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Abstract

Suppose that u is a bounded harmonic function on the upper half-plane such that limx→∞ u(x, y0)= a
for some y0 > 0. Then one can prove that limx→∞ u(x, y)= a for any other positive y. In this paper, we
shall consider the algebra of radial integrable functions on H-type groups and obtain a similar result for
bounded harmonic functions on generalized Siegel domains.
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1. Introduction

Suppose that u is a bounded function on the upper half-plane satisfying 1u = 0 and
limx→∞ u(x, y0)= a for some positive number y0. Then using classical methods,
we can prove that limx→∞ u(x, y)= a for any other positive y. Here 1 denotes the
Laplacian in the two variables x and y.

Suppose that Hr denotes the Heisenberg group of homogeneous dimension 2r + 2.
It is known that Hr acts on the Siegel domain Dr = {(z, z0) ∈Cr

×C | Im z0 > |z|2}
by translations. Under this action, Hr is identified with the boundary of Dr . By abuse
of notation, we shall denote the Laplace–Beltrami operator for the Bergman metric on
Dr by 1. Then we have the following result.

THEOREM 1.1. Let u be a bounded function on Dr such that 1u = 0. If, for an
ε0 > 0, lim(z,t)→∞ u(z, t, ε0)= a, then lim(z,t)→∞ u(z, t, ε)= a for any ε > 0.

For any unexplained notation and terminology, the reader can refer to [12]. The
proof in the case of the Heisenberg group depends on the explicit form of the Poisson
kernel and the Gelfand spectrum of the commutative Banach algebra L1(Hr )
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integrable radial functions on Hr . A similar result for rank-one symmetric spaces
has been proved by Cygan [5]. Here we shall prove an analogue of Theorem 1.1 for
H-type groups.

The paper is organized as follows. In Section 2, we shall define an H-type group
and collect all the facts we require about H-type groups. In Section 3, we shall define
the generalized Siegel domains and describe the action of H-type groups on them. In
Section 4, we shall prove our main result as a consequence of a Tauberian theorem for
H-type groups. The method of proof is that of Hulanicki and Ricci [12].

In the coming sections, we shall use the ‘variable constant convention’ according
to which our constants are denoted by C , C ′ and so on and these are not necessarily
equal at different occurrences.

2. H-type groups

In this section, we shall collect all the necessary information about the H-type
groups, N , and describe the Gelfand transform for biradial functions on N . We shall
denote the sets R \ {0} and {0, 1, 2, . . .} by R∗ and N, respectively, and the semi-
infinite interval (0,∞) by R+. For more detailed information on the material covered
in this section, the reader may refer to [2] and the references therein.

Let n be a real two-step nilpotent Lie algebra endowed with an inner product 〈· , ·〉n,
and let z be the centre of n. Write n as an orthogonal direct sum of two subspaces v
and z, that is, n= v⊕ z. For each Z ∈ z, define the map JZ : v→ v by the formula

〈JZ X, Y 〉n = 〈[X, Y ], Z〉n ∀X, Y ∈ v. (2.1)

The Lie algebra n is said to be H-type if, for every Z ∈ z,

J 2
Z =−|Z |

2 Iv, (2.2)

where Iv denotes the identity transformation on v. A connected, simply connected Lie
group N whose Lie algebra is H-type is said to be an H-type group. By (2.2), we can
see that every unit element Z in z induces a complex structure on v via the map JZ .
Therefore, v has even dimension, say 2m. If k denotes the dimension of the centre z
of N , then Q = m + k is the homogeneous dimension of N .

As N is a connected, simply connected nilpotent group, we know that the
exponential map exp : n→ N is surjective. Therefore, we shall identify N with
v⊕ z and denote a typical element n of N by (X, Z) where X ∈ v, Z ∈ z. Using
the Campbell–Baker–Hausdorff formula, we get the product rule in N as

(X, Z)(X1, Z1)= (X + X1, Z + Z1 +
1
2 [X, X1]) ∀X, X1 ∈ v ∀Z , Z1 ∈ z.

If d X and d Z denote the Lebesgue measures on v and z, respectively, then
dn = d X d Z denotes a Haar measure on N .

There are two classes of irreducible unitary representations of an H-type group.
Some are trivial on the centre and factor into characters on v. The others are
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parametrized by R+ × Sz (see [4] and [2]), where Sz denotes the unit sphere in z. For
w in Sz, we consider v endowed with complex structure Jw. Denote by Iw : v→Cm

the corresponding isomorphism. Then the corresponding Hermitian inner product is
given by

{X, X1}w = 〈X, X1〉n + i〈JwX, X1〉n ∀X, X1 ∈ v.

Define

Hν,w =

{
ξ : v→C

∣∣∣∣ ξ ◦ I−1
w :Cm

→C is entire,

‖ξ‖2ν =

∫
v
|ξ(X)|2e−ν|X |

2/2 d X <∞

}
.

Thus Hν,w is a Hilbert space with respect to the inner product associated with the norm
‖ · ‖ν . For any multi-index j in Nm , we define the following normalized polynomial:

Pν, j (X)= π
−m/2

(
ν

2

)(m+| j |)/2
( j !)−1/2(Iw(X))

j
∀X ∈ v,

where | j | = j1 + · · · + jm , j ! = j1! · · · jm ! and ζ j
= ζ

j1
1 · · · ζ

jm
m for ζ in Cm . One

can check that the family {Pν, j } j∈Nm is an orthonormal basis of Hν,w.
For any ν in R+ and any w in Sz, let πν,w be the unitary representation of N on

Hν,w defined by

[πν,w(X, Z)ξ ](X1)= exp[−ν( 1
4 |X |

2
+

1
2 {X1, X}w + i〈Z , w〉n)]ξ(X + X1)

∀X1 ∈ v, ∀ξ ∈Hν,w.

Given f ∈ L1(N ), we shall define the group Fourier transform of f as an operator-
valued function on Hν,w by

πν,w( f )=
∫

N
πν,w(n) f (n) dn.

A function f on N is said to be biradial if f is radial in both the variables X and Z .
In other words, there exists a function f0 on R2 such that

f (X, Z)= f0(|X |, |Z |) ∀(X, Z) ∈ N .

Let L1(N )\ be the space of all biradial integrable functions on the group N . We know
from [9] that L1(N )\ is a commutative Banach algebra. The Gelfand spectrum of this
commutative algebra is well known (see [1, 9, 13]) and can be described as follows.

Let Jz be the generalized Bessel function defined for every x in R by the rule

Jz(x)=


0(z + 1)

0((2z + 1)/2)0(1/2)

∫ 1

−1
ei xs(1− s2)(2z−1)/2 ds if z >−1/2,

cos x if z =−1/2,
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and let Lαl be the lth Laguerre polynomial of order α, that is,

Lαl (x)=
l∑

j=0

(
l + α
l − j

)
(−x) j

j !
∀x ∈R.

The bounded spherical functions of the commutative algebra L1(N )\ are given by

φν,l(X, Z)= e−ν|X |
2/4 Lm−1

l (ν|X |2/2)(
l+m−1

l

) J(k−2)/2(ν|Z |) ∀(X, Z) ∈ N ,

φµ(X, Z)=Jm−1(µ|X |) ∀(X, Z) ∈ N ,

where ν > 0, µ≥ 0 and l ∈N. If f is a biradial integrable function on N , we have the
Gelfand transform f̂ of f as a function on R+ ×N defined by the rule

f̂ (ν, l)=
∫

N
f (n)φν,l(n) dn ∀ν > 0, ∀l ∈N. (2.3)

3. Harmonic NA spaces and Poisson kernel

In this section, we shall describe the harmonic N A spaces, define harmonic
functions on the generalized Siegel domain and give the explicit form of the Poisson
kernel. For any unexplained terminology and notation in this section, the reader may
refer to [9] and [3]. Let S = N A be the semidirect product of the groups N and
A =R+ with respect to the action of A on N given by the dilations

δa : (X, Z) 7→ (a1/2 X, aZ).

We shall denote the Lie algebras of A and S by a and s respectively. Any typical
element na = exp(X + Z)a of N A is denoted by (X, Z , a) and the product law in
N A is given by

(X, Z , a)(X ′, Z ′, a′)= (X + a1/2 X ′, Z + aZ ′ + 1
2 a1/2

[X, X ′], aa′).

One can endow N A with a suitable left-invariant Riemannian metric that makes it a
harmonic manifold [8]. Via the map

h(X, Z , a)= (X, Z , a + 1
4 |X |

2)

we can identify S with the generalized Siegel domain

D = {(X, Z , a) ∈ s : a > 1
4 |X |

2
}.

Under this identification, N gets identified with the boundary ∂D of D.
Let L be the Laplace–Beltrami operator on S with respect to the Riemannian

structure on S. Then, by [7, Theorem 2.1],

L=
2m+k∑
i=1

E2
i + E2

0 − QE0,
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where E1, . . . , E2m in v, E2m+1, . . . , E2m+k in z, E0 in a form an orthonormal basis
of s= v⊕ z⊕ a. Bounded harmonic functions u on D are those functions that satisfy
Lu = 0 and have boundary values almost everywhere (a.e.) on ∂D, that is,

lim
a→0

u(X, Z , a)= φ(X, Z) a.e., (3.1)

where φ ∈ L∞(N ) (see [6, Theorem 3.7]). Moreover

u(X, Z , a)= (φ ∗ Pa)(X, Z) ∀(X, Z , a) ∈ S,

where Pa is the Poisson kernel on the nilpotent group N given by

Pa(X, Z)=
CaQ

((a + |X |2/4)2 + |Z |2)Q
=

CaQ

((a + |X |2/4)2 + |Z |2)m+k

and the convolution is on N . Here the constant C is chosen in such a way that
‖Pa‖1 = 1. Note that Pa ∈ L1(N )\ and

Pa(X, Z)=
CaQ

(a + |X |2/4+ i |Z |)m+k(a + |X |2/4− i |Z |)m+k
.

For each a ∈ A, we know that δa is an automorphism of N , hence δa defines an
automorphism of L1(N )\ by

(δa f )(X, Z)= am+k f (δa(X, Z)).

Let m(L1(N )\) be the set of nonzero multiplicative linear functionals on L1(N )\. Then
δa induces a map δ∗a on m(L1(N )\) by

〈 f, δ∗aψ〉 = 〈δa f, ψ〉 ∀ψ ∈ m(L1(N )\), ∀ f ∈ L1(N )\.

It is easy to see that δ∗a maps m(L1(N )\) homeomorphically onto itself. If f ∈ L1(N )
and ‖ f ‖1 = 1 then we can see that {δa f } is an approximate identity in L1(N )
as a→ 0.

We shall now make a small computation that we need in the next section (see [4,
Lemma 3.4]). For w ∈ Sz, we shall denote by w⊥ the orthogonal complement of w
in z. Then∫

z
exp (−iν〈Z , w〉n)Pa(X, Z) d Z

=

∫
exp(w⊥)

∫
R

exp (−iν〈tw + Z ′, w〉n)Pa(X, tw + Z ′) dt d Z ′

=

∫
R

e−iνt
∫

exp(w⊥)
Pa(X, tw + Z ′) d Z ′ dt

=

∫
R

e−iνt
∫

exp(w⊥)
CaQ

((
a +
|X |2

4

)2

+ t2
+ |Z ′|2

)−m−k

d Z ′ dt

=

∫
R

e−iνt CaQ
∫

exp(w⊥)
(u2)−m−k

(
1+

(
|Z ′|

u

)2)−m−k

d Z ′ dt (3.2)
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where

u2
=

((
a +
|X |2

4

)2

+ t2
)
.

Now by a change of variable argument, we can show that the above integral is equal to∫
R

e−iνt C ′aQ
((

a +
|X |2

4

)2

+ t2
)−((m+k+1)/2)

dt. (3.3)

In the next section, we shall prove our main result as a consequence of a Tauberian
theorem on H-type groups.

4. Main result

In this section, we shall show that R = L1(N )\ is a regular ∗-algebra, and state
and prove a Wiener–Tauberian theorem for L1(N ). Further, we show that the Gelfand
transform of the Poisson kernel never vanishes. We shall conclude our main result as
a consequence of the Wiener–Tauberian theorem. Our proof of the Wiener–Tauberian
theorem is based on that of Hulanicki and Ricci [12].

PROPOSITION 4.1. The commutative Banach algebra R is regular.

PROOF. Given f ∈ R, define f ∗ by f ∗(n)= f (n−1). It is easy to see that f ∗ ∈ R, ∗

defines an involution on R and R is symmetric. Let R̃ be the commutative ∗-Banach
algebra obtained from R by adjoining the unit element 1. As in [11], we can check that
the set of multiplicative linear functionals m(R̃) on R̃ is actually equal to m(R) ∪ {∞}.
Note that m(R̃) is compact and R̂ separates points. Further, if f ∈ R ⊂ R̃, then
f̂ (∞)= 0. Since R is ∗-closed, R̂ is self-adjoint.

Let C ⊂ m(R) be closed and ξ ∈ m(R) \ C . To show that R is regular, we
need to show that there exists f ∈ R such that f̂ (C)= 0 but f̂ (ξ)= 1. Since C
is closed in m(R), C ∪ {∞} is compact in m(R̃) and ξ /∈ C ∪ {∞}. As m(R̃) is
compact and Hausdorff, by Urysohn’s lemma, we can obtain a continuous function
φ on m(R̃) such that φ(C)= 0, φ(∞)= 0, but φ(ξ)= 1. By [14, Theorem 2,
p. 217], closure of R̃ = C∞(m(R̃))= C0(m(R)). So there exists f ∈ R such that
sup

η∈m(R̃) |φ(η)− f̂ (η)|< 1/4. Let F be a smooth real-valued function defined on
R as follows:

F(α)=

{
0 if α ≤ 1

3 ,

1 if 2
3 ≤ α ≤

4
3 .

Then by Dixmier [10], F ◦ f̂ ∈ R̂. But if η ∈ C , then | f̂ (η)|< 1/4< 1/3 and so
(F ◦ f̂ )(η)= 0 and | f̂ (ξ)− 1|< 1/4. This implies that 3/4< f̂ (ξ) < 5/4, which in
turn implies that (F ◦ f̂ )(ξ)= 1. This proves the proposition. 2

For f ∈ R, let C f be the support of f̂ in m(R). Let

B = { f ∈ R | C f is compact in m(R)}.

Now we shall state and prove a Wiener–Tauberian theorem for R.
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PROPOSITION 4.2. The set B is dense in R.

PROOF. Let f be a radial function in L1(N ) having compact support. Choose a
function F in Ck(R) such that F(1)= 1 and F(x)= 0 for |x | ≤ 1/2. By [10], we
know that f̂1 = F ◦ f̂ ∈ R̂ for some f1 ∈ R. Note that∫

N
f1(X, Z) d X d Z = (F ◦ f̂ )(0, 0)= 1

and C f1 is compact. Therefore (δ̂a f1) has compact support in m(R) for every a > 0.
We know that {δa f1} is an approximate identity in L1(N ) as a→ 0. Therefore
f ∗ δa f1→ f as a→ 0. But ( ̂f ∗ δa f1)= f̂ (δ̂a f1) has compact support in m(R).
This proves that B is dense in Cc(N ). But Cc(N ) is dense in L1(N ), hence B is
dense in L1(N ). 2

As a consequence of the above we have the following result.

PROPOSITION 4.3. Let I be a proper closed right ideal in L1(N ). Then there exists a
ψ ∈ m(R) such that, for all f ∈ I ∩ R, f̂ (ψ)= ψ( f )= 0.

PROOF. Since I is a proper closed right ideal in L1(N ), an approximate identity
argument shows that I ∩ R is a proper closed ideal in R.

To prove the proposition, we need the following local Wiener–Tauberian theorem
(see [16]). Suppose that G ∈ R with CG compact. Let f ∈ R be such that f̂ (ψ) 6= 0
for all ψ ∈ CG . Then there exists g ∈ R such that g ∗ f ∗ G = G. In order to prove
this claim, note that f̂ is continuous on the compact set CG . Hence there exists β > 0
such that f̂ (φ) > β for all φ ∈ CG . Now choose F in Ck(R) such that

F(α)=


1
α

for α ≥ β,

0 for α ≤ 0.

Then F ◦ f̂ |CG = 1/ f̂ . But by [10], we have g ∈ R such that ĝ = F ◦ f̂ ∈ R̂.
Therefore

̂g ∗ f ∗ G(ψ) = (ĝ f̂ Ĝ)(ψ)=

{
0 if ψ /∈ CG,

Ĝ if ψ ∈ CG,

that is, ĝ f̂ Ĝ = Ĝ. By the uniqueness of the Gelfand transform, g ∗ f ∗ G = G.
We shall now prove the proposition. Assume on the contrary that, for every

ψ ∈ m(R), there exists f in I ∩ R such that f̂ (ψ) 6= 0. Let G ∈ R be such that CG
is compact. By assumption, given any ψ ∈ CG we can find fψ ∈ I ∩ R such that
f̂ψ (ψ) 6= 0. In fact f̂ψ (ψ) > 0. By continuity, f̂ does not vanish in a neighbourhood
Uψ of ψ . The collection of open sets {Uψ }ψ∈CG forms an open cover for CG . Hence
we can find ψ1, ψ2, . . . , ψn in CG such that {Uψ1,Uψ2, . . . ,Uψn } forms a finite
subcover of CG . Consider the function f = fψ1 + fψ2 + · · · + fψn . Then f ∈ I ∩ R

https://doi.org/10.1017/S1446788708000700 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000700


426 M. Sundari [8]

as I is an ideal and f̂ (ψ) 6= 0 for all ψ ∈ CG . By our claim above, then there exists
g ∈ R such that g ∗ f ∗ G = G. But I ∩ R is an ideal in R and f ∈ I ∩ R. Hence
g ∗ f ∗ G ∈ I ∩ R. This implies that G ∈ I ∩ R. This in turn implies that B ⊂ I ∩ R.
Therefore, R =B ⊂ I ∩ R = I ∩ R as I ∩ R is closed. This contradicts the fact that
I ∩ R is a proper closed ideal in R. This completes the proof of the proposition. 2

Put s = (m + k − 1)/2. Note that s ≥ 0. For a ∈ A, recall that the Poisson kernel
Pa is given by

Pa(X, Z) =
CaQ

((a + |X |2/4)2 + |Z |2)2s+1

=
CaQ

(2s!)2
(2s!)2

(a + |X |2/4− i |Z |)2s+1(a + |X |2/4+ i |Z |)2s+1

for all (X, Z) ∈ N .
Consider, for any r > 0,

Fa(X, Z)=
1
r !

r !

(a + |X |2/4+ i |Z |)r+1 .

Using the Laplace transform techniques, one can easily show that

Fa(X, Z)=
1
r !

∫
∞

0
exp (iα|Z |) exp (−α(a + |X |2/4+ i |Z |))αr dα.

Therefore,

Pa(X, Z) =
CaQ

(2s!)2

∫
∞

0

∫
∞

0
exp (−α(a + |X |2/4− i |Z |))

× exp (−β(a + |X |2/4+ i |Z |))(αβ)2s dα dβ

=
1

(2s!)2

∫
∞

0

∫
∞

0
exp (i(α − β)|Z |)

× exp (−(α + β)(a + |X |2/4))(αβ)2s dα dβ. (4.1)

As the last step in our proof of the main result, we have the following result.

PROPOSITION 4.4. For every a > 0, the Gelfand transform P̂a of Pa is never zero
on m(R).

PROOF. We need to check that P̂a(ν, l) and P̂a(0, µ) do not vanish for ν > 0, µ≥ 0
and l ∈N.

Consider the integral∫
z

Pa(X, Z) exp (−iν〈Z , w〉n) d Z

=

∫
R

∫
exp(w⊥)

Pa(X, tw + Z ′) exp (−i〈tw + Z ′, νw〉n) d Z ′ dt
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=

∫
R

e−iνt
∫

exp(w⊥)
Pa(X, tw + Z ′) exp (−i〈Z ′, νw〉n) d Z ′ dt

=

∫
R

e−iνt
∫

exp(w⊥)
Pa(X, tw + Z ′) d Z ′ dt

= CaQ
∫
R

e−iνt
((

a +
|X |2

4

)2

+ t2
)−(s+1)

dt (4.2)

by (3.2). Consider the expression((
a +
|X |2

4

)2

+ t2
)−(s+1)

=

(
a +
|X |2

4
+ i t

)−(s+1)(
a +
|X |2

4
− i t

)−(s+1)

=
1

(s!)2

∫
∞

0

∫
∞

0
exp (i(α − β)t)

× exp (−(α + β)(a + |X |2/4))αsβs dα dβ (4.3)

by (4.1). Now using Fourier transform techniques together with (4.2) and (4.3), we get∫
z

Pa(X, Z)e−iν〈Z ,w〉n d Z

=
CaQ

(s!)2

∫
∞

0
exp (−(2β + ν)(a + |X |2/4))(β + ν)sβs dβ. (4.4)

Now if we take ν = 0 and evaluate the Fourier transform in the variable X , we
obtain P̂a(0, µ).

Therefore

P̂a(0, µ) = P̂a(0, |Y |)

=
CaQ

(s!)2

∫
v

∫
∞

0
exp (−2β(a + |X |2/4))β2s exp (−i〈Y, X〉) dβ d X

=
CaQ

(s!)2

∫
∞

0
exp (−2βa)β2s

∫
v

exp (−β(|X |2/2)) exp (i〈Y, X〉) d X dβ

=
CaQ

(s!)2

∫
∞

0
exp (−µ2/(2β)) exp (−2βa)β2s dβ (4.5)

where Y ∈ v.
Let

I =
∫
∞

0
exp (−2βa)β2s exp (−µ2/(2β)) dβ.

Choose 0< ε1 < ε2 <∞. Then

I =
∫ ε1

0
+

∫ ε2

ε1

+

∫
∞

ε2

exp (−2βa)β2s exp (−µ2/(2β)) dβ.
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Note that for β in [ε1, ε2] the integrand exp (−2βa)β2s exp (−µ2/(2β)) > 0, and the
integrand is nonnegative for all other values in the interval [0,∞). Hence

∫ ε2

ε1

exp (−2βa)β2s exp (−µ2/(2β)) dβ > 0

and the integral on the intervals [0, ε1), [ε2,∞) are nonnegative. Therefore I > 0,
which in turn implies that P̂a(0, µ) > 0. For ν 6= 0,

P̂a(ν, l) =
CaQ

(s!)2

∫
v

∫
∞

0
exp (−(2β + ν)(a + |X |2/4))(β + ν)sβs

× exp (−ν|X |2/4)
Lm−1

l (ν|X |2/2)(
l+m−1

l

) dβ d X

=
CaQ

(s!)2

∫
∞

0
exp (−(2β + ν)a)(β + ν)sβs

∫
v

exp (−ν|X |2/4)

×
Lm−1

l (ν|X |2/2)(
l+m−1

l

) d X dβ

=
CaQ

(s!)2
|Sv|(

l+m−1
l

) ∫ ∞
0

exp (−(2β + ν)a)(β + ν)sβs

×

( ∫
∞

0
exp (−νk2/4)Lm−1

l

(
νk2

2

)
k2m−1 dk

)
dβ

=
CaQ

(s!)2
|Sv|(

l+m−1
l

) 2m−1

νm

∫
∞

0
exp (−(2β + ν)a)(β + ν)sβs

×

∫
∞

0
e−y/2Lm−1

l (y)ym−1 dy dβ (4.6)

by a change of variable. But we know from [15] that

Lm−1
l (x)=

1
l!

ex x−(m−1) dl

dx l (e
−x x l+m−1),

and so

P̂a(ν, l) =
CaQ

(s!)2
|Sv|(

l+m−1
l

) 2m−1

νm

∫
∞

0
exp (−(2β + ν)a)(β + ν)sβs

×

∫
∞

0
e−y/2ey y−(m−1) dl

dyl (e
−y yl+m−1)ym−1 dy dβ
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Integrating by parts (4.6) implies that

P̂a(ν̂, l) =
CaQ

(s!)2
|Sv|(

l+m−1
l

) 2m−1

νm

∫
∞

0
exp (−(2β + ν)a)(β + ν)sβs

×

∫
∞

0
ey/2 dl

dyl (e
−y yl+m−1) dy dβ

=
CaQ

(s!)2
|Sv|(

l+m−1
l

) 2m−1

νm

(
−1
2

)l ∫ ∞
0

exp (−(2β + ν)a)(β + ν)sβs

×

∫
∞

0
ey/2e−y yl+m−1 dy dβ

=
CaQ

(s!)2
|Sv|(

l+m−1
l

) 2m−1

νm

(
−1
2

)l ∫ ∞
0

exp (−(2β + ν)a)(β + ν)sβs

×

∫
∞

0
e−y/2 yl+m−1 dy dβ

=
CaQ

(s!)2
|Sv|(

l+m−1
l

) 22m−1(−1)l

νm(l!)
(l + m − 1)!

×

∫
∞

0
exp (−(2β + ν)a)(β + ν)sβs dβ. (4.7)

By repeating a similar argument as in the case of P̂a(0, µ) we can show that
P̂a(ν, l) > 0. This completes the proof of the assertion. 2

We shall prove the tangential convergence of the bounded harmonic functions on
the generalized Siegel domain D.

THEOREM 4.5. Suppose that u is a bounded harmonic function on D and

lim
(X,Z)→∞

u(X, Z , a0)= α

for some a0 > 0. Then for all a > 0, the limit lim(X,Z)→∞ u(X, Z , a) exists and is
equal to α.

PROOF. Let φ be a function in L∞(N ) satisfying (3.1). Consider the right ideal in
L1(N ) given by

I =

{
g ∈ L1(N )

∣∣∣∣ φ ∗ g = α
∫

N
g(X, Z) d X d Z

}
.

By our assumption, Pa0 ∈ I ∩ R. But by Proposition 4.4, P̂a0 does not vanish
anywhere on the Gelfand spectrum m(R) of R. By Proposition 4.3, this would imply
that I = L1(N ). This completes the proof of the theorem. 2
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