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1. Introduction. The Lucas numbers vn and the Fibonacci numbers un are defined by
Vi = 1, v2 = 3, vn+2 = vn+1 + vn and u1 = u2 = 1, un+2 = Mn+1 + «n for all integers n. The
elementary properties of these numbers are easily established; see for example [2]. However,
despite the ease with which many such properties are proved, there are a number of more
difficult questions connected with these numbers, of which some are as yet unanswered. Among
these there is the well-known conjecture that un is a perfect square only if n = 0, ± 1, 2 or 12.
This conjecture was proved correct in [1]. The object of this paper is to prove similar results
for vn, \un and \vn, and incidentally to simplify considerably the proof for un. Secondly, we
shall use these results to solve certain Diophantine equations.

2. Preliminaries. We shall require the following results which are easily proved from the
definitions:

2"m+B = Mmun+Mnt;m, (1)

2vm+n = 5umun + vmvn, (2)

v2m = v2
m + (-l)m-12, (3)

(«3« » »3m) = 2, (4)

(«„,»„) = 1 if3 | «, (5)

2\vm if and only if 3 Jf m, (6)

3 | vm if and only if m = 2 (mod 4), (7)

u.B = (-iy-lun, (8)

«;_n = ( - l ) X , (9)

vk = 3 (mod 4) if 2\k,3Jfk, (10)

We shall throughout this paper reserve the symbol k to denote an integer, not necessarily
positive, which is even but not divisible by 3. We shall now prove the following two results:

; = — vm (mod vk), (11)

= -um (modi;*), (12)
For, by (1), (2) and (3),

2vm+2k = 5umu2k+vmv2k

= 5umukvk+vm(vl-2)

= -2vm (modut),
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and so (11) follows, by (10). Similarly,

= -2um

and (12) follows.

3. The main theorems.

THEOREM 1. Ifvn = x2, then n = 1 or 3; i.e. x = + 1 or ±2.

Proof, (i) If n is even, then, by (3),

vn = y2±2*x2.

(ii) If n = 1 (mod 4), then vt = 1, whereas if n # 1 we can write n = 1 + 2 . 3 r . k where
r ^ 0 and A: has the required properties of being even and not divisible by 3. Then repeated
application of (11) gives

vn = (-l)3'v1 = - 1 (modi>*).

Hence, by (10), (vn ] ufc) = — 1 and so vn ^ x2.

(iii) If n = 3 (mod 4), then v3 = 22, whereas if n ^ 3, « = 3 + 2 . 3 r . k and as before

vn= —v3= —4 (mod vk).

Now, by (10), vk is odd and so

(«J»*) = ( 4 | » * ) ( - l | i ; » ) = - l

and vn # x2. This concludes the proof.

THEOREM 2. Ifvn = 2x2, fAen n = 0 or ± 6 ; i.e. * = ± 1 or ± 3 .

/ . (i) If n is odd and un is even, then by (6), 3 | n and so n = ± 3 (mod 12). Now
by (2)

2om+12 = 5umul2 + vmv12 m m

= 2vm (mod 16).

Hence 2vn = 2v±3 = i (mod 16)

and so vn ^ 2x2.

(ii) If n = 0 (mod 4), then u0 = 2, whereas if n # 0, n = 2 . 3 r . k and so by (11),

2yn = -2i ; 0 = - 4 (mod u^),

so that 2vn i= y2, i.e. un ^ 2x2.

(iii) If n = 6 (mod 8), then v6 = 2 . 32, whereas if n ^ 6, « = 6 + 2 . 3 r . k, where 4 | A: and
IX k. Hence

2un = -2v6 = - 3 6 (mod t;*).
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Now by (10), vk is odd, and since 4 | k, 3 Jf vk by (7). Hence 36 has no factor in common with vk,
and so as before vn # 2x2.

(iv) If n = 2 (mod 8), then by (9) r_n = vn , where now —n = 6 (mod 8). Hence by (iii)
un = 2x2 if and only if — n = 6, i.e. n = — 6.

This concludes the proof.

THEOREM 3. lfun = x2, f/ien n = 0, ± 1, 2 or 12; j.e. x = 0, + 1 or ± 12.

Proof, (i) If n = 1 (mod 4), then u^ = 1, whereas if n / 1, n = 1 + 2 . 3 r . k and so

un s — Mj = — 1 (mod u*),

so that «„ # x2.

(ii) If n = 3 (mod 4), then M_n = un by (8), and so un = x2 if and only if —n = 1, i.e.
« = - 1 .

(iii) If n is even, then «„ = x1 gives, by (1),

and so (4) and (5) give two possibilities:

(a) 3 | n, un/2 = 2 j 2 ; vn/2 = 2z2. By Theorem 2, the second of these is satisfied only by
\n = 0, 6 or —6. However the last of these must be rejected since it does not satisfy un/2 = 2y2.

(b) 3 X M> Mn/2 = J'2; un/2 = z2- ^Y Theorem 1, the second of these is satisfied only for
\n = 1 (and \n — 3 which must be rejected since 3 Jc n).

Hence we have in all the five values, n = 0, ± 1, 2 or 12.

THEOREM 4. Ifun = 2x2, then n = 0, ± 3 or 6; i.e. x = 0, ± 1 or ±2 .

Proof, (i) If n = 3 (mod 4), then M3 = 2, whereas if « ?t 3, n = 3 + 2 . 3 r . k and so

2un = — 2M3 = — 4 (mod vk),
so that «„ # 2x2.

(ii) If « = 1 (mod 4), then «„ = «_„ by (8) and so un = 2x2 if and only if —n = 3, i.e.
n= - 3 .

(iii) If n is even, then
2xz = un = unl2vn/2 ,

by (1), and so by (4) and (5) we have the following two possibilities:

(a) Mn/2 = y1; vn/2 = 2z2. Theorems 2 and 3 show that the only value of n which satisfies
both of these is n = 0.

(b) un/2 — 2y2; vn/2 = z2. The latter is satisfied only for \n = 1 or 3, by Theorem 1, and
since \n = 1 does not satisfy the former, we get only n = 6.

This concludes the proof.
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4. Eight Diophantine equations. We shall now solve eight Diophantine equations; since
in all of them only even powers of x occur, we shall only list the non-negative solutions. As a
first step we shall introduce the numbers a = \{\ + y/5) and b = i ( l —yj5). It is then easily
shown that un = 5~i(an-bn) and vn = a"+b". We now prove the following results.

1. The equation y2 = 5x* +1 has only the solutions x = 0, 2.

(Professor L. J. Mordell has just informed me that he has proved this; see [3].)

For y2 — 5x* = 1 and so y and x2 are a set of solutions of the Pell equation p2 — 5q2 = 1.
Thus, for some value of the integer n we have

5 = (9 + 475)" =

i.e. y + x2j5 = a6n, y-x2j5 = b6n.

Thus 2x2 = u6n and so x= 0 or 2, by Theorem 4.

2. The equation 5y2 = x4 — 1 has only the solutions x = 1, 3.

For x*-5y2 = 1 and so, as before, x2+yj5 = a6n and x2-ys/5 = b6n. Thus 2x2 = v6n

and so x = 1 or 3, by Theorem 2.

3. The equation y2 = 20A:4 +1 has only the solutions x = 0, 6.

For / - 5 ( 2 ; c 2 ) 2 = 1 and so y+2x2j5 = a6n and y-2x2
sj5 = 66n. Hence 4x2 = w6n, so

that x = 0 or 6, by Theorem 3.

4. The equation y2 = 5A:4— 1 has only the solution x = 1.

For y2 — 5A:4 = — 1 and so, for some integer n,

y + x ^ 5 = (2 + ^/5) =<—-—> =a ,

and y-x2y/5 = b6'3. Hence 2x2 = H6n_3 and so x = 1, by Theorem 4.

5. J/ie equation 5y2 = 4A:4 +1 to on/y /Ae solution x = 1.

For (2x 2 ) 2 -5 j 2 = - 1 ; thus 2 A : 2 + J V 5 = a6""3 and 2x2-yyj5 = b6n~\ Hence
4x2 = u6""3 and so A: = 1, by Theorem 1.

6. 77ie equation y2 = 5x4 + 4 Afli1 o«/y ?/ie solutions x = 0, 1, 12.

For ;>2 - 5A-4 = 4. Thus, for some value of the integer «,

Hence x2 — uln and so x = 0, 1 or 12, by Theorem 3.
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7. The equation y2 = 5x4 —4 has only the solution x = 1.

For y2 — 5x4 = - 4 , and so for some value of the integer n

Hence x2 = «2 n-i a n d so x — 1, by Theorem 3.

8. The equation 5y2 = x4 + 4 has only the solutions x = 1, 2.

For x*-5y2 = - 4 ; thus *2+j>V5 = 2a2""1 and x2-yj5 = 26 2 " ' 1 . Hence x2 = v2n.t
and so x = 1, 2, by Theorem 1.
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