TORSION IN K_{0} OF UNIT-REGULAR RINGS*

by K. R. GOODEARL

(Received 14th September 1993)

Abstract

We construct examples of unit-regular rings R for which $K_{0}(R)$ has torsion, thus answering a longstanding open question in the negative. In fact, arbitrary countable torsion abelian groups are embedded in K_{0} of simple unit-regular algebras over arbitrary countable fields. In contrast, in all these examples $K_{0}(R)$ is strictly unperforated.

1991 Mathematics subject classification: 16E50, 16D40, 16E20.

1. Introduction

A longstanding open problem has been whether K_{0} of a unit-regular ring R must be torsionfree. Equivalently, if A and B are finitely generated projective right R-modules and the direct sum of m copies of A is isomorphic to the direct sum of m copies of B, for some positive integer m, is $A \cong B$? (Cf. [8, p. 200] and [4, Open Problem 27, p. 347].) Positive answers are known for various classes of regular rings, including regular rings whose primitive factors are artinian [4, Proposition 6.11], regular rings satisfying general comparability [4, Theorem 8.16], right \aleph_{0}-continuous regular rings [11, Corollary 2.2; 6, Corollary 2.6; 1, Theorem 2.13], and N^{*}-complete regular rings [5, Theorem 2.6]. On the other hand, among non-unit-regular rings some negative examples are known; e.g., every finite cyclic group is isomorphic to K_{0} of some regular ring [4, Example 15.1]. These examples are directly infinite, as are the examples with stable rank 2 constructed in [12, Example 4].

Here we demonstrate that torsion can occur in K_{0} of unit-regular rings; in fact, given an arbitrary countable torsion abelian group G, we construct simple unit-regular rings R for which $K_{0}(R)$ contains a copy of G. Interestingly, torsion is the only source of perforation here, for in these examples $K_{0}(R)$ is strictly unperforated, meaning that whenever $x \in K_{0}(R)$ and $n \in \mathbb{N}$ with $n x>0$, then $x>0$. We proceed by building a tower of several constructions, starting with directly infinite examples of the sort mentioned above. Such an example may be cut down to a countable dimensional algebra over a field, and a construction of Tyukavkin [14] then allows us to represent the latter algebra as a factor of a subalgebra of a direct product of matrix algebras. This produces examples which are at least directly finite. Finally, we use a direct limit construction to

[^0]embed these directly finite examples into simple unit-regular algebras which inherit the nontrivial torsion in K_{0}.

We generally follow the notation and conventions of [4]. In particular, $n A$ denotes the direct sum of n copies of a module A. In Section 4, it will be convenient to work within the monoid of isomorphism classes of finitely generated projective right modules over a ring R. We denote this monoid by $F P_{\cong}^{\cong}(R)$ and write its elements in the form $\langle A\rangle$. Thus $\langle A\rangle$ denotes the isomorphism class of a finitely generated projective module A, as opposed to its stable isomorphism class $[A] \in K_{0}(R)$. The operation in $\mathrm{FP}_{\cong}(R)$ is induced from direct sum: $\langle A\rangle+\langle B\rangle=\langle A \oplus B\rangle$. Any ring homomorphism $\phi: R \rightarrow S$ induces a monoid homomorphism $\mathrm{FP}_{\cong}^{\cong}(\phi): \mathrm{FP}_{\cong}(R) \rightarrow \mathrm{FP} \cong(S)$ sending isomorphism classes $\langle A\rangle$ to isomorphism classes $\left\langle A \otimes_{R} S\right\rangle$, where S is viewed as an R - S-bimodule via ϕ. Thus we obtain a functor $\mathrm{FP}_{\cong(-) \text { from rings to monoids. We shall need two }}$ basic properties of this functor. First, observe that $\mathrm{FP}_{\cong}(-)$ preserves direct limits. Second, when R and S are Morita-equivalent rings, the categories of finitely generated projective right modules over R and S are equivalent, and so $F P_{\cong}^{\cong}(S) \cong F P_{\cong}^{\cong}(R)$. In particular, if $S=M_{n}(R)$ for some n, there is an isomorphism $\mathrm{FP}_{\cong}(S) \rightarrow \mathrm{FP}_{\cong}(R)$ given by $\langle A\rangle \mapsto\left\langle A \otimes_{S} P\right\rangle$, where P is the left-hand column of S. Note that this isomorphism sends $\langle S\rangle$ to $n\langle R\rangle$. On the other hand, the diagonal map $\Delta: R \rightarrow S$ usually does not induce an isomorphism of $\mathrm{FP}_{\cong}(R)$ onto $\mathrm{FP}_{\cong}(S)$: the composition of $\mathrm{FP}_{\cong}(\Delta)$ with the isomorphism just discussed is the endomorphism of $\mathrm{FP}_{\cong}(R)$ given by multiplication by n.

2. Torsion over directly infinite regular rings

Examples are already known of directly infinite regular rings for which K_{0} is a finite cyclic group of arbitrary order [4, Example 15.1]. We build on these examples to obtain larger torsion subgroups, and then we trim the rings to countable examples for use in the following section. If one only wishes to obtain examples of simple unit-regular rings R for which $K_{0}(R)$ contains a finite cyclic subgroup, the following proposition is not needed; it may be replaced by [4, Example 15.1] in the proof of Corollary 2.2, and the latter proof simplifies accordingly.

Proposition 2.1. Given any field F and any torsion abelian group G, there exists a regular F-algebra T such that G embeds in $K_{0}(T)$.

Proof. After replacing G by its divisible hull, we may assume that $G \cong \bigoplus_{\alpha} G_{\alpha}$ where each $G_{\alpha}=\mathbb{Z}\left(p_{\alpha}^{\infty}\right)$ for some prime p_{α}. If each G_{α} embeds in K_{0} of a regular F-algebra T_{α}, then G embeds in $K_{0}\left(\prod_{\alpha} T_{a}\right)$. Thus we need only consider the case that $G=\mathbb{Z}\left(p^{\infty}\right)$ for some prime p.

Set $K=F(x)$ for some indeterminate x; then K is a field which has finite dimensional extension fields of all possible dimensions. For $n \in \mathbb{N}$, choose a field $L_{n} \supset K$ such that $\operatorname{dim}_{K}\left(L_{n}\right)=p^{n}$. The construction in [4, Examples 6.13, 15.1] (with K and L_{n} taking the roles of F^{*} and F) yields a regular K-algebra R_{n} such that $K_{0}\left(R_{n}\right)$ is cyclic of order p^{n},
generated by a class $\left[e_{n} R_{n}\right.$] where e_{n} is an idempotent in R_{n} such that $p^{n}\left(e_{n} R_{n}\right) \oplus R_{n} \cong$ R_{n}. It follows from this isomorphism that $p^{n}\left(e_{n} R_{n}\right)$ is cyclic.

Now set $T=R / I$ where $R=\prod_{n} R_{n}$ and $I=\bigoplus_{n} R_{n}$. We may build some right ideals of R by taking direct products of sequences of right ideals from the rings R_{n}. For $n \geqq k$, there is a principal right ideal in R_{n} isomorphic to $p^{n-k}\left(e_{n} R_{n}\right)$, and so R has a principal right ideal

$$
B_{k} \cong\left(\prod_{n=1}^{k-1} 0\right) \times\left(\prod_{n=k}^{\infty} p^{n-k}\left(e_{n} R_{n}\right)\right) .
$$

In particular, $B_{1} \cong \prod_{n} p^{n-1}\left(e_{n} R_{n}\right)$ and $p B_{1} \cong \prod_{n} p^{n}\left(e_{n} R_{n}\right)$. Since $p^{n}\left(e_{n} R_{n}\right) \oplus R_{n} \cong R_{n}$ for all n, we obtain that $p B_{1} \oplus R \cong R$. Thus $p\left(B_{1} / B_{1} I\right) \oplus T \cong T$, and so $p\left[B_{1} / B_{1} I\right]=0$ in $K_{0}(T)$. If $\left[B_{1} / B_{1} I\right]=0$, then $\left(B_{1} / B_{1} I\right) \oplus m T \cong m T$ for some $m \in \mathbb{N}$. The matrices implementing this isomorphism would lift to matrices over R whose components (projecting onto matrices over the R_{n}) would implement isomorphisms $p^{n-1}\left(e_{n} R_{n}\right) \oplus m R_{n} \cong m R_{n}$ for all but finitely many n. But such isomorphisms do not exist, because $p^{n-1}\left[e_{n} R_{n}\right]$ is a nonzero element of $K_{0}\left(R_{n}\right)$ for every n. Therefore $\left[B_{1} / B_{1} I\right] \neq 0$, and so this element of $K_{0}(T)$ has order p.

For all k, we have

$$
\begin{aligned}
B_{k} & \cong\left(\prod_{n=0}^{k-1} 0\right) \times\left(e_{k} R_{k}\right) \times\left(\prod_{n=k+1}^{\infty} p p^{n-k-1}\left(e_{n} R_{n}\right)\right) \\
& \cong\left(\left(\prod_{n=0}^{k-1} 0\right) \times\left(e_{k} R_{k}\right) \times\left(\prod_{n=k+1}^{\infty} 0\right)\right) \oplus p B_{k+1}
\end{aligned}
$$

whence $B_{k} / B_{k} I \cong p\left(B_{k+1} / B_{k+1} I\right)$ and so $\left[B_{k} / B_{k} I\right]=p\left[B_{k+1} / B_{k+1} I\right]$. Therefore $\mathbb{Z}\left(p^{\infty}\right)$ is isomorphic to the subgroup of $K_{0}(T)$ generated by the elements $\left[B_{k} / B_{k} I\right]$.

Corollary 2.2. Given any countable field F and any countable torsion abelian group G, there exists a countable regular F-algebra T such that G embeds in $K_{0}(T)$.

Proof. By Proposition 2.1, there exists a regular F-algebra U such that G is isomorphic to a subgroup H of $K_{0}(U)$. List the elements of H as x_{1}, x_{2}, \ldots. Then H can be presented with the x_{n} as generators and countably many relations, corresponding to countably many equations σ_{i} each of which says that some \mathbb{Z}-linear combination of finitely many of the x_{n} vanishes. Each σ_{i} can be rewritten in the form

$$
\sum_{n=1}^{\infty} a_{i n} x_{n}=\sum_{n=1}^{\infty} b_{i n} x_{n}
$$

where the $a_{i n}$ and $b_{i n}$ are nonnegative integers, all but finitely many of which vanish.

Write each $x_{n}=\left[e_{n}\left(t_{n} U\right)\right]-\left[f_{n}\left(t_{n} U\right)\right]$ for some $t_{n} \in \mathbb{N}$ and some idempotent matrices $e_{n}, f_{n} \in M_{t_{n}}(U)$. Each equation σ_{i} corresponds to an isomorphism

$$
\begin{aligned}
\left(\bigoplus_{n=1}^{\infty} a_{i n}\left(e_{n}\left(t_{n} U\right)\right)\right) & \oplus\left(\bigoplus_{n=1}^{\infty} b_{i n}\left(f_{n}\left(t_{n} U\right)\right)\right) \oplus c_{i} U \\
& \cong\left(\bigoplus_{n=1}^{\infty} b_{i n}\left(e_{n}\left(t_{n} U\right)\right)\right) \oplus\left(\bigoplus_{n=1}^{\infty} a_{i n}\left(f_{n}\left(t_{n} U\right)\right)\right) \oplus c_{i} U
\end{aligned}
$$

for some $c_{i} \in \mathbb{N}$. Such an isomorphism can be implemented by a pair of matrices $u_{i}, v_{i} \in M_{s_{i}}(U)$ where $s_{i}=c_{i}+\sum_{n}\left(a_{i n}+b_{i n}\right) t_{n}$.

Let T_{0} be the F-subalgebra of U generated by the entries of all the matrices $e_{n}, f_{n}, u_{i}, v_{i}$. Since F is countable, so is T_{0}. Let G_{0} be the subgroup of $K_{0}\left(T_{0}\right)$ generated by the elements $y_{n}=\left[e_{n}\left(t_{n} T_{0}\right)\right]-\left[f_{n}\left(t_{n} T_{0}\right)\right]$. Since all the u_{i} and v_{i} are matrices over T_{0}, the y_{n} satisfy the same relations as the x_{n}. Thus K_{0} of the inclusion map $T_{0} \rightarrow U$ maps G_{0} isomorphically onto H.

Finally, choose countable F-subalgebras $T_{0} \subseteq T_{1} \subseteq T_{2} \subseteq \cdots \subseteq U$ such that each element of T_{j} has a quasi-inverse in T_{j+1}. Then $T=\bigcup_{j} T_{j}$ is a countable regular F-subalgebra of U. Since the inclusion map $T_{0} \rightarrow U$ factors through the inclusion map $\eta: T_{0} \rightarrow T$, we conclude that $K_{0}(\eta)$ is injective on G_{0}. Therefore $K_{0}(\eta)\left(G_{0}\right) \cong G_{0} \cong G$.

3. Transfer to residually finite dimensional algebras

Our next step is to build residually finite dimensional regular algebras S for which $K_{0}(S)$ contains an arbitrary countable torsion subgroup. This is achieved by applying a construction of Tyukavkin [14] as developed in [10, Section 2] to the algebras produced in Corollary 2.2. Recall that an algebra A over a field F is residually finite dimensional provided the intersection of the cofinite dimensional ideals of A is zero. We shall say that A is countably residually finite dimensional if some intersection of countably many cofinite dimensional ideals of A is zero. Note that this occurs if and only if A can be embedded in a direct product of countably many full matrix algebras over F.

Throughout this section, let F be a field, $B(F)$ the algebra of all row- and columnfinite $\omega \times \omega$ matrices over F, and T a regular F-subalgebra of $B(F)$. Later we shall assume that F is countable and T is one of the examples produced in Corollary 2.2; any such algebra T-in fact, any countable dimensional F-algebra-can be embedded in $B(F)$ by [10, Proposition 2.1]. We use Tyukavkin's construction to build a subalgebra of the algebra $U=\prod_{n=1}^{\infty} M_{n}(F)$ with a factor algebra isomorphic to T. Namely, let S be the set of those sequences $x=\left(x_{n}\right) \in U$ for which there is an element $\phi(x) \in T$ satisfying the following property: for all $k \in \mathbb{N}$, there exists an index $m_{k} \geqq k$ such that for $n \geqq m_{k}$, all entries of the first k rows and columns of x_{n} agree with the corresponding entries of $\phi(x)$. Then S is an F-subalgebra of U and ϕ is a well-defined surjective F-algebra
homomorphism of S onto T. Moreover, S is regular, and the ideal $I=\operatorname{ker}(\phi)$ satisfies $I U I \subseteq I$. Let us identify T with S / I via ϕ; then we may view ϕ as the quotient map.

Each of the projection maps $S \rightarrow M_{n}(F)$ induces a functor $\bmod -S \rightarrow \bmod -M_{n}(F)$. Composing with the length function, we obtain a function d_{n} from the finitely generated right S-modules to \mathbb{Z}^{+}which is invariant under isomorphism and additive on direct sums, and has the additional property that $d_{n}(S)=n$. Note that $d_{n}(x S)=\operatorname{rank}\left(x_{n}\right)$ for all $x \in S$.

Lemma 3.1. Let A and B be finitely generated projective right S-modules such that $A I=A$ and $B I=B$.
(a) If $A \otimes_{S} U \cong B \otimes_{S} U$, then $A \cong B$.
(b) If t is a positive integer that divides $d_{n}(A)$ for all n, then A has a submodule C such that $t C \cong A$.
(c) If c_{1}, c_{2}, \ldots is a bounded sequence of nonnegative integers, there exists a finitely generated projective right S-module C such that $C I=C$ and $d_{n}(C)=c_{n}$ for all n.

Proof. We may assume that $A=e(m S)$ and $B=f(m S)$ for some $m \in \mathbb{N}$ and some idempotent matrices $e, f \in M_{m}(S)$. Since $A I=A$, we find that $e \in M_{m}(I)$, and similarly $f \in M_{m}(I)$.
(a) We are given $e(m U) \cong A \otimes_{S} U \cong B \otimes_{S} U \cong f(m U)$, and so there exist $u \in e M_{m}(U) f$ and $v \in f M_{m}(U) e$ such that $u v=e$ and $v u=f$. Since $I U I \subseteq I \subseteq S$, we see that $u, v \in M_{m}(S)$, and consequently $A \cong B$.
(b) After identifying $M_{m}(U)$ with $\prod_{n} M_{m n}(F)$, we have $e=\left(e_{1}, e_{2}, \ldots\right)$ for some idempotent matrices $e_{n} \in M_{m n}(F)$ such that $\operatorname{rank}\left(e_{n}\right)=d_{n}(A)$ is divisible by t. Hence, each e_{n} is a sum of t pairwise orthogonal equivalent idempotents. Thus, at least in $M_{m}(U)$, we have $e=f_{1}+\cdots+f_{t}$ for some pairwise orthogonal equivalent idempotents f_{i}. Observe that $f_{i}=e f_{i} e \in M_{m}(I) M_{m}(U) M_{m}(I) \subseteq M_{m}(S)$. Now $A=f_{1}(m S) \oplus \cdots \oplus f_{t}(m S)$, and each $f_{i}(m U) \cong f_{1}(m U)$. By part (a), each $f_{i}(m S) \cong f_{1}(m S)$, and thus $C=f_{1}(m S)$ is the desired submodule of A.
(c) Since the sequence $\left(c_{1}, c_{2}, \ldots\right)$ is a finite sum of 0,1 sequences, it suffices to consider the case that all $c_{n} \in\{0,1\}$. Now define matrices $x_{n} \in M_{n}(F)$ as follows:

$$
x_{n}= \begin{cases}0 & \text { if } c_{n}=0 \\ e_{n n} & \text { if } c_{n}=1\end{cases}
$$

where $e_{n n}$ denotes the usual matrix unit. This gives us a sequence $x=\left(x_{n}\right) \in U$, and we observe that $x \in I$. Therefore $x S$ is a finitely generated projective right S-module such that $(x S) I=x S$ and $d_{n}(x S)=\operatorname{rank}\left(x_{n}\right)=c_{n}$ for all n.

Proposition 3.2. The restriction of $K_{0}(\phi)$ to the torsion subgroup of $K_{0}(S)$ provides an isomorphism onto the torsion subgroup of $K_{0}(T)$.

Proof. First consider a torsion element $x \in \operatorname{ker} K_{0}(\phi)$. By [4, Proposition 15.15],
$x=[A]-[B]$ for some finitely generated projective right S-modules A and B such that $A I=A$ and $B I=B$. Further, $t x=0$ for some $t \in \mathbb{N}$, and so $t A \oplus k S \cong t B \oplus k S$ for some $k \in \mathbb{N}$. It follows that $d_{n}(A)=d_{n}(B)$ for all n, and hence $A \otimes_{S} U \cong B \otimes_{s} U$. Then $A \cong B$ by Lemma 3.1, and so $x=0$. Therefore $K_{0}(\phi)$ is injective on the torsion subgroup of $K_{0}(S)$.

Now consider a torsion element $y \in K_{0}(T)$. Then $y=\left[A^{\prime}\right]-\left[B^{\prime}\right]$ for some finitely generated projective right T-modules A^{\prime} and B^{\prime}, and $t A^{\prime} \oplus k T \cong t B^{\prime} \oplus k T$ for some $t, k \in \mathbb{N}$. Since $y=\left[A^{\prime} \oplus k T\right]-\left[B^{\prime} \oplus k T\right]$ and $t\left(A^{\prime} \oplus k T\right) \cong t\left(B^{\prime} \oplus k T\right)$, there is no loss of generality in assuming that $t A^{\prime} \cong t B^{\prime}$.

Choose finitely generated projective right S-modules A and B such that $A / A I \cong A^{\prime}$ and $B / B I \cong B^{\prime}$; then $(t A) /(t A) I \cong(t B) /(t B) I$. By [4, Proposition 2.19], there exist decompositions $t A=A_{1} \oplus A_{2}$ and $t B=B_{1} \oplus B_{2}$ such that $A_{1} \cong B_{1}$ while $A_{2} I=A_{2}$ and $B_{2} I=B_{2}$. Then $t A \oplus B_{2} \cong t B \oplus A_{2}$, from which we see that $d_{n}\left(B_{2}\right) \equiv d_{n}\left(A_{2}\right)(\bmod t)$ for all n. Choose integers $c_{n} \in\{0,1, \ldots, t-1\}$ such that $d_{n}\left(A_{2}\right)+c_{n}$ is divisible by t for all n. By Lemma 3.1, there is a finitely generated projective right S-module C such that $C I=C$ and $d_{n}(C)=c_{n}$ for all n. Hence, $d_{n}\left(A_{2} \oplus C\right)$ is divisible by t for all n. Since $d_{n}\left(B_{2}\right) \equiv d_{n}\left(A_{2}\right)$ $(\bmod t)$ for all n, we also have $d_{n}\left(B_{2} \oplus C\right)$ divisible by t for all n.

By Lemma 3.1, $A_{2} \oplus C \cong t D$ and $B_{2} \oplus C \cong t E$ for some finitely generated projective right S-modules D and E; moreover, $D I=D$ and $E I=E$. Hence, the element $z=$ $[A \oplus E]-[B \oplus D] \in K_{0}(S)$ satisfies

$$
K_{0}(\phi)(z)=[A / A I]-[B / B I]=\left[A^{\prime}\right]-\left[B^{\prime}\right]=y .
$$

On the other hand, $t(A \oplus E) \cong t A \oplus B_{2} \oplus C \cong t B \oplus A_{2} \oplus C \cong t(B \oplus D)$, and so $t z=0$. Therefore $K_{0}(\phi)$ maps the torsion subgroup of $K_{0}(S)$ onto the torsion subgroup of $K_{0}(T)$.

4. Transfer to unit-regular algebras

Our final construction step provides a means of embedding a countably residually finite dimensional regular algebra into a simple unit-regular algebra while preserving the torsion in K_{0}. This construction is an analog of the C^{*}-algebra construction investigated in [7].

Throughout this section, let S be a countably residually finite dimensional regular algebra over a field F. Later, we shall let S be one of the algebras produced by the Tyukavkin construction. Since finite dimensional algebras embed in matrix algebras, there exists a countable sequence of F-algebra homomorphisms $\delta_{n}: S \rightarrow M_{t(n)}(F)$ such that $\bigcap_{n=1}^{\infty} \operatorname{ker}\left(\delta_{n}\right)=0$. Replace the sequence $\delta_{1}, \delta_{2}, \ldots$ by a sequence in which each map is repeated infinitely often, say $\delta_{1}, \delta_{1}, \delta_{2}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \ldots$. Hence, after renumbering we may assume that $\bigcap_{n=k}^{\infty} \operatorname{ker}\left(\delta_{n}\right)=0$ for all k.

Identify F with the subalgebra $F \cdot 1 \subseteq S$; consequently, each $M_{t(n)}(F)$ is identified with a subalgebra of $M_{t(n)}(S)$, and so we may view δ_{n} as a homomorphism $S \rightarrow M_{t(n)}(S)$. We shall also use δ_{n} to denote the induced homomorphism $M_{k}(S) \rightarrow M_{k t(n)}(F) \rightarrow M_{k t(n)}(S)$ for any k.

Set $v(1)=1$ and $v(n+1)=v(n)(1+t(n))$ for $n=1,2, \ldots$. Moreover, for $n \in \mathbb{N}$, set $R_{n}=M_{v(n)}(S)$, let $\phi_{n}: R_{n} \rightarrow R_{n+1}$ be the block diagonal map given by the rule

$$
\phi_{n}(a)=\left(\begin{array}{cc}
a & 0 \\
0 & \delta_{n}(a)
\end{array}\right)
$$

and let $\phi_{n k}=\phi_{n-1} \phi_{n-2} \ldots \phi_{k}: R_{k} \rightarrow R_{n}$ for $k<n$. Finally, define R to be the direct limit of the sequence

$$
R_{1} \xrightarrow{\phi_{1}} R_{2} \xrightarrow{\phi_{2}} \cdots,
$$

and let $\eta_{1}: S=R_{1} \rightarrow R$ be the natural embedding. Observe that

$$
\phi_{k+1} \phi_{k}(a)=\left(\begin{array}{cc}
\left(\begin{array}{cc}
a & 0 \\
0 & \delta_{k}(a)
\end{array}\right) & 0 \\
& 0
\end{array} \quad \delta_{k+1}\left(\begin{array}{cc}
a & 0 \\
0 & \delta_{k}(a)
\end{array}\right) ~=\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & \delta_{k}(a) & 0 & 0 \\
0 & 0 & \delta_{k+1}(a) & 0 \\
0 & 0 & 0 & \delta_{k+1} \delta_{k}(a)
\end{array}\right)\right.
$$

for $a \in R_{k}$, and similarly for $\phi_{k+2} \phi_{k+1} \phi_{k}(a)$ etc. In particular, for any $n>k$ the matrix $\phi_{n k}(a)$ can be written as a block diagonal matrix in which $a, \delta_{k}(a), \delta_{k+1}(a), \ldots, \delta_{n-1}(a)$ all appear as blocks.

Now set $V=\mathrm{FP}_{\cong}^{\cong}(S)$ and $u=\langle S\rangle \in V$. Note that for any $v \in V$, there exist $v^{\prime} \in V$ and $m \in \mathbb{N}$ such that $v+v^{\prime}=m u$. As noted in Section 1, the category equivalences mod- $R_{n} \rightarrow$ mod- S induce monoid isomorphisms $\mu_{n}: \mathrm{FP}_{\cong}^{\cong}\left(R_{n}\right) \rightarrow V$ such that $\mu_{n}\left(\left\langle R_{n}\right\rangle\right)=v(n) u$. In particular, if p_{n} denotes the matrix unit $e_{11} \in R_{n}$, then $\mu_{n}\left(\left\langle p_{n} R_{n}\right\rangle\right)=u$. Set f_{n} equal to the composition

$$
V \xrightarrow{\mu_{n}^{-1}} F P_{\cong}^{\cong}\left(R_{n}\right) \xrightarrow{F P_{\cong}\left(\phi_{n}\right)} F P_{\cong}^{\cong}\left(R_{n+1}\right) \xrightarrow{\mu_{n+1}} V,
$$

and set $f_{n k}=f_{n-1} f_{n-2} \ldots f_{k}$ for $n>k$. Note that $\phi_{n}\left(p_{n}\right)$ is a diagonal matrix in which 1 appears $1+t(n)$ times and all other entries are 0 . Hence,

$$
f_{n}(u)=\mu_{n+1}\left(\left\langle\phi_{n}\left(p_{n}\right) R_{n+1}\right\rangle\right)=\mu_{n+1}\left((1+t(n))\left\langle p_{n+1} R_{n+1}\right\rangle\right)=(1+t(n)) u .
$$

Since the functor $\mathrm{FP}_{\cong}^{\cong(-) \text { preserves direct limits, } \mathrm{FP}_{\cong}^{\cong(R)} \text { is isomorphic to the monoid }}$

$$
W=\underline{\longrightarrow}\left(V \xrightarrow{\lim _{4}} V \xrightarrow{f_{3}} \cdots\right) .
$$

Finally, set s_{n} equal to the composition

$$
V \xrightarrow{\mu_{n}^{-1}} F P_{\cong}\left(R_{n}\right) \xrightarrow{F P_{\cong}\left(\delta_{n}\right)} F P_{\cong}\left(M_{v(n) t(n)}(F)\right) \xrightarrow{\text { length }} \mathbb{Z}^{+},
$$

and observe that $s_{n}(v(n) u)=v(n) t(n)$, whence $s_{n}(u)=t(n)$. Since the isomorphism μ_{n}^{-1} can be given by the rule $\langle A\rangle \mapsto\left\langle A \bigotimes_{s} Q\right\rangle$ where Q is the top row of R_{n}, we see that

$$
s_{n}(\langle e(r S)\rangle)=\operatorname{rank} \delta_{n}(e)
$$

for all idempotent matrices $e \in M_{r}(S)$.

Lemma 4.1. Let $v \in V$ and $n>k$ in \mathbb{N}.
(a) If $s_{i}(v)=0$ for all $i>k$, then $v=0$.
(b) $f_{n k}(v)=v+\left(\sum_{i=k}^{n-1} s_{i}(v) \prod_{i=i+1}^{n-1}(1+t(j))\right) u$.

Proof. (a) This follows from the fact that $\bigcap_{i=k+1}^{\infty} \operatorname{ker}\left(\delta_{i}\right)=0$.
(b) Observe first that $f_{i}(w)=w+s_{i}(w) u$ for all $w \in V$ and $i \in \mathbb{N}$. The given formula for $f_{n k}(v)$ follows by an obvious induction on n.

Proposition 4.2. The algebra R is simple and unit-regular, and $K_{0}(R)$ is strictly unperforated. Moreover, $K_{0}\left(\eta_{1}\right)$ restricts to an embedding of the torsion subgroup of $K_{0}(S)$ into $K_{0}(R)$.

Proof. Obviously R is regular. To prove simplicity, it suffices to show that for any nonzero element $a \in R_{k}$, there exists $n>k$ such that $R_{n} \phi_{n k}(a) R_{n}=R_{n}$. Since $\bigcap_{n=k}^{\infty} \operatorname{ker}\left(\delta_{n}\right)=0$, there is an index $n>k$ such that $\delta_{n-1}(a) \neq 0$. Now $\delta_{n-1}(a)$ is a matrix with scalar entries, and so at least one entry is invertible. Further, $\delta_{n-1}(a)$ appears as a block in $\phi_{n k}(a)$. Thus $\phi_{n k}(a)$ has at least one invertible entry, and hence $R_{n} \phi_{n k}(a) R_{n}=R_{n}$ as desired. Therefore R is simple.

To prove that R is unit-regular, it suffices to show that the monoid W has cancellation. Hence, it is enough to show that for any $k \in \mathbb{N}$ and any $x, y, v \in V$ satisfying $x+v=y+v$, there exists $n>k$ such that $f_{n k}(x)=f_{n k}(y)$. There exist $v^{\prime} \in V$ and $m \in \mathbb{N}$ such that $v+v^{\prime}=m u$, whence $x+m u=y+m u$. Moreover, $s_{i}(x)=s_{i}(y)$ for all i. If $x=0$, then $s_{i}(y)=0$ for all i, and consequently $y=0$ by Lemma 4.1. Thus we may assume that $x \neq 0$.

Now there exists an integer $\ell \geqq k$ such that $s_{\ell}(x)>0$. Choose an integer $n \geqq \ell+2$ such that $2^{n-\ell-1} \geqq m$. In view of Lemma 4.1, $f_{n k}(x)=x+h u$ for some integer h such that

$$
h \geqq s_{\ell}(x) \prod_{j=\ell+1}^{n-1}(1+t(j)) \geqq 2^{n-\ell-1} \geqq m .
$$

Since $s_{i}(y)=s_{i}(x)$ for all i, it also follows from Lemma 4.1 that $f_{n k}(y)=y+h u$. Thus

$$
f_{n k}(x)=(x+m u)+(h-m) u=(y+m u)+(h-m) u=f_{n k}(y),
$$

as desired. Therefore R is unit-regular.

Since R is unit-regular, $W \cong K_{0}(R)^{+}$. Thus to prove that $K_{0}(R)$ is strictly unperforated, it suffices to show that for any $k, m \in \mathbb{N}$ and any $x, y, v \in V$ such that $m x+v=m y$ and $v \neq 0$, there exist $n>k$ and a nonzero element $v^{\prime} \in V$ such that $f_{n k}(x)+v^{\prime}=f_{n k}(y)$. There exist $x^{\prime} \in V$ and $p \in \mathbb{N}$ such that $x+x^{\prime}=p u$, and there exists an integer $\ell \geqq k$ such that $s_{\ell}(v)>0$. Choose an integer $n \geqq \ell+2$ such that $2^{n-\ell-1}>m p$. As above, it follows from Lemma 4.1 that $f_{n k}(v)=v+h u$ for some integer $h>m p$. Further, $f_{n k}(x)=x+a u$ and $f_{n k}(y)=y+b u$ for some $a, b \in \mathbb{Z}^{+}$such that

$$
m b=\sum_{i=k}^{n-1} s_{i}(m y) \prod_{j=i+1}^{n-1}(1+t(j))=\sum_{i=k}^{n-1} s_{i}(m x+v) \prod_{j=i+1}^{n-1}(1+t(j))=m a+h .
$$

Hence, $b-a=h / m>p$, and so

$$
f_{n k}(x)+x^{\prime}+y+(b-a-p) u=x+x^{\prime}+y+(b-p) u=y+b u=f_{n k}(y) ;
$$

moreover, the element $x^{\prime}+y+(b-a-p) u$ is nonzero because $b-a-p>0$. Therefore $K_{0}(R)$ is strictly unperforated.

Finally, to prove that $K_{0}\left(\eta_{1}\right)$ is injective on the torsion subgroup of $K_{0}(S)$, it suffices to show that each $K_{0}\left(\phi_{n}\right)$ is injective on the torsion subgroup of $K_{0}\left(R_{n}\right)$. Hence, it is enough to show that whenever $m, n \in \mathbb{N}$ and $x, y, v, v^{\prime} \in V$ with $m x+v=m y+v$ and $f_{n}(x)+v^{\prime}=f_{n}(y)+v^{\prime}$, there exists $w \in V$ such that $x+w=y+w$. Applying s_{n} to the equation $m x+v=m y+v$ and cancelling $s_{n}(v), m$, we obtain $s_{n}(x)=s_{n}(y)$. Setting $w=$ $s_{n}(x) u+v^{\prime}$, we conclude that

$$
x+w=f_{n}(x)+v^{\prime}=f_{n}(y)+v^{\prime}=y+w,
$$

as desired. Therefore $K_{0}\left(\eta_{1}\right)$ is injective on the torsion subgroup of $K_{0}(S)$.
Ara has pointed out that the algebra R has a unique rank function N, which may be described as follows. For $a \in R_{k}$ and $n>k$, observe that

$$
\phi_{n k}(a)=\left(\begin{array}{cc}
a & 0 \\
0 & \psi_{n k}(a)
\end{array}\right)
$$

where $\psi_{n k}(a) \in M_{v(n)-v(k)}(F) \subseteq M_{v(n)-v(k)}(S)$; if $a^{\prime} \in R$ is the image of a, then

$$
N\left(a^{\prime}\right)=\lim _{n \rightarrow \infty} \frac{\operatorname{rank} \psi_{n k}(a)}{v(n)}
$$

5. Summary

The results of Sections 2-4 immediately combine to produce the desired examples.

Namely, given any countable field F and any countable torsion abelian group G, Corollary 2.2 provides us with a countable regular F-algebra T such that G embeds in $K_{0}(T)$. By [10, Proposition 2.1], T can be embedded in $B(F)$, and so we can construct a countably residually finite dimensional regular F-algebra S as in Section 3. By Proposition 3.2, the torsion subgroups of $K_{0}(S)$ and $K_{0}(T)$ are isomorphic, and so G embeds in $K_{0}(S)$. Finally, we use S to construct an algebra R as in Section 4; the desired properties of R are given by Proposition 4.2. To summarize:

Theorem 5.1. Given any countable field F and any countable torsion abelian group G, there exists a simple unit-regular F-algebra R such that G embeds in $K_{0}(R)$ and $K_{0}(R)$ is strictly unperforated.

Theorem 5.1 provides a negative solution to [4, Open Problem 27], but it immediately suggests a substitute problem: Is K_{0} of every simple unit-regular ring necessarily strictly unperforated? An appropriate general version of this question for non-simple unit-regular rings is the following: If A and B are finitely generated projective modules over a unit-regular ring and $(n+1) A \lesssim n B$ for some positive integer n, is $A \leqq B$?

Another obvious question is whether countability is necessary here: If R is a simple unit-regular ring with uncountable center, is $K_{0}(R)$ necessarily torsionfree or even unperforated? As "moral support" for a positive answer to this last question, recall the role of countability in various unit-regularity problems. For instance, the first example of a regular, non-unit-regular ring with a rank function was an algebra over a countable field [3], whereas any regular ring with a rank function which is an algebra over an uncountable field must be unit-regular [9, Corollary 5.3]. Further, any simple regular ring R with uncountable center such that all matrix rings $M_{n}(R)$ are directly finite is unit-regular [9, Corollary 5.4], while the question whether all directly finite simple regular rings are unit-regular [4, Open Problem 3] remains open.

O'Meara has asked whether unperforatedness might provide a means to prove unitregularity of directly finite simple regular rings. He showed that a directly finite simple regular ring R is unit-regular provided R satisfies the following property: whenever $x, y \in R$ and $n \in \mathbb{N}$ such that $n(x R) \leqq n(y R)$, then $x R \leqq y R$ [13, Corollary 3]. In fact, in view of a general cancellation result of Blackadar [2, Theorem 3.1.4], it would suffice to know that $n(x R) \cong n(y R)$ always implies $x R \cong y R$. However, our examples show that neither of the above properties hold for all simple unit-regular rings, and hence they do not hold for all directly finite simple regular rings.

We conclude by mentioning the matrix-isomorphism problem for the class of unitregular rings (cf. [4, Open Problem 47]): If R and S are unit-regular rings such that $M_{n}(R) \cong M_{n}(S)$ for some positive integer n, is $R \cong S$? One might hope to obtain a counterexample from Theorem 5.1. By that theorem, there exists a simple unit regular ring R with finitely generated projective modules A_{1} and A_{2} such that $n A_{1} \cong n A_{2}$ but $A_{1} \nsubseteq A_{2}$, and the rings $E_{i}=\operatorname{End}_{R}\left(A_{i}\right)$ are then simple unit-regular rings such that $M_{n}\left(E_{1}\right) \cong M_{n}\left(E_{2}\right)$. However, it is unclear whether or not E_{1} and E_{2} are isomorphic. We leave this question to the reader.

REFERENCES

1. P. Ara, Aleph-nought-continuous regular rings, J. Algebra 109 (1987), 115-126.
2. B. Blackadar, Rational C^{*}-algebras and non-stable K-theory, Rocky Mountain J. Math. 20 (1990), 285-316.
3. C.-L. Chuang and P.-H. Lee, On regular subdirect products of simple artinian rings, Pacific J. Math. 142 (1990), 17-21.
4. K. R. Goodearl, Von Neumann Regular Rings (Pitman, London, 1979); Second Ed. (Krieger, Melbourne, FL, 1991).
5. K. R. Goodearl, Metrically complete regular rings, Trans. Amer. Math. Soc. 272 (1982), 275-310.
6. K. R. Goodearl, Directly finite aleph-nought-continuous regular rings, Pacific J. Math. 100 (1982), 105-122.
7. K. R. Goodearl, Notes on a class of simple C^{*}-algebras with real rank zero, Publ. Mat. (Barcelona) 36 (1992), 637-654.
8. K. R. Goodearl and D. Handelman, Rank functions and K_{0} of regular rings, J. Pure Appl. Algebra 7 (1976), 195-216.
9. K. R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Appl. Algebra 54 (1988), 261-287.
10. K. R. Goodearl, P. Menal and J. Moncasi, Free and residually artinian regular rings, J. Algebra 156 (1993), 407-432.
11. D. Handelman, D. Higgs and J. Lawrence, Directed abelian groups, countably continuous rings, and Rickart C*-algebras, J. London Math. Soc. (2) 21 (1980), 193-202.
12. P. Menal and J. Moncast, On regular rings with stable range 2, J. Pure Appl. Algebra 24 (1982), 25-40.
13. K. C. O'Meara, Simple regular rings satisfying weak comparability, J. Algebra 141 (1991), 162-186.
14. D. V. Tyukavkin, Regular rings with involution (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 39, No. 3 (1984), 29-32; English transl.: Moscow Univ. Math. Bull. 39 (1984), 38-41.

Department of Mathematics

University of California
Santa Barbara, CA 93106
U.S.A.

[^0]: *This research was partially supported by research grants from the National Science Foundation.

