ON A CLASS OF GENERALIZED FUNCTIONS

by K. ROWLANDS

(Received 4 November, 1974)

1. Introduction. Let $C_0^{\infty}(J)$ be the complex linear space of all infinitely differentiable functions φ on the interval J = (a, b) $(-\infty \le a < 0 < b \le +\infty)$ such that $\varphi^{(k)}(0) = 0$ for all non-negative integers k. Krabbe ([2], [3]) has defined a class of generalized functions on J as an algebra \mathscr{M} of linear operators on $C_0^{\infty}(J)$ and has developed an operational calculus for these operators[†]. Shultz ([6], Theorem 2.18) has recently shown that \mathscr{M} is isomorphic to $\mathscr{D}'_+ \times \mathscr{D}'_-$, where \mathscr{D}'_+ (resp. \mathscr{D}'_-) is the set of all distributions on J whose supports are contained in $J_+ = [0, b) (J_- = (a, 0])$. In this paper we combine some of the ideas developed in [4] with results established in an earlier paper by Shultz to give an easier proof of the above result. Our methods also give a more direct proof of the main result (Theorem 1.22) of [2].

In the sequel, unless there is ambiguity, we shall denote $C_0^{\infty}(J)$ simply by C_0^{∞} .

2. The algebra of generalized functions. We give C_0^{∞} the topology of uniform convergence for all derivatives on compact subsets of J; this topology is defined by the semi-norms

$$r_{m,n}(\varphi) = \max_{k=0,...,m} \left(\max_{a_n \leq u \leq b_n} |\varphi^{(k)}(u)| \right) \quad (m = 0, 1, ...; n = 1, 2, ...),$$

where

$$a_n = \begin{cases} a(1-1/n) & \text{if } a > -\infty \\ -n & \text{if } a = -\infty, \end{cases} \text{ and } b_n = \begin{cases} b(1-1/n) & \text{if } b < +\infty \\ n & \text{if } b = +\infty. \end{cases}$$

In this way C_0^{∞} becomes a Fréchet space. In the sequel, the topology defined by the seminorms $\{r_{m,n}\}$ will be referred to as the C^{∞} topology on C_0^{∞} .

In ([2], [3]), Krabbe has defined the product of $\varphi, \psi \in C_0^{\infty}$ to be the function $\varphi \wedge \psi$ given by

$$(\varphi \wedge \psi)(t) = \int_0^t \varphi(t-u)\psi(u)du \quad (t \in J).$$
⁽¹⁾

For each φ in C_0^{∞} , define φ_+ (resp. φ_-) to be the function which coincides with φ on J_+ (J_-) and vanishes on $J_ (J_+)$, and let $(C_0^{\infty})_+$ $((C_0^{\infty})_-)$ be the set of all such functions. Then $C_0^{\infty} = (C_0^{\infty})_+ \oplus (C_0^{\infty})_-$. Also, it is easy to see that

$$\varphi \wedge \psi = \varphi_+ * \psi_+ - \varphi_- * \psi_-, \tag{2}$$

where * denotes the convolution product, so that properties of the multiplicative operation \wedge may be deduced from the corresponding properties of the convolution product. Thus, in view of the relationship between the operations \wedge and * given by (2), there seems to be no advantage in using both symbols, and so in the sequel we shall denote the product $\varphi \wedge \psi$ by $\varphi * \psi$.

† It should be mentioned that Krabbe's theory of generalized functions has some resemblances to an earlier algebraic theory of generalized functions due to Weston [9].

K. ROWLANDS

It is straightforward to prove that, for any non-negative integer k,

$$(\varphi * \psi)^{(k)}(t) = (\varphi * \psi^{(k)})(t) \quad (t \in J).$$
(3)

With multiplication of functions defined according to (1), C_0^{∞} becomes a linear, associative and commutative algebra; in fact, C_0^{∞} is an ideal in the algebra L_1^{loc} of all complex-valued functions on J which are Lebesgue-integrable over every compact subinterval of J. Multiplication is jointly continuous in C_0^{∞} ; this follows immediately from the inequality

 $r_{m,n}(\varphi * \psi) \leq (b_n + |a_n|) r_{0,n}(\varphi) r_{m,n}(\psi).$

We define a sequence $\{\varphi_n\}$ of *odd* functions in $C_0^{\infty}(-\infty,\infty)$ by the formula

$$\varphi_n(t) = \begin{cases} \frac{1}{\sqrt{(4\pi n t^3)}} e^{-1/4nt} & (t > 0), \\ 0 & (t = 0), \end{cases}$$

and note the following properties of $\{\varphi_n\}$:

- (i) $\int_0^{\infty} \varphi_n(t) dt = 1$ (n = 1, 2, ...);
- (ii) for any $\delta > 0$, $\lim_{n \to \infty} \int_{\delta}^{\infty} \varphi_n(t) dt = 0$.

Let $\{\eta_n\}$ denote the restriction of φ_n to J. Then we have the following

LEMMA 1. The sequence $\{\eta_n\}$ is an approximate identity for C_0^{∞} .

Proof. We have to show that, for any ψ in C_0^{∞} ,

$$\psi = \lim_{n \to \infty} \psi * \eta_n. \tag{4}$$

By (2), to prove (4) it is sufficient to show that

$$\psi_{+} = \lim_{n \to \infty} \psi_{+} * (\eta_{n})_{+}, \qquad (5)$$

and

$$\psi_{-} = \lim_{n \to \infty} \psi_{-} * (\eta_{n})_{-}.$$
(6)

We shall prove only (6); (5) may be proved using a similar method.

Let $\varepsilon > 0$, p be any positive integer, and m any non-negative integer. Since $\psi^{(k)}(0) = 0$ (k = 0, 1, ...), there exists a positive number δ'_k such that $|\psi^{(k)}(v)| < \varepsilon$ whenever $-\delta'_k \leq v \leq 0$. Let $\delta' = \min(\delta'_0, ..., \delta'_m)$. By uniform continuity, there exists a positive number δ'_k such that

$$\left|\psi_{-}^{(k)}(u-v)-\psi_{-}^{(k)}(u)\right|<\varepsilon$$

whenever $a_p \leq u \leq 0$ and $-\delta_k'' \leq v \leq 0$. Let $\delta'' = \min(\delta_0'', \dots, \delta_m')$, and let $\delta = \min(\delta', \delta'')$.

38

Now, since $(\eta_n)_{-}(t) = \varphi_n(t)$ for t in J_{-} , we have

$$r_{m,p}(\psi_{-}*(\eta_n)_{-}+\psi_{-})=\max_{k=0,\ldots,m}\left(\max_{a_p\leq u\leq 0}\left|\int_{u}^{0}\psi_{-}^{(k)}(u-v)\varphi_n(v)dv+\psi_{-}^{(k)}(u)\right|\right).$$

If $-\delta \leq u \leq 0$, then

$$\int_{u}^{0} \psi_{-}^{(k)}(u-v)\varphi_{n}(v)dv + \psi_{-}^{(k)}(u) \bigg| < 2\varepsilon$$

for k = 0, ..., m. If $a_p \leq u \leq -\delta$, then

$$\left| \int_{u}^{0} \psi_{-}^{(k)}(u-v)\varphi_{n}(v)dv + \psi_{-}^{(k)}(u) \right| = \left| \int_{u}^{0} \psi_{-}^{(k)}(u-v)\varphi_{n}(v)dv - \int_{-\infty}^{0} \psi_{-}^{(k)}(u)\varphi_{n}(v)dv \right|$$

$$\leq \int_{-\delta}^{0} \left| \psi_{-}^{(k)}(u-v) - \psi_{-}^{(k)}(u) \right| \left| \varphi_{n}(v) \right| dv + \int_{a_{p}}^{-\delta} \left| \psi_{-}^{(k)}(u-v) \right| \left| \varphi_{n}(v) \right| dv$$

$$+ \int_{-\infty}^{-\delta} \left| \psi_{-}^{(k)}(u) \right| \left| \varphi_{n}(v) \right| dv.$$
(7)

From (ii), it follows that there exists a positive integer n_0 such that, for $n \ge n_0$,

$$\int_{-\infty}^{-\delta} |\varphi_n(v)| \, dv < \varepsilon / r_{m,p}(\psi).$$

Therefore, for $n \ge n_0$ and k = 0, ..., m, the right-hand side of (7) is less than 3ε . Hence, for $n \ge n_0$,

$$r_{m,p}(\psi_{-}+\psi_{-}*(\eta_{n})_{-})<3\varepsilon,$$

and so, since ε is arbitrary,

$$\psi_{-}=\lim_{n\to\infty}\psi_{-}*(\eta_{n})_{-},$$

as required.

We note that, since C_0^{∞} has an approximate identity, C_0^{∞} has no non-zero annihilators.

In ([2], [3]), Krabbe has defined a generalized function on J to be a *multiplier* on C_0^{∞} ; that is, a mapping A of C_0^{∞} into itself such that

$$A(\varphi * \psi) = A \varphi * \psi$$

for all φ, ψ in C_0^{∞} . Let \mathscr{M} denote the set of multipliers on C_0^{∞} . It is well-known that the multipliers on a commutative algebra with no non-zero annihilators are linear, and that, if linear combinations and products of multipliers are defined in the usual way, then \mathscr{M} is a commutative algebra ([8], §4). Also, every element of \mathscr{M} is C^{∞} continuous ([1], Theorem 1).

It follows from (3) that the differential operator $D \in \mathcal{M}$. Also, each f in L_1^{loc} determines an element F in \mathcal{M} according to the equation

$$F\varphi = f \ast \varphi. \tag{8}$$

† Krabbe did not use the term multiplier, but this seems now to be the standard terminology for this class of operators (see, for example, ([4], p. 51)).

K. ROWLANDS

Krabbe ([2], (1.12)–(1.13)) has defined the operator of the function f to be the operator $\{f(t)\}$ given by the equation

$$\{f(t)\}\varphi = f * \varphi'.$$

In our notation $\{f(t)\}$ is *DF*, and so, in particular, $\{(f_1*f_2)(t)\}$ is DF_1F_2 . If $f, g \in L_1^{loc}$ and F = G, then it follows from a theorem of Titchmarsh ([7], p. 327, Theorem 152) that f = g a.e. By the same argument we can show that DF = DG implies that f = g a.e.

We have now proved the following theorem, which is the main result of [2].

THEOREM 1 ([2], Theorem 1.22). The algebra \mathcal{M} is commutative and each element of \mathcal{M} is C^{∞} continuous. The operator $D \in \mathcal{M}$, and each f in L_1^{loc} determines an element F of \mathcal{M} according to (8). Also, for f, g in L_1^{loc} , the following properties hold:

(a)
$$D\{(f*g)(t)\} = \{f(t)\}\{g(t)\};$$

(b) if $\{f(t)\} = \{g(t)\}$, then f = g a.e.

For any u > 0, the shift operator I_u is the mapping of C_0^{∞} into itself defined by the equation

$$I_{u}\varphi(t) = \begin{cases} \varphi(t-u) & (u \leq t < b), \\ 0 & (-u < t < u), \\ \varphi(t+u) & (a < t \leq -u). \end{cases}$$

Then $I_u \in \mathcal{M}$ for all u > 0.

Suppose $A \in \mathcal{M}$, and let φ_+ be any element of $(C_0^{\infty})_+$. By Lemma 1,

$$\varphi_+ = \lim_{n \to \infty} \varphi_+ * \eta_n,$$

and so, since A is C^{∞} continuous,

$$A\varphi_+ = \lim_{n \to \infty} \varphi_+ * A\eta_n.$$

It follows that A maps $(C_0^{\infty})_+$ into itself. Similarly, A maps $(C_0^{\infty})_-$ into itself. Thus every element of \mathcal{M} is linear, C^{∞} continuous, commutes with I_u (u > 0), and leaves invariant $(C_0^{\infty})_+$ and $(C_0^{\infty})_-$. Conversely, we have the following result.

THEOREM 2. Let T be a C^{∞} continuous linear mapping of C_0^{∞} into itself with the following properties:

(a) $TI_u = I_u T$ for all u > 0;

(b) T leaves invariant $(C_0^{\infty})_+$ and $(C_0^{\infty})_-$.

Then $T \in \mathcal{M}$.

Proof. Let $\varphi, \psi \in C_0^{\infty}$. Then

$$\varphi * \psi = \varphi_+ * \psi_+ - \varphi_- * \psi_-.$$

† There are C^{∞} continuous linear mappings of C_0^{∞} into itself which have property (a) but not (b); for example, the mapping B given by $B_{m}(x) = (a \in C^{\infty} + c = b)$

$$B\varphi(t) = \varphi(-t) \qquad (\varphi \in C_0^{\infty}, t \in J)$$

Now $\varphi_+ \star \psi_+$ may be approximated, in C^{∞} sense, by a function of the form

$$\sum_{j=1}^{n} \alpha_j I_{u_j} \psi_+, \qquad (9)$$

where α_j (j = 1, ..., n) are complex-numbers (see the proof of ([4], Theorem 4)). Similarly, the function $\varphi_- * \psi_-$ may be approximated, in the same sense, by a function of the form

$$\sum_{j=1}^{m} \beta_j I_{w_j} \psi_{-}.$$
 (10)

Hence $\varphi * \psi$ may be approximated by $\sum_{j=1}^{n} \alpha_j I_{uj} \psi_+ - \sum_{j=1}^{m} \beta_j I_{wj} \psi_-$. Since T is linear, $T \psi_- = T \psi_+ + T \psi_-$,

and, since T has property (b), it follows that $T\psi_+ = (T\psi)_+$ and $T\psi_- = (T\psi)_-$. Consequently

$$\varphi * T \psi = \varphi_+ * T \psi_+ - \varphi_- * T \psi_-.$$

The function in (9) (resp. (10)) may be chosen in such a way that while $\varphi_+ * \psi_+ (\varphi_- * \psi_-)$ can be approximated by (9) ((10)), $\varphi_+ * T \psi_+ (\varphi_- * T \psi_-)$ can be approximated by $\sum_{j=1}^n \alpha_j I_{u_j} T \psi_+$ $\left(\sum_{i=1}^m \beta_j I_{w_j} T \psi_-\right)$. Hence $\varphi * T \psi$ may be approximated by the function

$$\sum_{j=1}^{n} \alpha_{j} I_{u_{j}} T \psi_{+} - \sum_{j=1}^{m} \beta_{j} I_{w_{j}} T \psi_{-}.$$
(11)

Since T is linear and commutes with the shift operators, (11) is the same as

$$T\left(\sum_{j=1}^{n}\alpha_{j}I_{u_{j}}\psi_{+}-\sum_{j=1}^{m}\beta_{j}I_{w_{j}}\psi_{-}\right).$$

Finally, since T is C^{∞} continuous, we have

$$T(\varphi * \psi) = \varphi * T \psi,$$

as required.

With convolution as multiplication, \mathscr{D}'_+ (resp. \mathscr{D}'_-) is a linear, associative, and commutative algebra. Let \mathscr{M}_+ (\mathscr{M}'_-) denote the algebra of multipliers on $(C_0)^{\infty}_+((C_0^{\infty})_-)$. Shultz ([5], Theorem 4.3) has proved that \mathscr{M}_+ is algebraically isomorphic to \mathscr{D}'_+ . Moreover, his proof may be easily modified to show that \mathscr{M}_- is isomorphic to \mathscr{D}'_- . We may state Shultz's result as follows.

THEOREM A ([5], Theorem 4.3). Let $A \in \mathcal{M}_+$ (resp. $B \in \mathcal{M}_-$). Then there exists a unique $\Phi \in \mathcal{D}'_+$ ($\Psi \in \mathcal{D}'_-$) such that

$$A\varphi = \Phi * \varphi \qquad (B\psi = \Psi * \psi)$$

for all $\varphi \in (C_0^{\infty})_+ (\Psi \in (C_0^{\infty})_-)$. Conversely, each $\Phi \in \mathscr{D}'_+ (\Psi \in \mathscr{D}'_-)$ determines an element A of $\mathscr{M}_+ (B \text{ of } \mathscr{M}_-)$ according to the above equation. The correspondence $A \leftrightarrow \Phi (B \leftrightarrow \Psi)$ is an isomorphism of \mathscr{M}_+ onto $\mathscr{D}'_+ (\mathscr{M}_- \text{ onto } \mathscr{D}'_-)$.

D

K. ROWLANDS

(In this connexion it is of interest to note that the above result of Shultz enables us to answer a question raised in ([4], p. 53), as follows. With the notation and terminology of [4], we have shown that the C^{∞} continuous V-operators on $C_0^{\infty}[0, \infty)$ are precisely the multipliers on $C_0^{\infty}[0, \infty)$, and so, if T is a C^{∞} continuous V-operator on $C_0^{\infty}[0, \infty)$, then, by Theorem A, there exists a $\Phi \in \mathscr{D}'_+$ such that

$$T\varphi = \Phi * \varphi \; (\varphi \in C_0^{\infty}[0,\infty)).$$

It follows that T satisfies (P_2) , and so there are no C^{∞} continuous V-operators on $C_0^{\infty}[0,\infty)$ which do not have property (P_2) .)

We note that, if linear combinations of elements of $\mathscr{D}'_+ \times \mathscr{D}'_-$ are defined in the usual way and multiplication is defined according to the equation

$$(\Phi_1, \Psi_1) \otimes (\Phi_2, \Psi_2) = (\Phi_1 * \Phi_2, \Psi_1 * \Psi_2),$$

then $\mathscr{D}'_+ \times \mathscr{D}'_-$ becomes a linear, associative, and commutative algebra.

Finally, we give an easier proof of ([6], Theorem 2.18).

THEOREM 3. The correspondence $T \leftrightarrow (\Phi, \Psi)(T \in \mathcal{M}, (\Phi, \Psi) \in \mathcal{D}'_+ \times \mathcal{D}'_-)$, where

 $T\varphi = \Phi * \varphi_+ + \Psi * \varphi_- (\varphi \in C_0^\infty),$

is an isomorphism of \mathcal{M} onto $\mathcal{D}'_+ \times \mathcal{D}'_-$.

Proof. Suppose that $T \in \mathcal{M}$, and let T_+ (resp. T_-) denote the restriction of T to $(C_0^{\infty})_+$ $((C_0^{\infty})_-)$. Then, since $T_+(T_-)$ leaves invariant $(C_0^{\infty})_+$ $((C_0^{\infty})_-)$, $T_+ \in \mathcal{M}_+$ $(T_- \in \mathcal{M}_-)$ and

$$T\varphi = T_+\varphi_+ + T_-\varphi_-$$

By Theorem A, there exists a unique (Φ, Ψ) in $\mathscr{D}'_+ \times \mathscr{D}'_-$ such that

$$T\varphi = \Phi * \varphi_{+} + \Psi * \varphi_{-}. \tag{12}$$

Conversely, each (Φ, Ψ) in $\mathscr{D}'_+ \times \mathscr{D}'_-$ determines an element T of \mathscr{M} according to (12). It is straightforward to show that the correspondence $T \leftrightarrow (\Phi, \Psi)$ is an isomorphism of the algebra \mathscr{M} onto the algebra $\mathscr{D}'_+ \times \mathscr{D}'_-$.

REFERENCES

1. T. K. Boehme, Continuity and perfect operators, J. London Math. Soc. 39 (1964), 355-358.

2. G. Krabbe, Linear operators and operational calculus, Part I, Studia Mathematica 40 (1971), 199–223.

3. G. Krabbe, An algebra of generalized functions on an open interval: two-sided operational calculus, *Pacific J. Math.* 42 (1972), 381-411.

4. K. Rowlands, A convolution-integral representation for a class of linear operators, Proc. Cambridge Phil. Soc. 71 (1972), 51-60.

5. H. Shultz, Linear operators and operational calculus, Part II, Studia Mathematica 41 (1972), 1-25.

6. H. Shultz, An algebra of distributions on an open interval, Trans. American Math. Soc. 169 (1972), 163-181.

ON A CLASS OF GENERALIZED FUNCTIONS

7. E. C. Titchmarsh, Theory of Fourier integrals (Oxford, 1937).

8. J. D. Weston, Positive perfect operators, Proc. London Math. Soc. (3) 10 (1960), 545-565.

9. J. D. Weston, An algebraic theory of generalized functions, *Nieuw Archief voor Wiskunde* (3) 18 (1970), 211-249.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY COLLEGE OF WALES ABERYSTWYTH