LINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS IN A BANACH ALGEBRA*

BY
W. J. FITZPATRICK AND L. J. GRIMM

The theory of analytic differential systems in Banach algebras has been investigated by E. Hille and others, see for instance Chapter 6 in [4].

In this paper we show how a projection method used by W. A. Harris, Jr., Y. Sibuya, and L. Weinberg [3] can be applied to study a class of functional differential equations in this setting. The method, based on functional analysis, had been used extensively by L. Cesari [1] in similar forms for boundary value problems, and by J. K. Hale, S. Bancroft, and D. Sweet [2]. We also obtain as corollaries several results for ordinary differential equations in Banach algebras which were proved in a different way by Hille.

Let \mathscr{B} be a noncommutative Banach algebra with unit element e. It is always possible to introduce a norm $|\cdot|$ such that $|e|=1$, and we assume that this has been done. Assume further that there exists a resolution of the identity with idempotents $e_{i}, i=1, \ldots, n$, such that

$$
e=\sum_{i=1}^{n} e_{i} \quad \text { and } \quad e_{i} e_{j}=e_{j} e_{i}=\delta_{i j} e_{i} .
$$

Theorem. Let $P(z), Q(z)$ and $R(z)$ be \mathscr{B}-valued functions holomorphic at $z=0$, let $D=\sum_{i=1}^{n} d_{i} e_{i}$ with nonnegative integers d_{i}, and let $\alpha, 0<|\alpha|<1$, be a complex constant. For every N sufficiently large, and every \mathscr{B}-valued polynomial $\phi(z)$ with $z^{D} \phi(z)$ of degree N, there exists a \mathscr{B}-valued polynomial $f(z ; \phi)$ (depending on P, Q, R, α, and N) of degree $N-1$ such that the linear neutraldifferential equation

$$
\begin{equation*}
z^{D} \frac{d y}{d z}=P(z) y(z)+Q(z) y(\alpha z)+R(z) y^{\prime}(\alpha z)+f(z ; \phi) \tag{1}
\end{equation*}
$$

has a \mathscr{B}-valued solution $y(z)$ holomorphic at $z=0$. Further, f and y are linear and homogeneous in ϕ, and

$$
z^{D}(y-\phi)=O\left(z^{N+1}\right) \quad \text { as } \quad z \rightarrow 0 .
$$

[^0]Proof. Because of the structure of D, z^{D} has the form

$$
z^{D}=\sum_{j=1}^{n} e_{j} z^{d_{i}} .
$$

For some $\delta>0$, let X be the set of all \mathscr{B}-valued functions $f \equiv f(z) \equiv$ $\sum_{k=0}^{\infty} f_{k} z^{k}$ such that the series $\sum_{k=0}^{\infty}\left|f_{k}\right| \delta^{k}$ converges. For $f \in X$, define $f_{k}^{j}=e_{j} f_{k}$, $f^{j}=\sum_{k=0}^{\infty} f_{k}^{j} z^{k}$, and $\|f\|=\sum_{k=0}^{\infty}\left|f_{k}\right| \delta^{k}$. Note that $(X,\|\cdot\|)$ is also a Banach space.

For N sufficiently large, define the mapping $\mathscr{L}_{N}: X \rightarrow X$ by

$$
\mathscr{L}_{N} y=g, y=\sum_{k=0}^{\infty} y_{k} z^{k}, g^{j}=\sum_{k=N}^{\infty} \frac{y_{k}^{j}}{k+1-d_{j}} z^{k+1-d_{i}} .
$$

Then

$$
\left\|\mathscr{L}_{N} y\right\| \leq \sum_{j=1}^{n} \sum_{k=N}^{\infty} \frac{\delta^{1-d_{j}}}{N+1-d_{j}}\left|y_{k}^{j}\right| \delta^{k}
$$

Since there is an $M>0$ such that $\left|e_{j}\right| \leq M$ for $j=1,2, \ldots, n,\left|y_{k}^{j}\right| \leq M\left|y_{k}\right|$ and

$$
\begin{equation*}
\left\|\mathscr{L}_{N} y\right\| \leq M \sum_{j=1}^{n} \frac{\delta^{1-d_{j}}}{N+1-d_{j}}\|y\| . \tag{2}
\end{equation*}
$$

Define $\hat{y}(z)=y(\alpha z)$ and $y^{*}(z)=\sum_{k=0}^{\infty}(k+1) \alpha^{k} y_{k+1} z^{k}$, and note that $\hat{y} \in X$ and $y^{*} \in X$ wherever $y \in X$. It is clear that

$$
\begin{equation*}
\|\hat{y}\| \leq\|y\| . \tag{3}
\end{equation*}
$$

Furthermore, set $\chi(z)=\sum_{k=0}^{\infty}\left|y_{k}\right| z^{k},|z| \leq \delta$, to obtain

$$
\chi^{\prime}(|\alpha| z)=\sum_{k=1}^{\infty} k|\alpha|^{k-1}\left|y_{k}\right| z^{k-1},|z| \leq \delta .
$$

By the Cauchy integral formula,

$$
\left|\chi^{\prime}(|\alpha| z)\right| \leq \max _{|\xi|=\delta} \frac{|\chi(\xi)|}{\delta(1-|\alpha|)^{2}}=\frac{\|y\|}{\delta(1-|\alpha|)^{2}}
$$

Hence

$$
\begin{equation*}
\left\|y^{*}\right\|=\left|\chi^{\prime}(|\alpha| \delta)\right| \leq \frac{\|y\|}{\delta(1-|\alpha|)^{2}} . \tag{4}
\end{equation*}
$$

For any function $A \in X$, and for each $f \in X$, note that $A f \in X$ and $\|A f\| \leq$ $\|A\|\|f\|$.

Let $\phi(z)=\sum_{i=0}^{N} \phi_{i} z^{i}$ be a \mathscr{B}-valued polynomial with $z^{D} \phi$ of degree N. Then

$$
\phi^{j}(z)=\sum_{i=0}^{N-d_{j}} \phi_{i}^{j} z^{i}
$$

Consider the functional equation in X

$$
\begin{equation*}
y=\phi+T_{N}[y] \tag{5}
\end{equation*}
$$

where $T_{N}[y]=\mathscr{L}_{N}\left(P y+Q \hat{y}+R y^{*}\right)$. The estimates (2)-(4) imply that for N sufficiently large, $\left\|T_{N}\right\|<1$, and thus there exists a unique solution $y \in X$,

$$
\begin{equation*}
y(\cdot, \phi)=\left(e-T_{N}\right)^{-1} \phi \tag{6}
\end{equation*}
$$

It follows that the holomorphic solution of the functional equation (5) satisfies equation (1), where

$$
\begin{align*}
& f(z ; \phi)=\sum_{k=0}^{N-1} f_{k} z^{k}=z^{D} \frac{d \phi}{d z}-\sum_{k=0}^{N-1} P y(\cdot, \phi)_{k} z^{k} \\
& \quad-\sum_{k=0}^{N-1} Q y(\cdot ; \phi)_{k} z^{k}-\sum_{k=0}^{N-1} R y^{*}(\cdot ; \phi)_{k} z^{k} . \tag{7}
\end{align*}
$$

Since the coefficients of $y(\cdot ; \phi)$ are linear in the coefficients of ϕ, the f_{k} are also linear in the coefficients of ϕ; this completes the proof.

Corollary 1. With notation as in the above theorem let $P(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$, $Q(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$, and $R(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ be convergent for $|z|<a$, and let $y(z)=$ $\sum_{k=0}^{\infty} y_{k} z^{k}$ be a formal solution of

$$
\begin{equation*}
z \frac{d y}{d z}=P(z) y(z)+Q(z) y(\alpha z)+R(z) y^{\prime}(\alpha z) \tag{8}
\end{equation*}
$$

Then $y(z)$ is convergent for $|z|<a$.
Proof. Since here $D=e$, we can choose $n=1, d_{1}=1$, and thus $\phi=\sum_{i=0}^{N-1} \phi_{i} z^{i}$ and $y=\phi+O\left(z^{N}\right)$. Holomorphic solutions of

$$
z \frac{d y}{d z}=P(z) y(z)+Q(z) y(\alpha z)+R(z) y^{\prime}(\alpha z)
$$

can be inferred from solutions of the determining equation

$$
\begin{equation*}
f(z ; \phi) \equiv 0 . \tag{9}
\end{equation*}
$$

In this case (9) corresponds to the first N equations for the existence of a formal solution. Since for a formal solution $y=\sum_{k=0}^{\infty} y_{k} z^{k}$ the coefficients y_{k} are determined uniquely by the preceding coefficients if k is sufficiently large (since the spectral radius $\left.\rho\left(a_{0}\right) \leq\left\|a_{0}\right\|\right)$, every formal solution is convergent.

Remark 1. If $a_{0}=0$, then $z=0$ is an ordinary point for the differential equation $z(d y / d z)=P(z) y$ and the equations (9) are recursive; hence we may choose $\phi_{0}=e$ and obtain a fundamental solution, i.e., a solution $y(z)$ holomorphic at $z=0$ such that every solution $w(z)$ holomorphic at $z=0$ can be
written in the form

$$
w(z)=y(z) w_{1}, \quad \text { for some } w_{1} \in \mathscr{B} .
$$

Corollary 2. Let $P(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be convergent for $|z|<a$, and let a_{0} satisfy one of the following conditions: i) a_{0} belongs to the center of $\left.\mathscr{B} ; i i\right)$ no two spectral values of a_{0} differ by an integer. We can then determine a solution of

$$
\begin{equation*}
z \frac{d y}{d z}=P(z) y \tag{10}
\end{equation*}
$$

of the form

$$
y(z)=\sum_{k=0}^{\infty} y_{k} z^{k+a_{0}}
$$

such that $y_{0}=e$. The series solution for $y(z)$ converges in norm in $0<|z|<a$, and is a fundamental solution.

Proof. Let $y(z)=w(z) z^{a_{0}}$. Then equation (10) becomes

$$
z w^{\prime}(z)+w(z) a_{0}=P(z) w(z)
$$

Case i). If a_{0} is in the center of $\mathscr{B}, z=0$ is an ordinary point of the equation and Remark 1 applies. The fact that the solution is fundamental in $0<|z|<a$ follows as in Hille [2].

Case ii). If a_{0} is not in the center of \mathscr{B}, equation (10) becomes

$$
z w(z)=\left(\mathscr{C}_{a_{0}}+\sum_{k=1}^{\infty} a_{k} z^{k}\right) w(z)
$$

where $\mathscr{C}_{a_{0}}$ is the commutator of a_{0}. In this case, (9) becomes

$$
\left(n e-\mathscr{C}_{a_{0}}\right) \phi_{n}=\sum_{k=1}^{n} a_{k} \phi_{n-k}, \quad n=0,1, \ldots, N-1 .
$$

Since $n e-\mathscr{C}_{a_{0}}$ is regular for all n, this system can be solved recursively, and by Corollary 1 the solution is convergent. The equation which determines y_{0} is $\mathscr{C}_{a_{0}} y_{0}=0$, hence we may choose $y_{0}=e$. It again follows as in Hille [4] that the solution is fundamental.

Remark 2. Corollary 2 was proved by Hille [4], who proved convergence by majorant series arguments.

References

1. L. Cesari, Functional analysis and an alternative method. Michigan Math. J. 11, (1964), 385-414.
2. J. K. Hale, S. Bancroft, and D. Sweet, Alternative problems for nonlinear functional equations. J. Differential Equations 4, (1968), 40-56.
3. W. A. Harris, Jr., Y. Sibuya, and L. Weinberg, Holomorphic solutions of linear differential systems at singular points, Arch. Rat. Mech. Anal. 35, (1969), 245-248.
4. E. Hille, Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, Mass., 1969.
L. J. Grimm

Department of Mathematics
College of Arts \& Sciences
University of Missouri-Rolla
Rolla, Missouri 65401
W. J. Fitzpatrick

Department of Mathematics
University of Southern California
Los Angeles, California 90007

[^0]: Received by the editors September 30, 1977 and, in revised form, March 1, 1978.

 * Research supported by University of Missouri Faculty Research Grant and by NSF Grant MCS 76-08229.

