOREM 2.8 [8, Corollary 2.2]. Let R be a semiprime ring and $a, b \in \operatorname{Reg}(R)$. If $I(a)=I(b)$, then $a=b$.

THEOREM 2.9. Let R be a semiprime ring and let $a, b, a+b$ be regular elements in R. If $I(a)+I(b)=I(c)$ for some $c \in R$ and if $\mathrm{E}[c]=\mathrm{E}[a] \mathrm{E}[b]$, then a and b are parallel summable and $c=\mathcal{P}(a, b)$.

Proof. Suppose that $I(a)+I(b)=I(c)$ and $\mathrm{E}[c]=\mathrm{E}[a] \mathrm{E}[b]$ for some $c \in R$. In view of Theorem 2.7, $\mathrm{E}[c] a(a+b)^{-} b$ is invariant for all $(a+b)^{-} \in I(a+b)$. Then

$$
a(a+b)^{-} b=\mathrm{E}[a] a(a+b)^{-} \mathrm{E}[b] b=\mathrm{E}[a] \mathrm{E}[b] a(a+b)^{-} b=\mathrm{E}[c] a(a+b)^{-} b
$$

for all $(a+b)^{-} \in I(a+b)$. This proves that a and b are parallel summable. In view of Theorem 2.5, $I(a)+I(b)=I(\mathcal{P}(a, b))$. Therefore, $I(c)=I(\mathcal{P}(a, b))$. In view of Theorem 2.8, $c=\mathcal{P}(a, b)$, as desired.

The converse of Theorem 2.9 is not true in general. Indeed, let $R:=\mathrm{M}_{2}(F) \oplus \mathrm{M}_{2}(F)$, where F is a field. Let $a:=\left(a_{1}, a_{2}\right)$ and $b:=\left(b_{1}, b_{2}\right) \in R$, where

$$
a_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad b_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad a_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad b_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Let $c_{1}=0, c_{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $c:=\left(c_{1}, c_{2}\right)$. Then a_{i} and b_{i} are parallel summable for $i=1,2$. Hence, a and b are parallel summable with $\mathcal{P}(a, b)=c$. Clearly, $\mathrm{E}[a]=(1,1)$, $\mathrm{E}[b]=(1,1)$ and $\mathrm{E}[c]=(0,1)$. Therefore, $\mathrm{E}[c] \neq \mathrm{E}[a] \mathrm{E}[b]$.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Since R is a prime ring, we recall that $\mathcal{B}=\{0,1\}$. Therefore, $\mathrm{E}[x]=1$ for $x \in R \backslash\{0\}$. Suppose that a and b are parallel summable. In view of Theorem 2.5, $I(a)+I(b)=I(\mathcal{P}(a, b))$. Conversely, suppose that $I(a)+I(b)=I(c)$ with c nonzero. By Lemma 2.6, $c=c a^{-} a=a a^{-} c=c b^{-} b=b b^{-} c$ for all $a^{-} \in I(a)$ and $b^{-} \in I(b)$. In particular, neither a nor b is zero. Hence, $\mathrm{E}[a]=\mathrm{E}[b]=\mathrm{E}[c]=1$. It follows from Theorem 2.7 that $a I(a+b) b=\{c\}$.

Before giving the proof of Theorem 1.5, we need the following observation.
Lemma 2.10. Let R be an abelian semiprime ring and suppose that $y \in \operatorname{Reg}(R)$. Then $\mathrm{E}[y]=y y^{-}=y^{-} y$ for any $y^{-} \in I(y)$.

Proof. Since $y \in \operatorname{Reg}(R), y y^{-} y=y$ for any $y^{-} \in I(y)$. Since R is abelian, $y y^{-} \in \mathcal{B}$ and hence $y y^{-} \geq \mathrm{E}[y]$. Also, $\mathrm{E}[y] y y^{-}=(\mathrm{E}[y] y) y^{-}=y y^{-}$, implying that $y y^{-} \leq \mathrm{E}[y]$. Therefore, $\mathrm{E}[y]=y y^{-}$. Similarly, we have $\mathrm{E}[y]=y^{-} y$.

Proof of Theorem 1.5. Suppose first that a and b are parallel summable. In view of Theorem 2.5, $I(a)+I(b)=I(\mathcal{P}(a, b))$, as desired.

Conversely, assume that $I(a)+I(b)=I(c)$ for some $c \in R$. We claim that $\mathrm{E}[c]=$ $\mathrm{E}[a] \mathrm{E}[b]$. Fix $a^{-} \in I(a)$ and $b^{-} \in I(b)$. Then $c^{-}:=a^{-}+b^{-} \in I(c)$ since $I(a)+I(b)=$ $I(c)$. Let $x \in R$. Clearly, $c^{-}+\left(1-c^{-} c\right) x \in I(c)$. In view of Lemma 2.2, there exist $u, v, w, z \in R$ such that

$$
\begin{equation*}
c^{-}+\left(1-c^{-} c\right) x=a^{-}+\left(1-a^{-} a\right) u+v\left(1-a a^{-}\right)+b^{-}+\left(1-b^{-} b\right) w+z\left(1-b b^{-}\right) . \tag{2.11}
\end{equation*}
$$

Since R is an abelian semiprime ring, by Lemma 2.10, $\mathrm{E}[a]=a a^{-}=a^{-} a, \mathrm{E}[b]=b b^{-}=$ $b^{-} b$ and $\mathrm{E}[c]=c^{-} c$. We rewrite (2.11) as

$$
\begin{equation*}
(1-\mathrm{E}[c]) x=(1-\mathrm{E}[a]) u+v(1-\mathrm{E}[a])+(1-\mathrm{E}[b]) w+z(1-\mathrm{E}[b]) . \tag{2.12}
\end{equation*}
$$

Multiplying (2.12) by $\mathrm{E}[a] \mathrm{E}[b]$, we get $\mathrm{E}[a] \mathrm{E}[b](1-\mathrm{E}[c]) x=0$. Since $x \in R$ is arbitrary, we have $\mathrm{E}[a] \mathrm{E}[b](1-\mathrm{E}[c]) R=0$, implying that $\mathrm{E}[a] \mathrm{E}[b]=\mathrm{E}[a] \mathrm{E}[b] \mathrm{E}[c]$. That is, $\mathrm{E}[a] \mathrm{E}[b] \leq \mathrm{E}[c]$.

On the other hand, since $I(a)+I(b) \subseteq I(c)$, we have $c=c a^{-} a=c b^{-} b$ for $a^{-} \in I(a)$ and $b^{-} \in I(b)$ (see Lemma 2.6). In particular, it follows that $c=\mathrm{E}[a] c$ and $c=\mathrm{E}[b] c$. Hence, $\mathrm{E}[c] \leq \mathrm{E}[a] \mathrm{E}[b]$. So, $\mathrm{E}[c]=\mathrm{E}[a] \mathrm{E}[b]$, as claimed. In view of Theorem 2.9, a and b are parallel summable and $c=\mathcal{P}(a, b)$.

Acknowledgement

The authors are grateful to the referee for the detailed reading and useful suggestions.

References

[1] A. Alahmadi, S. K. Jain and A. Leroy, 'Regular elements determined by generalized inverses', J. Algebra Appl. 18(7) (2019), 1950128, 6 pages.
[2] A. Alahmadi, S. K. Jain and A. Leroy, 'Invariance and parallel sums', Bull. Math. Sci. 10(1) (2020), 2050001, 8 pages.
[3] W. N. Anderson and R. J. Duffin, 'Series and parallel addition of matrices', J. Math. Anal. Appl. 26 (1969), 576-594.
[4] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196 (Marcel Dekker, New York, 1996).
[5] K. R. Goodearl, Von Neumann Regular Rings, 2nd edn (Krieger, Malabar, FL, 1991).
[6] J. Han, Y. Lee and S. Park, 'Structure of abelian rings', Front. Math. China 12(1) (2017), 117-134.
[7] R. E. Hartwig, 'A remark on the characterization of the parallel sum of two matrices', Linear Multilinear Algebra 22(2) (1987), 193-197.
[8] T.-K. Lee, 'A note on inner and reflexive inverses in semiprime rings', J. Algebra Appl. 19(10) (2020), 2050197, 4 pages.
[9] T.-K. Lee and J.-H. Lin, 'Outer inverses, minus partial orders and triplet invariance', Publ. Math. Debrecen 98 (2021), to appear.
[10] S. K. Mitra, P. Bhimasankaram and S. B. Malik, Matrix Partial Orders, Shorted Operators and Applications, Series in Algebra, 10 (World Scientific, Hackensack, NJ, 2010).
[11] S. K. Mitra and P. L. Odell, 'On parallel summability of matrices', Linear Algebra Appl. 74 (1986), 239-255.
[12] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications (Wiley, New York, 1971).

TSIU-KWEN LEE, Department of Mathematics, National Taiwan University, Taipei 106, Taiwan
e-mail: tklee@math.ntu.edu.tw
JHENG-HUEI LIN, Department of Mathematics, National Taiwan University, Taipei 106, Taiwan
e-mail: r01221012@ntu.edu.tw
TRUONG CONG QUYNH, Department of Mathematics, The University of Da Nang-University of Science and Education, Da Nang City, Vietnam
e-mail: tcquynh@ued.udn.vn

[^0]: The work of T.-K. Lee and J.-H. Lin was supported in part by the Ministry of Science and Technology of Taiwan (MOST 109-2115-M-002-014). The work of T. C. Quynh was supported in part by the Ministry of Education and Training of Vietnam (B2020-DNA-10).
 © Australian Mathematical Publishing Association Inc. 2021. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

