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TIGHTNESS FOR MAXIMA OF GENERALIZED
BRANCHING RANDOM WALKS

MING FANG,∗ University of Minnesota

Abstract

We study generalized branching random walks on the real line R that allow time
dependence and local dependence between siblings. Specifically, starting from one
particle at time 0, the system evolves such that each particle lives for one unit amount
of time, gives birth independently to a random number of offspring according to some
branching law, and dies. The offspring from a single particle are assumed to move to
new locations on R according to some joint displacement distribution; the branching
laws and displacement distributions depend on time. At time n, Fn(·) is used to
denote the distribution function of the position of the rightmost particle in generation n.
Under appropriate tail assumptions on the branching laws and offspring displacement
distributions, we prove that Fn(· − Med(Fn)) is tight in n, where Med(Fn) is the median
of Fn. The main part of the argument is to demonstrate the exponential decay of the right
tail 1 − Fn(· − Med(Fn)).
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1. Introduction

We study the maximal displacement of generalized branching random walks (GBRWs),
which are governed by a family of branching rules {pn,k}n≥0, k≥1 and displacement laws
{Gn,k}n≥0, k≥1. For this class, we assume that the pn,k are nonnegative real numbers such
that

∑∞
k=1 pn,k = 1 and

∑∞
k=1 kpn,k < ∞ for each n ≥ 0; the Gn,k are distribution functions

on R
k for each n and k. The GBRW is defined recursively as follows. At time 0, a particle o = 1

is located at 0. Suppose that, at time n, v = 1α1 · · · αn (αi ∈ N) is a particle at location Sv .
At time n + 1, v dies and gives birth to Kv ≥ 1 (random) offspring. (We do not consider the
case Kv = 0 because if the system dies out then the distribution of its maximum is trivial.)
We denote the offspring of v at generation n + 1 by {v1, . . . , vKv} (for labels u and v, uv

denotes the concatenation of u and v) and their locations by {Sv + Xv,1, . . . , Sv + Xv,Kv }. Let
D be the collection of all the particles at any time and let Dn be those alive at time n. We
consider the case where the random vectors {(Kv, Xv,1, . . . , Xv,Kv )}v∈D indexed by particles
are independent and have distributions

P(Kv = k | v ∈ Dn, Fn) = pn,k (1)

and
P(Xv,1 ≤ x1, . . . , Xv,Kv ≤ xKv | v ∈ Dn, Kv = k, Fn)

= Gn,k(x1, . . . , xk) for n = 0, 1, . . . and k = 1, 2, . . . , (2)

where Fn = σ {Su | u ∈ Dk, k = 0, 1, . . . , n} is the σ -field generated by the GBRW by time n.
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Tightness for maxima of generalized branching random walks 653

We are interested in the maximal displacement of particles at time n, i.e. Mn = maxv∈Dn
Sv .

Let Fn(x) = P(Mn ≤ x) be the distribution function of Mn, and set F̄n(x) = 1−Fn(x). Under
some assumptions, we want to prove the tightness of the sequence of recentered distributions
Fn(· − Med(Fn)), where Med(Fn) is the median of Fn. See Section 2 and Section 5 for two
different sets of assumptions under which tightness can be proved.

From the previous description, our GBRW allows time dependence (through the n parameter)
and some local dependence (through the joint distribution Gn,k). We will review some of the
existing literature on tightness and make some comparisons with this paper. Dekking and Host
[5] gave a short proof for tightness of Fn(·−Med(Fn)) when the offspring displacements are all
bounded above by a uniform constant. Using moment arguments, Addario-Berry and Reed [1]
proved that Mn−E Mn is exponentially tight when the offspring displacements are independent
and identically distributed (i.i.d.) and satisfy appropriate large deviation assumptions. Bramson
and Zeitouni [4] proved the tightness of maxima of modified branching random walks derived
from a Gaussian free field by modifying the arguments in [1], [2], and [5].

Using a different approach, Bramson and Zeitouni [3] provided an analytic method to prove
tightness of the maximal displacement when the offspring displacement distributions depend on
time and satisfy certain tail conditions; they assumed that the offspring displacements are i.i.d.
and used a recursion to derive their results. When the joint distribution is locally dependent,
this recursion (see (3) below) loses some of its nice properties; we will therefore not be able to
apply this approach directly. Rather, it needs to be modified to take advantage of some recursion
bounds; see (5) below.

In order to find a recursion, we need to look at GBRWs starting from particles at some
intermediate time. For any integer m and v = 1α1 · · · αm ∈ Dm, the process

{Su − Sv | u = 1α1 · · · αmβ1 · · · βj ∈ Dm+j , βj ∈ N, j = 1, 2, . . . }
is a GBRW governed by the branching rules {pm+j,k}j≥0, k≥1 and the displacement laws
{Gm+j,k}j≥0, k≥1. For n > m, the maximal displacement from Sv at time n − m is denoted
by Mv

n. The {Mv
n}v∈Dm

are i.i.d. random variables whose distribution is denoted by Fm
n (·).

Again, set F̄ m
n (·) = 1−Fm

n (·). Note that Fn(·) = F 0
n (·), F̄n(·) = F̄ 0

n (·), and F̄ n
n (·) = 1{x<0}(·).

We obtain a recursion for Fm
n (·) by looking at the first generation of GBRWs starting from

particles at time m. For n > m,

Fm
n (x) =

∞∑
k=1

pm,k

∫
Rk

k∏
i=1

Fm+1
n (x − yi) dkGm,k(y1, . . . , yk).

Following [3], we consider a recursion for the tail distribution F̄ m
n (·). For n > m, the above

equation is equivalent to

F̄ m
n (x) = 1 −

∞∑
k=1

pm,k

∫
Rk

k∏
i=1

(1 − F̄ m+1
n (x − yi)) dkGm,k(y1, . . . , yk). (3)

Without loss of generality, for any n, k > 0, we assume that Gn,k has the same marginal
distributions, i.e.

gn,k(x) =
∫

Rk−1
dk−1Gn,k(y1, . . . , yi−1, x, yi+1, . . . , yk) for any 1 ≤ i ≤ k.
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Otherwise, we can replace Gn,k by G̃n,k defined by

G̃n,k(x1, . . . , xk) = 1

k!
∑

π∈Pk

Gn,k(xπ(1), . . . , xπ(k)),

where Pk denotes all the permutations on {1, . . . , k}. Then G̃n,k has the same marginal
distributions and we can easily check that recursion (3) is the same for Gn,k and G̃n,k .

To apply an approach similar to [3], we introduce two functions:

Q1,k(u) = 1 − (1 − u)k and Q2,k(u) = ku for 0 ≤ u ≤ 1. (4)

We will work with the following recursion inequalities derived from (3), instead of (3) itself.

Lemma 1. Assume that F̄ m
n (x) satisfies recursion (3); then the following recursion bounds

hold for n > m:

∞∑
k=1

pm,kgm,k ∗ Q1,k(F̄
m+1
n )(x) ≤ F̄ m

n (x) ≤
∞∑

k=1

pm,kgm,k ∗ Q2,k(F̄
m+1
n )(x). (5)

Here ‘∗’ is the convolution defined by g ∗ f (x) = ∫ ∞
−∞ f (x − y) dg(y) for any two functions

f (x) and g(x) whenever the integral makes sense.

Proof. We begin by proving the upper bound in (5). Rewrite (3) as

F̄ m
n (x) =

∞∑
k=1

pm,k

∫
Rk

(
1 −

k∏
i=1

(1 − F̄ m+1
n (x − yi))

)
dkGm,k(y1, . . . , yk).

Using the inequality

1 −
k∏

i=1

(1 − xi) ≤
k∑

i=1

xi for 0 ≤ xi ≤ 1

and the fact that Gm,k(·, . . . , ·) has the same marginal distributions gm,k(·), we find that the
above quantity is at most

∞∑
k=1

pm,k

∫
Rk

k∑
i=1

F̄ m+1
n (x − yi) dkGm,k(y1, . . . , yk) =

∞∑
k=1

pm,k

∫
R

kF̄m+1
n (x − y) dgm,k(y).

Together with the definition of Q2,k , cf. (4), we obtain the upper bound in (5).
We next prove the lower bound in (5). Applying a generalized Hölder’s inequality to (3), we

obtain

F̄ m
n (x) ≥ 1 −

∞∑
k=1

pm,k

k∏
i=1

(∫
Rk

(1 − F̄ m+1
n (x − yi))

k dkGm,k(y1, . . . , yk)

)1/k

.

Again, since Gm,k(·, . . . , ·) possesses the same marginal distributions gm,k(·), the right-hand
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side above equals

1 −
∞∑

k=1

pm,k

k∏
i=1

(∫
R

(1 − F̄ m+1
n (x − y))k dgm,k(y)

)1/k

= 1 −
∞∑

k=1

pm,k

(∫
R

(1 − F̄ m+1
n (x − y))k dgm,k(y)

)

=
∞∑

k=1

pm,k

(∫
R

(1 − (1 − F̄ m+1
n (x − y))k) dgm,k(y)

)
.

Together with the definition of Q1,k , see (4), we obtain the lower bound in (5).

2. Assumptions and statement of the result for bounded branching

In this section we discuss the tightness property in the case where the offspring number is
uniformly bounded. To state our result, we need some assumptions on both the branching and
displacement laws. We first introduce assumptions concerning the branching mechanism.

(B1) {pn,k}n≥0 possess a uniformly bounded support, i.e. there exists an integer k0 > 1 such
that pn,k = 0 for all n and k /∈ {1, . . . , k0}.

(B2) The mean offspring number is uniformly greater than 1 by some fixed constant. That is,
there exists a real number m0 > 1 such that infn{∑k0

k=1 kpn,k} > m0.

We introduce the following assumptions on the displacement laws Gn,k for those n and k such
that pn,k �= 0.

(MT1) For some fixed ε0 < 1
4 log m0 ∧ 1, there exists an x0 such that ḡn,k(x0) ≥ 1 − ε0 for all

n and k, where ḡn,k(x) = 1 −gn,k(x). By shifting, we may and will assume that x0 = 0,
that is, ḡn,k(0) ≥ 1 − ε0.

(MT2) There exist a > 0 and M0 > 0 such that ḡn,k(x + M) ≤ e−aMḡn,k(x) for all n, k and
M > M0, x ≥ 0.

(GT) For any η1 > 0, there exists a B > 0 such that Gn,k(B, . . . , B) ≥ 1 − η1 and
Gn,k([−B, ∞)k) ≥ 1 − η1 for all n and k. (With an abuse of notation, Gn,k is also used
here as a function on measurable sets defined by Gn,k(A) := ∫

A
dkGn,k(x1, . . . , xk) for

A ⊂ R
k . See (2) for the definition of Gn,k as a distribution function on R

k .)

Assumptions (MT1) and (MT2) concern the marginal distributions. Assumption (MT1) prevents
too much mass drifting to −∞, while (MT2) guarantees that the right tails of the marginals
decay at least exponentially. Assumption (GT) concerns the tightness of the joint distribution
of the increments and prevents any step from being too negative or too positive to dominate the
walk. Note that without the assumption x0 = 0, (MT1) is implied by (GT). Now we are ready
to state our main theorem.

Theorem 1. Under assumptions (B1), (B2), (MT2), and (GT), the family of the recentered
maxima distributions {Fn(· − Med(Fn))}n≥0 is tight.

Theorem 1 is proved in Section 3, with the proofs of some propositions deferred to
Section 4. With an analysis of a Lyapunov function, we control the right tails of distributions
Fn(·−Med(Fn)). Then we use assumption (GT) together with the right tail property to control
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the behavior of the left tails of the distributions. Using a similar approach, we also prove a
variation of Theorem 1 under slightly different assumptions in Section 5.

3. A Lyapunov function, main induction, and proof of Theorem 1

This section follows [3], with some minor revisions, in introducing a Lyapunov function.
Namely, for choices of ε1, b, M > 0 (to be determined later), we define the Lyapunov function
L(·) as

L(u) = sup
{x : u(x)∈(0,1/2]}

l(u; x), (6)

where

l(u; x) = log

(
1

u(x)

)
+ logb

(
1 + ε1 − u(x − M)

u(x)

)
+
. (7)

Here (x)+ = x ∨ 0, and we use the convention that log 0 = −∞.
As in [3], the heart of the proof is contained in the following proposition.

Proposition 1. Under assumptions (B1), (B2), (MT1), and (MT2), there are choices of ε1, b,
and M such that sup{m,n : m≤n} L(F̄m

n ) < C for some finite number C > 0.

The proof of Proposition 1 will occupy the bulk of the paper, and is detailed in Section 4.
Before proving it, we discuss its consequences. As in [3, Corollary 2.8], Proposition 1 implies
the following result.

Corollary 1. Suppose that assumptions (B1), (B2), (MT1), and (MT2) hold. Then there exists
δ1 > 0 such that, for all n and m ≤ n, and all x,

F̄ m
n (x) ≤ δ1 
⇒ F̄ m

n (x − M) ≥
(

1 + ε1

2

)
F̄ m

n (x). (8)

Proof. Let C0 = supm,n:m≤n L(F̄m
n ). Assumptions (B1), (B2), (MT1), and (MT2) hold, so

C0 < ∞ by Proposition 1. By definition (6), for all n and m such that m ≤ n and x such that
0 < F̄m

n (x) ≤ 1
2 ,

log

(
1

F̄ m
n (x)

)
+ logb

(
1 + ε1 − F̄ m

n (x − M)

F̄m
n (x)

)
+

≤ C0.

This is equivalent to
F̄ m

n (x − M)

F̄m
n (x)

≥ 1 + ε1 − bC0+log F̄ m
n (x).

The lemma follows immediately.

This corollary gives the desired control over the behavior of the right tail of F̄ m
n (·). We next

control the left tail. First, we obtain the following pointwise bounds for the integral in (3).

Lemma 2. Assumption (GT) implies that, for any η1 > 0, there exists a B such that

Qm(F̄m+1
n )(x + B) − η1 ≤ F̄ m

n (x) ≤ Qm(F̄m+1
n )(x − B) + η1, (9)

where Qm(u) = ∑∞
k=1 pm,k(1 − (1 − u)k).

Proof. The upper bound is obtained by considering only the integral over (−∞, B]k in (3):

F̄ m
n (x) ≤ 1 −

∞∑
k=1

pm,k

∫
(−∞,B]k

k∏
i=1

(1 − F̄ m+1
n (x − yi)) dkGm,k(y1, . . . , yk).
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By the monotonicity of F̄ m+1
n (·), the right-hand side is less than

1 −
∞∑

k=1

pm,k(1 − F̄ m+1
n (x − B))kGm,k(B, . . . , B).

For any η1 > 0, choose B as in assumption (GT). Then Gm,k(B, . . . , B) ≥ 1 − η1, and the
above quantity is less than or equal to

1 −
∞∑

k=1

pm,k(1 − F̄ m+1
n (x − B))k(1 − η1)

= Qm(F̄m+1
n )(x − B) + η1

∞∑
k=1

pm,k(1 − F̄ m+1
n (x − B))k

≤ Qm(F̄m+1
n )(x − B) + η1,

proving the upper bound in (9). To obtain the lower bound, first rewrite (3) as

F̄ m
n (x) =

∞∑
k=1

pm,k

∫
Rk

(
1 −

k∏
i=1

(1 − F̄ m+1
n (x − yi))

)
dkGm,k(y1, . . . , yk).

By restricting the above integral to [−B, ∞)k , we obtain a lower bound on F̄ m
n :

F̄ m
n (x) ≥

∞∑
k=1

pm,k

∫
[−B,∞)k

(
1 −

k∏
i=1

(1 − F̄ m+1
n (x − yi))

)
dkGm,k(y1, . . . , yk).

Since F̄ m+1
n (x) is decreasing in x and Gm,k([−B, ∞)k) ≥ 1 − η1 as in assumption (GT), we

have

F̄ m
n (x) ≥

∞∑
k=1

pm,k(1 − (1 − F̄ m+1
n (x + B))k)Gm,k([−B, ∞)k)

≥
∞∑

k=1

pm,k(1 − (1 − F̄ m+1
n (x + B))k)(1 − η1)

= Qm(F̄m+1
n )(x + B) − η1

∞∑
k=1

pm,k(1 − (1 − F̄ m+1
n (x + B))k)

≥ Qm(F̄m+1
n )(x + B) − η1,

proving the lower bound in (9) and completing the proof of Lemma 2.

Lemma 2 almost verifies [3, Assumption 2.4], except that Qm depends on m. However, with
assumption (B1), Qm satisfies [3, Properties (T1) and (T2) in Definition 2.3] uniformly in m.
Namely, the family of strictly increasing functions Qm : [0, 1] → [0, 1], with Qm(0) = 0 and
Qm(1) = 1, satisfies the following properties.

(T1′) k0x > Qm(x) > x for all x ∈ (0, 1). For any δ > 0, we can choose cδ = 1 + (m0 −
1)δ/k0 > 1 such that Qm(x) > cδx for all x ∈ (0, δ] and all m.

https://doi.org/10.1239/jap/1346955324 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955324


658 M. FANG

(T2′) For each δ ∈ (0, 1), there exists a nonnegative function gδ(ε) → 0 as ε → 0 (for example,
choose gδ(ε) = (1 − δ)−k0+1ε) such that, for any m, if x ≥ δ and Qm((1 + gδ(ε))x) ≤
1 − δ, then Qm((1 + gδ(ε))x) ≥ (1 + ε)Qm(x).

To check the above two properties, we use the strict convexity of 1−(1−x)k and its monotonicity
in k. Details are omitted here. From (T1′) and (T2′), we can deduce the following lemma in
exactly the same way as in [3, Lemma 2.10].

Lemma 3. Suppose that (8) holds for all m and n such that m ≤ n under some choices of
δ1, M, ε1 > 0. Also, suppose that (B1), (B2), and (9) hold. For fixed η0 ∈ (0, 1), there exists
a constant γ = γ (η0) < 1 and a continuous function f (t) = fη0(t) : [0, 1] → [0, 1], with
f (t) → 0 as t → 0 such that, for any ε ∈ (0, (1 − η0)/η0), η ∈ [δ1, η0] (note that we can,
without loss of generality, choose δ1 as small as we like; in particular, we may suppose that
δ1 < η0), and large enough N1 = N1(ε), the following statement holds. If M ′ > M and, for
any m and n such that m < n, F̄ m

n (x) ≥ δ1,

F̄ m
n (x − M ′) ≤ (1 + ε)F̄m

n (x), and F̄ m
n (x − M ′) ≤ η, (10)

then
F̄ m+1

n (x + N1 − M ′) ≤ (1 + f (ε))F̄m+1
n (x − N1) (11)

and
F̄ m+1

n (x + N1 − M ′) ≤ γ η. (12)

Proof. Assuming that (10) holds, we first prove (11). For any η1 > 0 (to be determined
later), by Lemma 2, there exists a B = B(η1) (N1 = B(η1) for some appropriate η1) such that

F̄ m
n (x − M ′) ≥ Qm(F̄m+1

n )(x − M ′ + B) − η1 (13)

and
F̄ m

n (x) ≤ Qm(F̄m+1
n )(x − B) + η1. (14)

Since F̄ m
n (x) ≥ δ1, (14) implies that

Qm(F̄m+1
n )(x − B) ≥ F̄ m

n (x) − η1 ≥
(

1 − η1

δ1

)
F̄ m

n (x);

(10) and (13) imply that

(1 + ε)F̄m
n (x) ≥ F̄ m

n (x − M ′)
≥ Qm(F̄m+1

n )(x − M ′ + B) − η1

≥ Qm(F̄m+1
n )(x − M ′ + B) − η1

δ1
F̄ m

n (x).

It follows from the above two inequalities that, for η1 < δ1,

1 + ε + η1/δ1

1 − η1/δ1
Qm(F̄m+1

n )(x − B) ≥ Qm(F̄m+1
n )(x − M ′ + B).

Let η1 (which will be chosen even smaller later) be small enough so that (1+ε+η1/δ1)/(1−
η1/δ1) ≤ 1 + 2ε. Then

(1 + 2ε)Qm(F̄m+1
n )(x − B) ≥ Qm(F̄m+1

n )(x − M ′ + B). (15)
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Choose N1 = B corresponding to η1. We will use property (T2′) to prove (11). Since F̄ m
n (x) ≥

δ1, (14) implies that

Qm(F̄m+1
n )(x − B) ≥ δ1 − η1 ≥ δ1

2
,

if we let η1 < δ1/2. From (10) and (13),

Qm(F̄m+1
n )(x − M ′ + B) ≤ η + η1 ≤ 1 − 1 − η

2
,

if we let η1 < (1 − η)/2. Define δ′ = δ1/2k0 ∧ (1 − η)/2 > 0. Then

F̄ m+1
n (x − B) ≥ δ′ and Qm(F̄m+1

n )(x − M ′ + B) ≤ 1 − δ′.

Choose f (ε) := gδ′(2ε) → 0 as ε → 0, where gδ′(·) is defined in (T2′).
Now suppose that (11) is violated, i.e.

(1 + gδ′(2ε))F̄m+1
n (x − B) < F̄m+1

n (x + B − M ′).

By the monotonicity of Qm,

Qm((1 + gδ′(2ε))F̄m+1
n (x − B)) < Qm(F̄m+1

n (x + B − M ′)) ≤ 1 − δ′.

Then, by the monotonicity of Qm and (T2′),

Qm(F̄m+1
n (x + B − M ′)) > Qm((1 + gδ′(2ε))F̄m+1

n (x − B)) ≥ (1 + 2ε)Qm(F̄m+1
n )(x − B).

This contradicts (15), and (11) is proved.
To prove (12), we first obtain, by (10) and (13),

Qm(F̄m+1
n )(x − M ′ + B) ≤ F̄ m

n (x − M ′) + η1 ≤ η + η1,

which indicates that

F̄ m+1
n (x − M ′ + B) ≤ Q−1

m (η + η1)

η
η.

Owing to assumption (B2), we can choose η1 small enough so that

γ := sup
m

sup
η∈[δ1,η0]

Q−1
m (η + η1)

η
< 1.

Therefore, (12) holds and the lemma is proved.

By iterating, the above lemma gives a connection between the left and right tail behaviors.
That is, by applying Corollary 1 and Lemma 3 several times as in [3, Proof of Proposition 2.9],
the same contrapositive argument proves that, for fixed η0 ∈ (0, 1), there exists an ε̂0 =
ε̂0(η0) > 0, an n0, and an M̂ such that, if n > n0 and F̄ 0

n (x − M̂) ≤ η0, then F̄ 0
n (x − M̂) ≥

(1 + ε̂0)F̄
0
n (x). This will yield the following tightness proposition by recalling that Fn(·) =

F 0
n (·).

Proposition 2. Suppose that (8) holds for all m ≤ n under some choices of δ1, M, ε1 > 0. Also,
suppose that assumption (B1) and (9) hold. Then the family of recentered maxima distributions
{Fn(· − Med(Fn))}n≥0 is tight.

This completes the proof of Theorem 1, under the assumption that Proposition 1 holds. Thus,
it remains to prove Proposition 1, which we do in the next section.
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4. Analysis of the Lyapunov function and proof of Proposition 1

In this section we focus on proving Proposition 1, which is an analog of [3, Theorem 2.7].
The same idea works here, i.e. the exponential decay of gn,k will not bring much mass from far
away during the recursion. However, the exact approach does not quite apply here. Bramson
and Zeitouni [3] dealt with the nonlinearity and convolution in a recursion equality separately.
In our case, recursion (3) does not possess such a nice form. Fortunately, we have the recursion
inequalities (5). These bounds require one to analyze the nonlinearity and convolution together.
Throughout this section, all the sums about k are from 1 to k0 since we suppose that assumption
(B1) holds. We begin with some properties of the two functions in (4). The function Q2,k(u) =
ku is simple, and the following straightforward facts about Q1,k(u) will be used later on.

Lemma 4. There exists a c1 = c1(k0) ≥ 1 such that, for all 1 ≤ k ≤ k0 and 0 ≤ u ≤ 1,

Q1,k(u) ≥ u (16)

and
ku − c1u

2 ≤ Q1,k(u) ≤ ku = Q2,k(u). (17)

Inequality (16) follows from the fact that Q1,k(u) is increasing in k for 0 ≤ u ≤ 1. The
inequalities in (17) can be easily checked by noting that Q1,k(u) = ku + higher order terms.

Next, we state the choices of ε1, b, and M in the Lyapunov function under which Proposi-
tion 1 holds. Throughout, we fix k0, m0, ε0, M0, and a as in assumptions (B1), (B2), (MT1),
and (MT2). Next, we choose small ε1 < 1

100 , b > 1 close to 1, large M > 100, and an
auxiliary small variable κ < 1

100 (used later to control the flatness change) such that the
following restrictions hold:

M > 4M0 and e−aM/2 ≤ (4k0)
4e−aM/4 ≤ 1

100 , (18)

8(2k0)
5/2ε

1/2 log b−3/2
1

(1 − ε0)κ3/2 <
1

2c1
, (19)

c1
1 + ε1

1 − ε0
ε

1/ log b

1 ≤
k0∑

k=1

kpn,k − m0 for all n, (20)

log m0

2
≥ 2(ε1 + ε0) + 6κ

log b
, (21)

aM

16 log b
≥ 2(ε1 + ε0 + log(4k0)) − log κ

log b
, (22)

a

16 log b
≥ 2 log(4k0)

M
. (23)

The above conditions are compatible. In fact, thinking of κ as β log b, we can choose ε1 and β

small enough so that (21) holds due to the choice of ε0 in assumption (MT1), then we can choose
b close enough to 1 so that (19), (20), and (23) hold due to the choice of m0 in assumption (B2),
and, finally, we can choose M large enough so that (18) and (22) hold.

With the above choices of ε1, b, M , and κ , we can now prove Proposition 1.

Proof of Proposition 1. Choose C = log 2. The conclusion sup{m,n : m≤n} L(F̄m
n ) ≤ C will

follow from the claim that

L(F̄m
n ) > C 
⇒ L(F̄m+1

n ) > C for any m < n. (24)
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Suppose that the conclusion is violated; then L(F̄m
n ) > C for some m ≤ n. Iterating the claim

n − m times, we obtain L(F̄ n
n ) > C. However, L(F̄ n

n ) = −∞ because F̄ n
n (x) = 1{x<0}(x).

This contradiction proves Proposition 1, assuming that claim (24) holds.

Claim (24) follows from the proposition below because of (5).

Proposition 3. Suppose that two nonincreasing càdlàg functions u, v : R → [0, 1] satisfy

k0∑
k=1

pkgk ∗ Q1,k(u)(x) ≤ v(x) ≤
k0∑

k=1

pkgk ∗ Q2,k(u)(x), (25)

where the pk are nonnegative integers such that
∑k0

k=1 pk = 1 and the gk are distribution
functions that satisfy the same assumptions as pn,k and gn,k in Section 2, and Q1,k and Q2,k

are defined as in (4). Then

L(v) > C 
⇒ L(u) > C. (26)

In order to prove Proposition 3, a few observations, notation, and lemmas are needed.
Starting from L(v) > C, we obtain, by the definition of the Lyapunov function given in (6),
that there exists an x1 ∈ R such that

v(x1) ≤ 1
2 and l(v; x1) > max

{
C, L(v) − 1

4 log m0
}
. (27)

By the definition of l(v; x) given in (7), we see that v is small and flat at x1 in the sense that

1 + ε := v(x2)

v(x1)
< 1 + ε1 (28)

and
f0 := v(x1) < (ε1 − ε)1/ log be−C < 1

2 , (29)

where x2 := x1 − M . Using bounds (25) and (28), we obtain

k0∑
k=1

pkgk ∗ Q1,k(u)(x2) ≤ (1 + ε)

k0∑
k=1

pkgk ∗ Q2,k(u)(x1), (30)

from which we will search for a flat piece in u(x) where u(x) is also small.
To control the value of u(x), we derive here some preliminary estimates of u(x) at x1 and

x2, which will be used later to control the value of u(x) at other places. For i = 1, 2, using the
fact that Q1,k(u)(xi −y) is positive and increasing in y and then applying (25) and the fact that
ḡk(0) ≥ 1 − ε0 from assumption (MT1), we obtain

k0∑
k=1

pkQ1,k(u)(xi) ≤
k0∑

k=1

pk

1

ḡk(0)

∫ ∞

0
Q1,k(u)(xi − y) dgk(y) ≤ 1

1 − ε0
v(xi). (31)

This, together with the lower bound on Q1,k given in (16), the definition of f0 given in (29),
and the definition of ε given in (28), implies that

u(x1) ≤ f0

1 − ε0
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and

u(x2) ≤ 1 + ε

1 − ε0
f0. (32)

A finer estimate of u(x2) can be obtained and will be needed. First, using (31) and the lower
bound on Q1,k given in (17), we obtain( k0∑

k=1

kpk − c1u(x2)

)
u(x2) ≤ 1 + ε

1 − ε0
f0.

By combining the first estimate of u(x2) given in (32), bound (29) on f0, and the restriction
(20), the coefficient multiplying u(x2) on the left-hand side of the above inequality is at least

k0∑
k=1

kpk − c1u(x2) ≥
k0∑

k=1

kpk − c1
1 + ε

1 − ε0
f0

≥
k0∑

k=1

kpk − c1
1 + ε1

1 − ε0
(ε1 − ε)1/ log be−C

≥
k0∑

k=1

kpk − c1
1 + ε1

1 − ε0
ε

1/ log b

1

≥ m0.

Therefore, we conclude that

u(x2) ≤ 1 + ε

m0(1 − ε0)
f0 = 1 + ε

m0(1 − ε0)
v(x1). (33)

To control the flatness of u(x), we define some more auxiliary variables and then state some
lemmas. The constants δ = κ(ε1 − ε), ε′ = ε + δ, ε′′ = ε + 2δ, and ε(3) = ε + 3δ are defined
to monitor the flatness change. Note that ε, ε′, ε′′, ε(3) < ε1 because κ < 1

100 . We somewhat
simplify the argument in [3]. Set

y0 = 1

a
log

2k0

δf0
,

q = inf
{
y ≥ 1

2M : u(x2 − y) > (4k0)
2u(x1 − y)

}
,

and

r = y0 ∧
{

q if u(x2 − q)− ≥ (4k0)u(x1 − (q + M/2)),

q − 1
2M otherwise,

(34)

where f (x)− := limy→x− f (y) is the left limit of f at x. Intuitively, q is used to denote the
first nonflat place to the left of x1. When r < y0, r is used to denote a nonflat interval, namely,
it is easy to check that

u(x2 − y) ≥ (4k0)u(x1 − y) for all y ∈ (r, r + M/2]. (35)

We can now state the following sequence of lemmas, whose proofs will be discussed in the next
subsection. The convention ∫ b

a

f (x) dg(x) =
∫

(a,b]
f (x) dg(x)

for a, b ∈ R will be used throughout the rest of the paper.
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Lemma 5. Assume that (29) and (30) hold. Then

k0∑
k=1

pk

∫ r

−∞
Q1,k(u)(x2 − y) dgk(y) ≤ (1 + ε′)

k0∑
k=1

pk

∫ r

−∞
Q2,k(u)(x1 − y) dgk(y). (36)

Lemma 6. If (29) and (36) are satisfied, then there exist some 1 ≤ k ≤ k0 and r ′ such that∫ r ′

−∞
u(x2 − y) dgk(y) ≤ (1 + ε′′)

∫ r ′

−∞
u(x1 − y) dgk(y). (37)

Moreover, r ′ is chosen such that r ′ > M implies that r ′ = r .

Lemma 7. Suppose that (37) holds. Then

(a) u(x2 − y1) ≤ (1 + ε(3))u(x1 − y1) for some y1 ≤ r ′ ∧ M , or

(b) u(x2 − y1) ≤ (1 + ε′′ − δeay1/8)u(x1 − y1) for some y1 ∈ (M, r].
Lemma 6 and Lemma 7 are analogs of Lemma 3.5 and Proposition 3.2 of [3], respectively.

Equipped with Lemma 7, we are ready to prove Proposition 3.

Proof of Proposition 3, assuming that Lemma 7 holds. We will compare L(u) and L(v)

based on (33) and Lemma 7. As Lemma 7 suggests, it is necessary to consider two different
cases.

Case (a). Assume that u(x2 − y1) ≤ (1 + ε(3))u(x1 − y1) for some y1 ≤ r ′ ∧ M . Then,
(33) implies that

u(x1 − y1) ≤ u(x2) ≤ 1 + ε

m0(1 − ε0)
v(x1).

Therefore, it follows from the definition of l(u; x) given in (7) that

l(u, x1 − y1) − l(v, x1) ≥ log
v(x1)

u(x1 − y1)
+ logb

ε1 − ε(3)

ε1 − ε

≥ log
m0(1 − ε0)

1 + ε
+ logb(1 − 3κ)

≥ log m0 − 2(ε1 + ε0) − 6κ

log b

≥ log m0

2
,

where (21) guarantees the last inequality.
Case (b). Assume that u(x2 − y1) ≤ (1 + ε′′ − δeay1/8)u(x1 − y1) for some y1 ∈ (M, r].

Then, by the definition of r given in (34), if y1 ∈ [jM, (j + 1)M) then

u(x2 − (y1 − iM)) ≤ (4k0)
2u(x1 − (y1 − iM))

= (4k0)
2u(x2 − (y1 − (i + 1)M)) for i = 1, . . . , j − 1.

Thus,
u(x1 − y1) = u(x2 − (y1 − M))

≤ (4k0)
2(�y1/M�−1)u

(
x2 −

(
y1 −

⌊
y1

M

⌋
M

))

≤ (4k0)
2(y1/M−1)u

(
x2 −

(
y1 −

⌊
y1

M

⌋
M

))
.
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When 0 ≤ y1 − �y1/M�M ≤ M/2,

u

(
x2 −

(
y1 −

⌊
y1

M

⌋
M

))
≤ u

(
x2 − M

2

)
≤ (4k0)

2u

(
x1 − M

2

)
;

when M/2 ≤ y1 − �y1/M�M < M ,

u

(
x2 −

(
y1 −

⌊
y1

M

⌋
M

))
≤ (4k0)

2u

(
x1 −

(
y1 −

⌊
y1

M

⌋
M

))

≤ (4k0)
2u

(
x2 − M

2

)

≤ (4k0)
4u

(
x1 − M

2

)
.

The above inequalities and (33) imply that

u(x1 − y1) ≤ (4k0)
2y1/M+2u

(
x1 − M

2

)
≤ (4k0)

2y1/M+2 1 + ε

m0(1 − ε0)
v(x1). (38)

Therefore, it follows that

l(u, x1 − y1) − l(v, x1) ≥ log
v(x1)

u(x1 − y1)
+ logb

ε1 − ε′′ + δeay1/8

ε1 − ε

≥ log
m0(1 − ε0)

(1 + ε)(4k0)2y1/M+2 + logb(1 − 2κ + κeay1/8)

≥ log m0 − 2(ε0 + ε1) − 2 log(4k0)

M
y1 − 2 log(4k0)

+ log κ + ay1/8

log b
.

Rewrite the last term ay1/8 log b as ay1/16 log b+ay1/16 log b, use y1 ≥ M in one summand,
and deduce that the above quantity is at least

log m0 − 2(ε0 + ε1 + log(4k0))+ log κ

log b
+ aM

16 log b
+ y1

(
a

16 log b
− 2 log(4k0)

M

)
≥ 1

2
log m0,

where (22) and (23) guarantee the last inequality.
To complete the argument, both cases imply that, by (7), (27), and the fact that C = log 2,

log
1

u(x1 − y1)
≥ l(u, x1 − y1) ≥ C + 1

2
log m0 ≥ log 2,

which implies that u(x1 − y1) ≤ 1
2 . Therefore, by the definition of L(u) given in (6) and (27)

again,

L(u) ≥ l(u, x1 − y1) ≥ l(v, x1) + 1
2 log m0 ≥ L(v) + 1

4 log m0 ≥ L(v),

from which (26) follows. Thus, the proof of Proposition 3 is complete.
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4.1. Proofs of the lemmas

Proof of Lemma 5. This lemma is to justify the flatness of the truncated integral. That is, we
want to prove that mass from far away does not affect the value of the integral in a significant
way. This is almost guaranteed by the exponential decay of gn,k(·). However, we need to
control the difference between Q1,k(u)(x2 − y) and Q2,k(u)(x1 − y), using the lower bound
(16) on Q1,k(u) and the definition of Q2,k(u) given in (4). Two different cases will be presented
separately.

Case (i): when r < y0, (35) holds. Because of (30) and ε < ε′, (36) will follow from∫ ∞

r

Q1,k(u)(x2 − y) dgk(y) − (1 + ε′)
∫ ∞

r

Q2,k(u)(x1 − y) dgk(y) ≥ 0 (39)

for any k ∈ {1, . . . , k0}. To prove (39), because of (16), it suffices to show that∫ ∞

r

u(x2 − y) dgk(y) − 2k0

∫ ∞

r

u(x1 − y) dgk(y) ≥ 0. (40)

We split the left-hand side into three parts. First, by (35),

1

2

∫ r+M/2

r

u(x2 − y) dgk(y) − 2k0

∫ r+M/2

r

u(x1 − y) dgk(y)

=
∫ r+M/2

r

( 1
2u(x2 − y) − 2k0u(x1 − y)

)
dgk(y) (41)

≥ 0. (42)

Second, because of assumption (MT2) (the rapid decay of ḡk(·)) and (18), we have

1

2

∫ r+M/2

r

u(x2 − y) dgk(y) − 2k0

∫ r+M

r+M/2
u(x1 − y) dgk(y)

≥ 1
4u(x2 − r)ḡk(r) − 2k0u(x2 − r)ḡk

(
r + 1

2M
)

≥ ( 1
4 − 2k0e−aM/2)u(x2 − r)ḡk(r)

≥ 0. (43)

Third, again because of assumption (MT2) (the rapid decay of ḡk(·)) and (18), we have∫ ∞

r+M/2
u(x2 − y) dgk(y) − 2k0

∫ ∞

r+M

u(x1 − y) dgk(y)

≥
∫ ∞

r+M/2
u

(
x2 −

(
y − M

2

))
dgk(y) − 2k0

∫ ∞

r

u(x2 − y) dgk(y + M)

=
∫ ∞

r

u(x2 − y) dgk

(
y + M

2

)
− 2k0

∫ ∞

r

u(x2 − y) dgk(y + M)

≥ (1 − 2k0e−aM/2)

∫ ∞

r

u(x2 − y) dgk

(
y + M

2

)
≥ 0. (44)

Summing (42), (43), and (44) yields (40). Thus, (39) is verified in this case, and (36) holds.
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Case (ii): when r = y0, (35) may not hold. The difference between the two sides of (36) is

k0∑
k=1

pk

∫ r

−∞
Q1,k(u)(x2 − y) dgk(y) − (1 + ε′)

k0∑
k=0

pk

∫ r

−∞
Q2,k(u)(x1 − y) dgk(y)

≤
k0∑

k=1

pkgk ∗ Q1,k(u)(x2) − (1 + ε′)
k0∑

k=1

pk

∫ r

−∞
Q2,k(u)(x1 − y) dgk(y).

Recall that ε′ = ε + δ. Equation (30) implies that the above quantity is less than or equal to

(1 + ε)

k0∑
k=1

pkgk ∗ Q2,k(u)(x1) − (1 + ε′)
k0∑

k=1

pk

∫ r

−∞
Q2,k(u)(x1 − y) dgk(y)

= (1 + ε′)
k0∑

k=1

pk

∫ ∞

r

Q2,k(u)(x1 − y) dgk(y) − δ

k0∑
k=1

pkgk ∗ Q2,k(u)(x1).

Since r = y0 = (1/a) log(2k0/δf0), assumption (MT2) implies that ḡk(r) ≤ e−ay0 = δf0/2k0.
From Q2,k(u) ≤ k0, (25), and (29), it follows that the above quantity again does not exceed

(1 + ε′)k0
δf0

2k0
− δf0 ≤ 0.

So (36) is proved in this case. This completes the proof of the lemma.

Proof of Lemma 6. By the definition of q, when q > M/2, we have

u(x2 − y) ≤ (4k0)
2u(x1 − y) for y ∈ [M/2, q].

Similarly to (38), for any y ≤ r ≤ q, we obtain

u(x2 − y) ≤ u(x2 − r) ≤ (4k0)
2r/M+2u(x2).

Since r ≤ y0 = (1/a) log(2k0/δf0), using (32), the above is at most

(4k0)
2y0/M+2 1 + ε

1 − ε0
f0 <

2(4k0)
2

1 − ε0
(4k0)

(2/aM) log(2k0/δf0)f0 = 2(4k0)
2

1 − ε0

(
2k0

δf0

)2 log(4k0)/aM

f0.

Note that 2 log(4k0)/aM < 1
2 from (18). Applying the bound on f0 given in (29), the above

quantity is at most

2(4k0)
2

1 − ε0

√
2k0f

1/2
0

δ1/2 = 8(2k0)
5/2f

1/2
0

(1 − ε0)δ3/2 δ <
8(2k0)

5/2(ε1 − ε)1/2 log b−3/2

(1 − ε0)κ3/2 δ.

Therefore, it follows from (19) that

u(x2 − y) ≤ 1

2c1
δ for any y ≤ r. (45)

This, combined with (17), implies that, for any 1 ≤ k ≤ k0 and y ≤ r1,

Q1,k(u)(x2 − y) ≥ ku(x2 − y) − c1(u(x2 − y))2

= ku(x2 − y)

(
1 − c1

k
u(x2 − y)

)
≥ ku(x2 − y)

(
1 − 1

2δ
)
. (46)

https://doi.org/10.1239/jap/1346955324 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955324


Tightness for maxima of generalized branching random walks 667

We have ∑k0
k=1 kpk

∫ r

−∞ u(x2 − y) dgk(y)∑k0
k=1 kpk

∫ r

−∞ u(x1 − y) dgk(y)

≤
(

1

1 − δ/2

)∑k0
k=1 pk

∫ r

−∞ Q1,k(u)(x2 − y) dGk(y)∑k0
k=1 pk

∫ r

−∞ Q2,k(u)(x1 − y) dGk(y)

≤ 1 + ε′

1 − δ/2

≤ 1 + ε′′. (47)

where the first inequality follows from (46) and the definition of Q2,k(u) given in (4), and the
second inequality follows from (36). If the conclusion of the lemma does not hold, i.e. for all
1 ≤ k ≤ k0, ∫ r

−∞
u(x2 − y) dgk(y) > (1 + ε′′)

∫ r

−∞
u(x1 − y) dgk(y),

we obtain a contradiction to (47). This completes the proof of Lemma 6 in the case q > M/2.
When q = M/2 and u(x2 − M/2) ≤ 4k0u(x2), with (32), we still have, for y ≤ r ≤ q,

u(x2 − y) ≤ u(x2 − r) ≤ 4k0u(x2) ≤ 8k0f0

(1 − ε0)δ
δ. (48)

Using the bound on f0 given in (29) and (19), the above is at most

8k0(ε1 − ε)1/ log b−1

(1 − ε0)κ
δ ≤ 1

2c1
δ.

Thus, (45) holds. Repeating the argument below (45), we obtain Lemma 6 in this case.
When q = M/2, but u(x2 − M/2) > (4k0)u(x2), we truncate (36) before transforming this

case to the previous case. Define

r ′ = inf{y ≥ 0 : u(x2 − y) > 4k0u(x2)}.
Then 0 ≤ r ′ < M/2 and u(x2 − r ′) ≤ 4k0u(x2). By the monotonicity of u, u(x2 − y) ≥
4k0u(x1 − y) for y ∈ (r ′, r]. Therefore, for 1 ≤ k ≤ k0,∫ r

r ′
Q1,k(u)(x2 − y) dgk(y) − (1 + ε′)

∫ r

r ′
Q2,k(u)(x1 − y) dgk(y)

≥
∫ r

r ′
u(x2 − y) dgk(y) − 2

∫ r

r ′
k0u(x1 − y) dgk(y)

=
∫ r

r ′
(u(x2 − y) − 2k0u(x1 − y)) dgk(y)

≥ 0,

which, together with (36), yields the truncated inequality

k0∑
k=1

pk

∫ r ′

−∞
Q1,k(u)(x2 − y) dgk(y) ≤ (1 + ε′)

k0∑
k=1

pk

∫ r ′

−∞
Q2,k(u)(x1 − y) dgk(y).

This is an analog of (36) with r replaced by r ′, and u(x2 − r ′) ≤ 4k0u(x2). Replacing r by r ′
in the argument starting from (48), we complete the proof of Lemma 6 in all cases.

https://doi.org/10.1239/jap/1346955324 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955324


668 M. FANG

With assumption (MT2), the proof of [3, Proposition 3.2] carries over (with some change of
notation) to the proof of Lemma 7, assuming that Lemma 6 holds.

Proof of Lemma 7. This will be proved by contradiction. Assume that neither (a) nor (b) of
Lemma 7 holds, i.e.

(ā) u(x2 − y) > (1 + ε(3))u(x1 − y) for all y ≤ r ′ ∧ M , and

(b̄) u(x2 − y) > (1 + ε′′ − δeay/8)u(x1 − y) for all y ∈ (M, r ′].
If r ′ ≤ M then only (ā) holds and it implies that∫ r ′

−∞
u(x2 − y) dgk(y) > (1 + ε(3))

∫ r ′

−∞
u(x1 − y) dgk(y).

Since ε(3) = ε′′ + δ > ε′′, this contradicts (37). So we are done. If r ′ > M then r ′ = r , and
(ā) and (b̄) imply that∫ M

−∞
u(x2 − y) dgk(y) > (1 + ε(3))

∫ M

−∞
u(x1 − y) dgk(y)

and ∫ r

M

u(x2 − y) dgk(y) >

∫ r

M

(1 + ε′′ − δeay/8)u(x1 − y) dgk(y).

Summing the above two inequalities yields∫ r

−∞
u(x2 − y) dgk(y) > (1 + ε′′)

∫ r

−∞
u(x1 − y) dgk(y)

+ δ

[∫ M

−∞
u(x1 − y) dgk(y) −

∫ r

M

eay/8u(x1 − y) dgk(y)

]
.

We claim that ∫ M

−∞
u(x1 − y) dgk(y) −

∫ r

M

eay/8u(x1 − y) dgk(y) ≥ 0, (49)

which will imply a contradiction of (36) and complete the proof. It thus remains to prove claim
(49). Since q ≥ r > M/2, we have u(x2 − y) ≤ (4k0)

2u(x1 − y) for all y ∈ [M/2, r]. By
(18), we can bound the second integral on the left-hand side of the above inequality as follows:∫ r

M

eay/8u(x1 − y) dgk(y) =
∞∑
l=1

∫ lM+M

lM

eay/8u(x1 − y) 1{y≤r} dgk(y)

≤
∞∑
l=1

∫ lM+M

lM

ealM/8+aM/8(4k0)
2l+2u

(
x1 − M

2

)
dgk(y)

≤
∞∑
l=1

ealM/8+aM/8(4k0)
2l+2u

(
x1 − M

2

)
ḡk(lM)

≤
∞∑
l=1

ealM/8+aM/8(4k0)
2l+2u

(
x1 − M

2

)
e−alM+aM/2ḡk

(
M

2

)

≤ 1

4
u

(
x1 − M

2

)
ḡk

(
M

2

)
.
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As the last term does not exceed∫ M

M/2
u(x1 − y) dgk(y) ≤

∫ M

−∞
u(x1 − y) dgk(y),

the proof of (49), and, thus, of Lemma (7), is complete.

5. Tightness for identical marginals

In this section we discuss the tightness problem in the case when all the marginal distributions
at the same level are the same, i.e. gn,k(·) = gn(·) does not depend on the number of offspring.
Compared with the assumptions made in Section 2, we relax the bounded support assumption
(B1) on pn,k , at the price of a uniform marginal assumption on Gn,k (see (MT0′) below).
Namely, we make the following assumptions.

(B1′) There exist positive real numbers m0 and m1 such that infn{∑∞
k=1 kpn,k} > m0 > 1 and

supn

∑∞
k=1 k2pn,k < m1.

(MT0′) gn,k(·) = gn(·) for all k ≥ 1.

(MT1′) For some fixed ε0 < 1
4 log m0 ∧ 1, there exists an x0 such that ḡn(x0) ≥ 1 − ε0 for

all n, where ḡn(x) = 1 − gn(x). By shifting, we will assume that x0 = 0, that is,
ḡn(0) ≥ 1 − ε0.

(MT2′) There exist a > 0 and M0 > 0 such that ḡn(x + M) ≤ e−aMḡn(x) for all n and
M > M0, x ≥ 0.

(GT′) For any η1 > 0, there exists a B > 0 such that Gn,k(B, . . . , B) ≥ 1−η1 and ḡn(−B) ≥
1 − η1 for all n and k.

Then we still have the following tightness result.

Theorem 2. Under assumptions (B1′), (MT0′), (MT1′), (MT2′), and (GT′), the family of
recentered maxima distributions {Fn(· − Med(Fn))} is tight.

Since the proof is similar to that of Theorem 1, we only sketch the details. The argument is
based on the recursion inequality

gm ∗
( ∞∑

k=1

pm,kQ1,k(F̄
m+1
n )

)
(x) ≤ F̄ m

n (x) ≤ gm ∗
( ∞∑

k=1

pm,kQ2,k(F̄
m+1
n )

)
(x),

another form of (5) under assumption (MT0′), where Q1,k and Q2,k are defined as (4). Set

Qm,(1)(u) =
∞∑

k=1

pm,kQ1,k(u) (50)

and

Qm,(2)(u) =
∞∑

k=1

pm,kQ2,k(u). (51)

Although the difference between Q1,k and Q2,k gets larger as k increases, the weighted functions
Qm,(1) and Qm,(2) still behave nicely and we have the following analog of Lemma 4.
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Lemma 8. Let Qm,(1) and Qm,(2) be defined as in (50) and (51), respectively. Then it follows
from assumption (B′) that

Qm,(1)(u) > u

and
Qm,(2)(u) − c2u

2 ≤ Qm,(1)(u) ≤ Qm,(2)(u) ≤ √
m1u.

Lemma 5 relies on the facts that Q1,k(u) ≥ u and Q2,k(u) ≤ k0u, and Lemma 6 relies on
the fact that Q1,k(u) ≥ Q2,k(u) − c1u

2. Therefore, with modifications of q and r , we can
prove analogs of Lemmas 5 and 6 due to the bounds in Lemma 8. An analog of Proposition 3
then follows. Proposition 1 and Corollary 1 hold under the new assumptions in this section.

Assumption (GT′) plays a similar role as (GT) in connecting the left and right tail behaviors.
Specifically, it guarantees Lemma 2, Lemma 3, and Proposition 2 under the new settings.
Theorem 2 follows immediately as Theorem 1.

6. Remarks

We believe that our assumptions (the bounded support assumption (B1) on pn,k in Section 2
and the uniform marginal assumption (MT0′) on Gn,k in Section 5) are only technical, and
we are not aware of any natural examples for which tightness does not hold without these
assumptions. Heuristically, the faster the number of particles grows, the tighter the maximum
is around its median. Therefore, we believe that these technical assumptions can possibly
be removed, although the exact argument in the paper does not work directly without these
assumptions.
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