LUCAS AND FIBONACCI NUMBERS AND SOME DIOPHANTINE EQUATIONS

by J. H. E. COHN
(Received 11 February, 1964)

1. Introduction. The Lucas numbers v_{n} and the Fibonacci numbers u_{n} are defined by $v_{1}=1, v_{2}=3, v_{n+2}=v_{n+1}+v_{n}$ and $u_{1}=u_{2}=1, u_{n+2}=u_{n+1}+u_{n}$ for all integers n. The elementary properties of these numbers are easily established; see for example [2]. However, despite the ease with which many such properties are proved, there are a number of more difficult questions connected with these numbers, of which some are as yet unanswered. Among these there is the well-known conjecture that u_{n} is a perfect square only if $n=0, \pm 1,2$ or 12 . This conjecture was proved correct in [1]. The object of this paper is to prove similar results for $v_{n}, \frac{1}{2} u_{n}$ and $\frac{1}{2} v_{n}$, and incidentally to simplify considerably the proof for u_{n}. Secondly, we shall use these results to solve certain Diophantine equations.
2. Preliminaries. We shall require the following results which are easily proved from the definitions:

$$
\begin{align*}
& 2 u_{m+n}=u_{m} v_{n}+u_{n} v_{m}, \tag{1}\\
& 2 v_{m+n}=5 u_{m} u_{n}+v_{m} v_{n}, \tag{2}\\
& v_{2 m}=v_{m}^{2}+(-1)^{m-1} 2, \tag{3}\\
&\left(u_{3 m}, v_{3 m}\right)=2, \tag{4}\\
&\left(u_{n}, v_{n}\right)=1 \text { if } 3 \mid n, \tag{5}\\
& 2 \mid v_{m} \text { if and only if } 3 \nmid m, \tag{6}\\
& 3 \mid v_{m} \text { if and only if } m \equiv 2(\bmod 4), \tag{7}\\
& u_{-n}=(-1)^{n-1} u_{n}, \tag{8}\\
& v_{-n}=(-1)^{n} v_{n}, \tag{9}\\
& v_{k} \equiv 3(\bmod 4) \text { if } 2 \mid k, 3 \nmid k, \tag{10}
\end{align*}
$$

We shall throughout this paper reserve the symbol k to denote an integer, not necessarily positive, which is even but not divisible by 3 . We shall now prove the following two results:

$$
\begin{array}{ll}
v_{m+2 k} \equiv-v_{m} & \left(\bmod v_{k}\right) \\
u_{m+2 k} \equiv-u_{m} & \left(\bmod v_{k}\right) \tag{12}
\end{array}
$$

For, by (1), (2) and (3),

$$
\begin{aligned}
2 v_{m+2 k} & =5 u_{m} u_{2 k}+v_{m} v_{2 k} \\
& =5 u_{m} u_{k} v_{k}+v_{m}\left(v_{k}^{2}-2\right) \\
& \equiv-2 v_{m} \quad\left(\bmod v_{k}\right)
\end{aligned}
$$

and so (11) follows, by (10). Similarly,

$$
\begin{aligned}
2 u_{m+2 k} & =u_{m} v_{2 k}+u_{2 k} v_{m} \\
& =u_{m}\left(v_{k}^{2}-2\right)+u_{k} v_{k} v_{m} \\
& \equiv-2 u_{m} \quad\left(\bmod v_{k}\right),
\end{aligned}
$$

and (12) follows.

3. The main theorems.

Theorem 1. If $v_{n}=x^{2}$, then $n=1$ or 3 ; i.e. $x= \pm 1$ or ± 2.
Proof. (i) If n is even, then, by (3),

$$
v_{n}=y^{2} \pm 2 \neq x^{2}
$$

(ii) If $n \equiv 1(\bmod 4)$, then $v_{1}=1$, whereas if $n \neq 1$ we can write $n=1+2 \cdot 3^{r} \cdot k$ where $r \geqq 0$ and k has the required properties of being even and not divisible by 3 . Then repeated application of (11) gives

$$
v_{n} \equiv(-1)^{3 r} v_{1} \equiv-1 \quad\left(\bmod v_{k}\right)
$$

Hence, by (10), $\left(v_{n} \mid v_{k}\right)=-1$ and so $v_{n} \neq x^{2}$.
(iii) If $n \equiv 3(\bmod 4)$, then $v_{3}=2^{2}$, whereas if $n \neq 3, n=3+2 \cdot 3^{r} \cdot k$ and as before

$$
v_{n} \equiv-v_{3} \equiv-4 \quad\left(\bmod v_{k}\right)
$$

Now, by (10), v_{k} is odd and so

$$
\left(v_{n} \mid v_{k}\right)=\left(4 \mid v_{k}\right)\left(-1 \mid v_{k}\right)=-1
$$

and $v_{n} \neq x^{2}$. This concludes the proof.
Theorem 2. If $v_{n}=2 x^{2}$, then $n=0$ or ± 6; i.e. $x= \pm 1$ or ± 3.
Proof. (i) If n is odd and v_{n} is even, then by (6), $3 \mid n$ and so $n \equiv \pm 3(\bmod 12)$. Now by (2)

$$
\begin{aligned}
2 v_{m+12} & =5 u_{m} u_{12}+v_{m} v_{12}=720 u_{m}+322 v_{m} \\
& \equiv 2 v_{m} \quad(\bmod 16)
\end{aligned}
$$

Hence

$$
2 v_{n} \equiv 2 v_{ \pm 3} \equiv 8 \quad(\bmod 16)
$$

and so $v_{n} \neq 2 x^{2}$.
(ii) If $n \equiv 0(\bmod 4)$, then $v_{0}=2$, whereas if $n \neq 0, n=2 \cdot 3^{r} \cdot k$ and so by (11),

$$
2 v_{n} \equiv-2 v_{0} \equiv-4\left(\bmod v_{k}\right)
$$

so that $2 v_{n} \neq y^{2}$, i.e. $v_{n} \neq 2 x^{2}$.
(iii) If $n \equiv 6(\bmod 8)$, then $v_{6}=2 \cdot 3^{2}$, whereas if $n \neq 6, n=6+2 \cdot 3^{r} . k$, where $4 \mid k$ and $3 \nmid k$. Hence

$$
2 v_{n} \equiv-2 v_{6} \equiv-36 \quad\left(\bmod v_{k}\right)
$$

Now by (10), v_{k} is odd, and since $4 \mid k, 3 \nmid v_{k}$ by (7). Hence 36 has no factor in common with v_{k}, and so as before $v_{n} \neq 2 x^{2}$.
(iv) If $n \equiv 2(\bmod 8)$, then by $(9) v_{-n}=v_{n}$, where now $-n \equiv 6(\bmod 8)$. Hence by (iii) $v_{n}=2 x^{2}$ if and only if $-n=6$, i.e. $n=-6$.

This concludes the proof.
Theorem 3. If $u_{n}=x^{2}$, then $n=0, \pm 1,2$ or 12 ; i.e. $x=0, \pm 1$ or ± 12.
Proof. (i) If $n \equiv 1(\bmod 4)$, then $u_{1}=1$, whereas if $n \neq 1, n=1+2 \cdot 3^{r} . k$ and so

$$
u_{n} \equiv-u_{1} \equiv-1 \quad\left(\bmod v_{k}\right)
$$

so that $u_{n} \neq x^{2}$.
(ii) If $n \equiv 3(\bmod 4)$, then $u_{-n}=u_{n}$ by (8), and so $u_{n}=x^{2}$ if and only if $-n=1$, i.e. $n=-1$.
(iii) If n is even, then $u_{n}=x^{2}$ gives, by (1),

$$
x^{2}=u_{n}=u_{n / 2} v_{n / 2}
$$

and so (4) and (5) give two possibilities:
(a) $3 \mid n, u_{n / 2}=2 y^{2} ; v_{n / 2}=2 z^{2}$. By Theorem 2, the second of these is satisfied only by $\frac{1}{2} n=0,6$ or -6 . However the last of these must be rejected since it does not satisfy $u_{n / 2}=2 y^{2}$.
(b) $3 \nmid n, u_{n / 2}=y^{2} ; v_{n / 2}=z^{2}$. By Theorem 1 , the second of these is satisfied only for $\frac{1}{2} n=1$ (and $\frac{1}{2} n=3$ which must be rejected since $3 \nmid n$).

Hence we have in all the five values, $n=0, \pm 1,2$ or 12 .
Theorem 4. If $u_{n}=2 x^{2}$, then $n=0, \pm 3$ or 6 ; i.e. $x=0, \pm 1$ or ± 2.
Proof. (i) If $n \equiv 3(\bmod 4)$, then $u_{3}=2$, whereas if $n \neq 3, n=3+2 \cdot 3^{r} \cdot k$ and so

$$
2 u_{n} \equiv-2 u_{3} \equiv-4 \quad\left(\bmod v_{k}\right)
$$

so that $u_{n} \neq 2 x^{2}$.
(ii) If $n \equiv 1(\bmod 4)$, then $u_{n}=u_{-n}$ by (8) and so $u_{n}=2 x^{2}$ if and only if $-n=3$, i.e. $n=-3$.
(iii) If n is even, then

$$
2 x^{2}=u_{n}=u_{n / 2} v_{n / 2}
$$

by (1), and so by (4) and (5) we have the following two possibilities:
(a) $u_{n / 2}=y^{2} ; v_{n / 2}=2 z^{2}$. Theorems 2 and 3 show that the only value of n which satisfies both of these is $n=0$.
(b) $u_{n / 2}=2 y^{2} ; v_{n / 2}=z^{2}$. The latter is satisfied only for $\frac{1}{2} n=1$ or 3 , by Theorem 1 , and since $\frac{1}{2} n=1$ does not satisfy the former, we get only $n=6$.

This concludes the proof.
4. Eight Diophantine equations. We shall now solve eight Diophantine equations; since in all of them only even powers of x occur, we shall only list the non-negative solutions. As a first step we shall introduce the numbers $a=\frac{1}{2}(1+\sqrt{ } 5)$ and $b=\frac{1}{2}(1-\sqrt{ } 5)$. It is then easily shown that $u_{n}=5^{-\frac{1}{2}}\left(a^{n}-b^{n}\right)$ and $v_{n}=a^{n}+b^{n}$. We now prove the following results.

1. The equation $y^{2}=5 x^{4}+1$ has only the solutions $x=0,2$.
(Professor L. J. Mordell has just informed me that he has proved this; see [3].)
For $y^{2}-5 x^{4}=1$ and so y and x^{2} are a set of solutions of the Pell equation $p^{2}-5 q^{2}=1$. Thus, for some value of the integer n we have
i.e.

$$
\begin{gathered}
y+x^{2} \sqrt{ } 5=(9+4 \sqrt{ } 5)^{n}=\left\{\frac{1+\sqrt{ } 5}{2}\right\}^{6 n} \\
y+x^{2} \sqrt{ } 5=a^{6 n}, \quad y-x^{2} \sqrt{ } 5=b^{6 n}
\end{gathered}
$$

Thus $2 x^{2}=u_{6 n}$ and so $x=0$ or 2 , by Theorem 4 .
2. The equation $5 y^{2}=x^{4}-1$ has only the solutions $x=1,3$.

For $x^{4}-5 y^{2}=1$ and so, as before, $x^{2}+y \sqrt{5}=a^{6 n}$ and $x^{2}-y \sqrt{5}=b^{6 n}$. Thus $2 x^{2}=v_{6 n}$ and so $x=1$ or 3 , by Theorem 2.
3. The equation $y^{2}=20 x^{4}+1$ has only the solutions $x=0,6$.

For $y^{2}-5\left(2 x^{2}\right)^{2}=1$ and so $y+2 x^{2} \sqrt{5}=a^{6 n}$ and $y-2 x^{2} \sqrt{5}=b^{6 n}$. Hence $4 x^{2}=u_{6 n}$, so that $x=0$ or 6 , by Theorem 3 .
4. The equation $y^{2}=5 x^{4}-1$ has only the solution $x=1$.

For $y^{2}-5 x^{4}=-1$ and so, for some integer n,

$$
y+x^{2} \sqrt{ } 5=(2+\sqrt{5})^{2 n-1}=\left\{\frac{1+\sqrt{ } 5}{2}\right\}^{6 n-3}=a^{6 n-3}
$$

and $y-x^{2} \sqrt{5}=b^{6-3}$. Hence $2 x^{2}=u_{6 n-3}$ and so $x=1$, by Theorem 4 .
5. The equation $5 y^{2}=4 x^{4}+1$ has only the solution $x=1$.

For $\left(2 x^{2}\right)^{2}-5 y^{2}=-1$; thus $2 x^{2}+y \sqrt{5}=a^{6 n-3}$ and $2 x^{2}-y \sqrt{ } 5=b^{6 n-3}$. Hence $4 x^{2}=v^{6 n-3}$ and so $x=1$, by Theorem 1 .
6. The equation $y^{2}=5 x^{4}+4$ has only the solutions $x=0,1,12$.

For $y^{2}-5 x^{4}=4$. Thus, for some value of the integer n,

$$
\begin{aligned}
& y+x^{2} \sqrt{ } 5=2\left\{\frac{3+\sqrt{ } 5}{2}\right\}^{n}=2 a^{2 n} \\
& y-x^{2} \sqrt{5}=2 b^{2 n}
\end{aligned}
$$

Hence $x^{2}=u_{2 n}$ and so $x=0,1$ or 12 , by Theorem 3 .
7. The equation $y^{2}=5 x^{4}-4$ has only the solution $x=1$.

For $y^{2}-5 x^{4}=-4$, and so for some value of the integer n

$$
\begin{aligned}
& y+x^{2} \sqrt{ } 5=2\left\{\frac{1+\sqrt{ } 5}{2}\right\}^{2 n-1}=2 a^{2 n-1} \\
& y-x^{2} \sqrt{ } 5=2 b^{2 n-1}
\end{aligned}
$$

Hence $x^{2}=u_{2 n-1}$ and so $x=1$, by Theorem 3 .
8. The equation $5 y^{2}=x^{4}+4$ has only the solutions $x=1,2$.

For $x^{4}-5 y^{2}=-4 ;$ thus $x^{2}+y \sqrt{5}=2 a^{2 n-1}$ and $x^{2}-y \sqrt{5}=2 b^{2 n-1}$. Hence $x^{2}=v_{2 n-1}$ and so $x=1,2$, by Theorem 1 .

REFERENCES

1. J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc., 39 (1964), 537-540.
2. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers (Oxford, 1954), §10.14.
3. L. J. Mordell, The Diophantine equation $y^{2}=D x^{4}+1$, J. London Math. Soc. 39 (1964), 161164.

Bedford College
London, N.W. 1

