LINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS IN A BANACH ALGEBRA*

BY W. J. FITZPATRICK AND L. J. GRIMM

The theory of analytic differential systems in Banach algebras has been investigated by E. Hille and others, see for instance Chapter 6 in [4].

In this paper we show how a projection method used by W. A. Harris, Jr., Y. Sibuya, and L. Weinberg [3] can be applied to study a class of functional differential equations in this setting. The method, based on functional analysis, had been used extensively by L. Cesari [1] in similar forms for boundary value problems, and by J. K. Hale, S. Bancroft, and D. Sweet [2]. We also obtain as corollaries several results for ordinary differential equations in Banach algebras which were proved in a different way by Hille.

Let \mathfrak{B} be a noncommutative Banach algebra with unit element e. It is always possible to introduce a norm $|\cdot|$ such that |e| = 1, and we assume that this has been done. Assume further that there exists a resolution of the identity with idempotents e_i , $i = 1, \ldots, n$, such that

$$e = \sum_{i=1}^{n} e_i$$
 and $e_i e_j = e_j e_i = \delta_{ij} e_i$.

THEOREM. Let P(z), Q(z) and R(z) be \mathscr{B} -valued functions holomorphic at z = 0, let $D = \sum_{i=1}^{n} d_i e_i$ with nonnegative integers d_i , and let $\alpha, 0 < |\alpha| < 1$, be a complex constant. For every N sufficiently large, and every \mathscr{B} -valued polynomial $\phi(z)$ with $z^D \phi(z)$ of degree N, there exists a \mathscr{B} -valued polynomial $f(z; \phi)$ (depending on P, Q, R, α , and N) of degree N-1 such that the linear neutral-differential equation

(1)
$$z^{D}\frac{dy}{dz} = P(z)y(z) + Q(z)y(\alpha z) + R(z)y'(\alpha z) + f(z;\phi)$$

has a \mathcal{B} -valued solution y(z) holomorphic at z = 0. Further, f and y are linear and homogeneous in ϕ , and

$$z^{D}(y-\phi)=O(z^{N+1})$$
 as $z\rightarrow 0$.

Received by the editors September 30, 1977 and, in revised form, March 1, 1978.

^{*} Research supported by University of Missouri Faculty Research Grant and by NSF Grant MCS 76-08229.

Proof. Because of the structure of D, z^{D} has the form

$$z^D = \sum_{j=1}^n e_j z^{d_j}.$$

For some $\delta > 0$, let X be the set of all \mathscr{B} -valued functions $f \equiv f(z) \equiv \sum_{k=0}^{\infty} f_k z^k$ such that the series $\sum_{k=0}^{\infty} |f_k| \, \delta^k$ converges. For $f \in X$, define $f_k^i = e_j f_k$, $f^i = \sum_{k=0}^{\infty} f_k^i z^k$, and $||f|| = \sum_{k=0}^{\infty} |f_k| \, \delta^k$. Note that $(X, || \cdot ||)$ is also a Banach space. For N sufficiently large, define the mapping $\mathscr{L}_N : X \to X$ by

$$\mathscr{L}_{N}y = g, y = \sum_{k=0}^{\infty} y_{k}z^{k}, g^{j} = \sum_{k=N}^{\infty} \frac{y_{k}^{j}}{k+1-d_{j}} z^{k+1-d_{j}}.$$

Then

$$\left\|\mathscr{L}_{N}y\right\| \leq \sum_{j=1}^{n} \sum_{k=N}^{\infty} \frac{\delta^{1-d_{j}}}{N+1-d_{j}} \left|y_{k}^{j}\right| \delta^{k}$$

Since there is an M > 0 such that $|e_i| \le M$ for j = 1, 2, ..., n, $|y_k^i| \le M |y_k|$ and

(2)
$$\|\mathscr{L}_N y\| \le M \sum_{j=1}^n \frac{\delta^{1-d_j}}{N+1-d_j} \|y\|$$

Define $\hat{y}(z) = y(\alpha z)$ and $y^*(z) = \sum_{k=0}^{\infty} (k+1)\alpha^k y_{k+1} z^k$, and note that $\hat{y} \in X$ and $y^* \in X$ wherever $y \in X$. It is clear that

$$\|\hat{\mathbf{y}}\| \le \|\mathbf{y}\|.$$

Furthermore, set $\chi(z) = \sum_{k=0}^{\infty} |y_k| z^k, |z| \le \delta$, to obtain

$$\chi'(|\alpha| z) = \sum_{k=1}^{\infty} k |\alpha|^{k-1} |y_k| z^{k-1}, |z| \le \delta.$$

By the Cauchy integral formula,

$$|\chi'(|\alpha| z)| \leq \max_{|\xi|=\delta} \frac{|\chi(\xi)|}{\delta(1-|\alpha|)^2} = \frac{||y||}{\delta(1-|\alpha|)^2}.$$

Hence

(4)
$$||y^*|| = |\chi'(|\alpha| \delta)| \le \frac{||y||}{\delta(1-|\alpha|)^2}$$

For any function $A \in X$, and for each $f \in X$, note that $Af \in X$ and $||Af|| \le ||A|| ||f||$.

Let $\phi(z) = \sum_{i=0}^{N} \phi_i z^i$ be a \mathcal{B} -valued polynomial with $z^D \phi$ of degree N. Then

$$\phi^j(z) = \sum_{i=0}^{N-d_j} \phi^j_i z^i.$$

[December

Consider the functional equation in X

(5)
$$y = \phi + T_N[y],$$

where $T_N[y] = \mathscr{L}_N(Py + Q\hat{y} + Ry^*)$. The estimates (2)-(4) imply that for N sufficiently large, $||T_N|| < 1$, and thus there exists a unique solution $y \in X$,

(6)
$$\mathbf{y}(\cdot, \boldsymbol{\phi}) = (\boldsymbol{e} - T_N)^{-1} \boldsymbol{\phi}.$$

It follows that the holomorphic solution of the functional equation (5) satisfies equation (1), where

(7)
$$f(z;\phi) = \sum_{k=0}^{N-1} f_k z^k = z^D \frac{d\phi}{dz} - \sum_{k=0}^{N-1} Py(\cdot,\phi)_k z^k - \sum_{k=0}^{N-1} Qy(\cdot;\phi)_k z^k - \sum_{k=0}^{N-1} Ry^*(\cdot;\phi)_k z^k.$$

Since the coefficients of $y(\cdot; \phi)$ are linear in the coefficients of ϕ , the f_k are also linear in the coefficients of ϕ ; this completes the proof.

COROLLARY 1. With notation as in the above theorem let $P(z) = \sum_{k=0}^{\infty} a_k z^k$, $Q(z) = \sum_{k=0}^{\infty} b_k z^k$, and $R(z) = \sum_{k=0}^{\infty} c_k z^k$ be convergent for |z| < a, and let $y(z) = \sum_{k=0}^{\infty} y_k z^k$ be a formal solution of

(8)
$$z\frac{dy}{dz} = P(z)y(z) + Q(z)y(\alpha z) + R(z)y'(\alpha z).$$

Then y(z) is convergent for |z| < a.

Proof. Since here D = e, we can choose n = 1, $d_1 = 1$, and thus $\phi = \sum_{i=0}^{N-1} \phi_i z^i$ and $y = \phi + O(z^N)$. Holomorphic solutions of

$$z\frac{dy}{dz} = P(z)y(z) + Q(z)y(\alpha z) + R(z)y'(\alpha z)$$

can be inferred from solutions of the determining equation

$$(9) f(z;\phi) \equiv 0$$

In this case (9) corresponds to the first N equations for the existence of a formal solution. Since for a formal solution $y = \sum_{k=0}^{\infty} y_k z^k$ the coefficients y_k are determined uniquely by the preceding coefficients if k is sufficiently large (since the spectral radius $\rho(a_0) \le ||a_0||$), every formal solution is convergent.

REMARK 1. If $a_0 = 0$, then z = 0 is an ordinary point for the differential equation z(dy/dz) = P(z)y and the equations (9) are recursive; hence we may choose $\phi_0 = e$ and obtain a fundamental solution, i.e., a solution y(z) holomorphic at z = 0 such that every solution w(z) holomorphic at z = 0 can be

written in the form

$$w(z) = y(z)w_1$$
, for some $w_1 \in \mathcal{B}$.

COROLLARY 2. Let $P(z) = \sum_{k=0}^{\infty} a_k z^k$ be convergent for |z| < a, and let a_0 satisfy one of the following conditions: i) a_0 belongs to the center of \mathcal{B} ; ii) no two spectral values of a_0 differ by an integer. We can then determine a solution of

(10)
$$z\frac{dy}{dz} = P(z)y$$

of the form

$$y(z) = \sum_{k=0}^{\infty} y_k z^{k+a_0}$$

such that $y_0 = e$. The series solution for y(z) converges in norm in 0 < |z| < a, and is a fundamental solution.

Proof. Let $y(z) = w(z)z^{a_0}$. Then equation (10) becomes

$$zw'(z) + w(z)a_0 = P(z)w(z).$$

Case i). If a_0 is in the center of \mathfrak{B} , z = 0 is an ordinary point of the equation and Remark 1 applies. The fact that the solution is fundamental in 0 < |z| < a follows as in Hille [2].

Case ii). If a_0 is not in the center of \mathcal{B} , equation (10) becomes

$$zw(z) = \left(\mathscr{C}_{a_0} + \sum_{k=1}^{\infty} a_k z^k\right) w(z),$$

where \mathscr{C}_{a_0} is the commutator of a_0 . In this case, (9) becomes

$$(ne - \mathcal{C}_{a_0})\phi_n = \sum_{k=1}^n a_k \phi_{n-k}, \qquad n = 0, 1, \ldots, N-1.$$

Since $ne - \mathscr{C}_{a_0}$ is regular for all *n*, this system can be solved recursively, and by Corollary 1 the solution is convergent. The equation which determines y_0 is $\mathscr{C}_{a_0}y_0 = 0$, hence we may choose $y_0 = e$. It again follows as in Hille [4] that the solution is fundamental.

REMARK 2. Corollary 2 was proved by Hille [4], who proved convergence by majorant series arguments.

References

1. L. Cesari, Functional analysis and an alternative method. Michigan Math. J. 11, (1964), 385-414.

https://doi.org/10.4153/CMB-1978-076-3 Published online by Cambridge University Press

438

1978]

2. J. K. Hale, S. Bancroft, and D. Sweet, Alternative problems for nonlinear functional equations. J. Differential Equations 4, (1968), 40-56.

3. W. A. Harris, Jr., Y. Sibuya, and L. Weinberg, Holomorphic solutions of linear differential systems at singular points, Arch. Rat. Mech. Anal. 35, (1969), 245-248.

4. E. Hille, Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, Mass., 1969.

L. J. GRIMM

DEPARTMENT OF MATHEMATICS College of Arts & Sciences University of Missouri-Rolla Rolla, Missouri 65401

W. J. FITZPATRICK

DEPARTMENT OF MATHEMATICS University of Southern California Los Angeles, California 90007