Bull. Aust. Math. Soc. **96** (2017), 412–425 doi:10.1017/S0004972717000466

SYMMETRIC SQUARE-CENTRAL ELEMENTS IN PRODUCTS OF ORTHOGONAL INVOLUTIONS IN CHARACTERISTIC TWO

A.-H. NOKHODKAR

(Received 18 February 2017; accepted 8 April 2017; first published online 17 August 2017)

Abstract

In characteristic two, some criteria are obtained for a symmetric square-central element of a totally decomposable algebra with orthogonal involution, to be contained in an invariant quaternion subalgebra.

2010 Mathematics subject classification: primary 16W10; secondary 16K20, 11E39.

Keywords and phrases: central simple algebra, totally decomposable algebra, square-central element, orthogonal involution, quaternion subalgebra.

1. Introduction

A classical question concerning central simple algebras is to identify conditions under which a square-central element lies in a quaternion subalgebra. This question is only solved for certain special cases in the literature. Let *A* be a central simple algebra of exponent two over a field *F*. In [2, (3.2)] it was shown that if char $F \neq 2$ and *F* is of cohomological dimension less than or equal to 2, then every square-central element of *A* is contained in a quaternion subalgebra (see also [4, (4.2)]). In [3, (4.1)], it was shown that if char $F \neq 2$, then an element $x \in A$ with $x^2 = \lambda^2 \in F^{\times 2}$ lies in a (split) quaternion subalgebra if and only if dim_{*F*}($x - \lambda$) $A = \frac{1}{2} \dim_F A$. This result was generalised in [14, (3.2)] to an arbitrary characteristic and including $\lambda = 0$. On the other hand, in [18] it was shown that there is an indecomposable algebra of degree 8 and exponent 2, containing a square-central element (see [8, (5.6.10)]). Using similar methods, it was shown in [3] that for $n \ge 3$ there exists a tensor product of *n* quaternion algebras containing a square-central element which does not lie in any quaternion subalgebra.

A similar question for a central simple algebra with involution (A, σ) over F is whether a symmetric or skew-symmetric square-central element of A lies in a σ invariant quaternion subalgebra. In the case where char $F \neq 2$, deg_F A = 8 and σ has a trivial discriminant, the index of A is not 2 and one of the components of the Clifford

^{© 2017} Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

algebra $C(A, \sigma)$ splits, it was shown in [17, (3.14)] that every skew-symmetric squarecentral element of A lies in a σ -invariant quaternion subalgebra. In [14], some criteria were obtained for symmetric and skew-symmetric elements whose squares lie in F^2 to be contained in a σ -invariant quaternion subalgebra. Also, a sufficient condition was obtained in [12, (6.3)] for symmetric square-central elements in a totally decomposable algebra with orthogonal involution in characteristic two, to be contained in a stable quaternion subalgebra.

In this work we study some properties of symmetric square-central elements in totally decomposable algebras with orthogonal involution in characteristic two. Let (A, σ) be a totally decomposable algebra with orthogonal involution over a field F of characteristic two and let $x \in A \setminus F$ be a symmetric element with $\alpha := x^2 \in F$. Since the case where $\alpha \in F^2$ was investigated in [14], we assume that $\alpha \in F^{\times} \setminus F^{\times 2}$. First, in Section 3, we study some properties of *inseparable subalgebras*, introduced in [12]. It is shown in Theorem 3.8 that (A, σ) has a unique inseparable subalgebra if and only if either deg_F $A \leq 4$ or σ is anisotropic. In Section 4, we study some isotropy properties of a totally decomposable algebra with orthogonal involution (A, σ) . Let $x \in A$ be an alternating element with $x^2 \in F^{\times} \setminus F^{\times 2}$ and let $C = C_A(x)$. As we shall see in Theorem 4.7, if $(C, \sigma|_C)$ is totally decomposable, then (A, σ) and $(C, \sigma|_C)$ have the same isotropy behaviour. We then study our main problem in Sections 5 and 6. For the case where σ is anisotropic or A has degree 4, it is shown that every symmetric squarecentral element of A lies in a σ -invariant quaternion subalgebra (see Theorem 5.1 and Proposition 5.2). However, we will see in Proposition 6.3 that if σ is isotropic, $\deg_F A \ge 8$ and $(A, \sigma) \ne (M_{2^n}(F), t)$, there always exists a symmetric square-central element of (A, σ) which is not contained in any σ -invariant quaternion subalgebra of A. If A has degree 8 or σ satisfies a certain isotropy condition, it is shown in Proposition 5.7 and Theorem 5.10 that a symmetric square-central element of A lies in a σ -invariant quaternion subalgebra if and only if it is contained in an inseparable subalgebra of (A, σ) . Finally, in Example 6.4 we shall see that this criterion cannot be applied to arbitrary involutions.

2. Preliminaries

Throughout this paper, F denotes a field of characteristic two.

Let *A* be a central simple algebra over *F*. An *involution* on *A* is an antiautomorphism $\sigma : A \to A$ of order two. If $\sigma|_F = id$, we say that σ is of *the first kind*. The sets of *alternating* and *symmetric* elements of (A, σ) are defined as

Sym(
$$A, \sigma$$
) = { $x \in A \mid \sigma(x) = x$ } and Alt(A, σ) = { $\sigma(x) - x \mid x \in A$ }.

For a field extension K/F we use the notation $A_K = A \otimes K$, $\sigma_K = \sigma \otimes \text{id}$ and $(A, \sigma)_K = (A_K, \sigma_K)$. An extension K/F is called a *splitting field* of A if A_K splits, that is, A_K is isomorphic to the matrix algebra $M_n(K)$, where $n = \deg_F A$ is the degree of A over F. If (V, b) is a symmetric bilinear space over F, the pair $(\text{End}_F(V), \sigma_b)$ is denoted by Ad(b), where σ_b is the *adjoint involution* of $\text{End}_F(V)$ with respect to b

A.-H. Nokhodkar

(see [9, page 2]). According to [9, (2.1)], if *K* is a splitting field of *A*, then $(A, \sigma)_K$ is adjoint to a symmetric bilinear space (V, b) over *K*. We say that σ is *symplectic* if this form is alternating, that is, b(v, v) = 0 for every $v \in V$. Otherwise, σ is called *orthogonal*. By [9, (2.6)], σ is symplectic if and only $1 \in Alt(A, \sigma)$. An involution σ on a central simple algebra *A* is called *isotropic* if $\sigma(x)x = 0$ for some nonzero element $x \in A$. Otherwise, σ is called *anisotropic*. If σ is an orthogonal involution, the *discriminant* of σ is denoted by disc σ (see [9, (7.2)]).

A quaternion algebra over *F* is a central simple algebra of degree 2. An algebra with involution (A, σ) over *F* is called *totally decomposable* if it decomposes into tensor products of quaternion *F*-algebras with involution. If $(A, \sigma) \simeq \bigotimes_{i=1}^{n} (Q_i, \sigma_i)$ is a totally decomposable algebra with orthogonal involution over *F*, then every σ_i is necessarily orthogonal by [9, (2.23)].

Let (V, \mathfrak{b}) be a bilinear space over F and let $\alpha \in F$. We say that \mathfrak{b} represents α if $\mathfrak{b}(v, v) = \alpha$ for some nonzero vector $v \in V$. The set of elements in F represented by \mathfrak{b} is denoted by $D(\mathfrak{b})$. We also set $Q(\mathfrak{b}) = D(\mathfrak{b}) \cup \{0\}$. Observe that $Q(\mathfrak{b})$ is an F^2 -subspace of F. If K/F is a field extension, the scalar extension of \mathfrak{b} to K is denoted by \mathfrak{b}_K . For $\alpha_1, \ldots, \alpha_n \in F^{\times}$, the diagonal bilinear form $\sum_{i=1}^n \alpha_i x_i y_i$ is denoted by $\langle \alpha_1, \ldots, \alpha_n \rangle$. The form $\langle \langle \alpha_1, \ldots, \alpha_n \rangle := \langle 1, \alpha_1 \rangle \otimes \cdots \otimes \langle 1, \alpha_n \rangle$ is called a *bilinear (n-fold) Pfister form*. If \mathfrak{b} is a bilinear Pfister form over F, then there exists a bilinear form \mathfrak{b}' , called the *pure subform of* \mathfrak{b} , such that $\mathfrak{b} \simeq \langle 1 \rangle \perp \mathfrak{b}'$. The form \mathfrak{b}' is uniquely determined, up to isometry (see [1, page 906]).

3. The inseparable subalgebra

For an algebra with involution (A, σ) over F, we use the following notation:

Alt
$$(A, \sigma)^+ = \{x \in Alt(A, \sigma) \mid x^2 \in F\},\$$

Sym $(A, \sigma)^+ = \{x \in Sym(A, \sigma) \mid x^2 \in F\},\$
 $S(A, \sigma) = \{x \in A \mid \sigma(x)x \in Alt(A, \sigma) \oplus F\}.$

The set $S(A, \sigma)$ was introduced in [16]. Note that $x \in S(A, \sigma)$ if and only if there exists a unique element $\alpha \in F$ such that $\sigma(x)x + \alpha \in Alt(A, \sigma)$. As in [16], the element α is denoted by $q_{\sigma}(x)$. We thus obtain a map $q_{\sigma} : S(A, \sigma) \to F$ satisfying

$$\sigma(x)x + q_{\sigma}(x) \in \operatorname{Alt}(A, \sigma) \text{ for } x \in S(A, \sigma).$$

According to [16, (3.2) and (3.3)], $S(A, \sigma)$ is an *F*-subalgebra of *A* and q_{σ} is a totally singular quadratic form on $S(A, \sigma)$, that is, $q_{\sigma}(\lambda x + y) = \lambda^2 q_{\sigma}(x) + q_{\sigma}(y)$ for $\lambda \in F$ and $x, y \in S(A, \sigma)$. Note that if $x \in S(A, \sigma)$ and $\alpha := x^2 \in F$, then $\sigma(x)x + \alpha = 0 \in \text{Alt}(A, \sigma)$; hence, $x \in S(A, \sigma)$ and $q_{\sigma}(x) = \alpha$. In other words, $\text{Sym}(A, \sigma)^+ \subseteq S(A, \sigma)$ and the restriction of $q_{\sigma}(x)$ to $\text{Sym}(A, \sigma)^+$ is the squaring map $x \mapsto x^2$.

Let $(A, \sigma) \simeq \bigotimes_{i=1}^{n} (Q_i, \sigma_i)$ be a totally decomposable algebra of degree 2^n with orthogonal involution over *F*. According to [12, (4.6)] there exists a 2^n -dimensional subalgebra $\Phi \subseteq \text{Sym}(A, \sigma)^+$, called an *inseparable subalgebra* of (A, σ) , satisfying:

- (i) $C_A(\Phi) = \Phi$, where $C_A(\Phi)$ is the centraliser of Φ in A; and
- (ii) Φ is generated, as an *F*-algebra, by *n* elements.

For every inseparable subalgebra Φ of (A, σ) we have necessarily $\Phi \subseteq Alt(A, \sigma)^+ \oplus F$. It follows that

$$\Phi \subseteq \operatorname{Alt}(A, \sigma)^{+} \oplus F \subseteq \operatorname{Sym}(A, \sigma)^{+} \subseteq S(A, \sigma).$$
(3.1)

By [12, (5.10)], if Φ_1 and Φ_2 are two inseparable subalgebras of (A, σ) , then $\Phi_1 \simeq \Phi_2$ as *F*-algebras. Note that if $v_i \in \text{Sym}(Q_i, \sigma_i)^+ \setminus F$ is a unit for i = 1, ..., n, then $F[v_1, ..., v_n]$ is an inseparable subalgebra of (A, σ) .

THEOREM 3.1. Let (A, σ) be a totally decomposable algebra with anisotropic orthogonal involution over F and let Φ be an inseparable subalgebra of (A, σ) . Then $\Phi = \text{Alt}(A, \sigma)^+ \oplus F = \text{Sym}(A, \sigma)^+ = S(A, \sigma)$ is a maximal subfield of A. In particular, the inseparable subalgebra Φ is uniquely determined.

PROOF. By [16, (4.1)], Φ is a field and $S(A, \sigma) = \Phi$. Hence, the required equalities follow from (3.1). Also, as dim_{*F*} $\Phi = \deg_F A$, Φ is a maximal subfield of *A*.

LEMMA 3.2. Let (A, σ) be a central simple *F*-algebra with orthogonal involution and let $x \in Alt(A, \sigma)^+$. If $x^2 \notin F^2$, then $Sym(C_A(x), \sigma|_{C_A(x)})^+ \subseteq Sym(A, \sigma)^+$.

PROOF. Set $\alpha = x^2 \in F^{\times} \setminus F^{\times 2}$ and $K = F(x) = F(\sqrt{\alpha})$. Then $C_A(x)$ is a central simple algebra over K. Let $u \in \text{Sym}(C_A(x), \sigma|_{C_A(x)})^+$ and write $u^2 = a + bx$ for some $a, b \in F$. Then $u^2 + a = bx \in \text{Alt}(A, \sigma)$. By [13, (6.4)], $u^4 + au^2 = u(u^2 + a)u \in \text{Alt}(A, \sigma)$. Thus,

$$b^{2}\alpha = (bx)^{2} = (u^{2} + a)^{2} = u^{4} + a^{2} = u^{4} + au^{2} + a(u^{2} + a) \in Alt(A, \sigma).$$

However, $1 \notin Alt(A, \sigma)$, because σ is orthogonal. Hence, b = 0, that is, $u^2 = a \in F$. This implies that $u \in Sym(A, \sigma)^+$.

LEMMA 3.3. Let (A, σ) be a central simple algebra of degree 2^n with orthogonal involution over F. Let $x \in Alt(A, \sigma)^+$ with $x^2 \notin F^2$ and set $C = C_A(x)$. If $(C, \sigma|_C)$ is totally decomposable, then (A, σ) is also totally decomposable. In addition, every inseparable subalgebra of $(C, \sigma|_C)$ is an inseparable subalgebra of (A, σ) . In particular, the element x is contained in some inseparable subalgebra of (A, σ) .

PROOF. Set K = F(x). Then $(C, \sigma|_C)$ is a totally decomposable algebra of degree 2^{n-1} with orthogonal involution over K. Let Φ be an inseparable subalgebra of $(C, \sigma|_C)$. As $\Phi \subseteq \text{Sym}(C, \sigma|_C)^+$, by Lemma 3.2, $\Phi \subseteq \text{Sym}(A, \sigma)^+$. Write $\Phi = K[v_1, \ldots, v_{n-1}]$ for some $v_1, \ldots, v_{n-1} \in C$. Since dim_{*F*} $\Phi = 2^n = \deg_F A$ and Φ is generated, as an *F*-algebra, by x, v_1, \ldots, v_{n-1} , [12, (3.11)] implies that Φ is a Frobenius subalgebra of *A*. Hence, $C_A(\Phi) = \Phi$ by [8, (2.2.3)]. It follows from [12, (4.6)] that (A, σ) is totally decomposable and Φ is an inseparable subalgebra of (A, σ) .

PROPOSITION 3.4. Let (A, σ) be a totally decomposable algebra with orthogonal involution over F. Let $x \in Alt(A, \sigma)^+$ with $x^2 \notin F^2$ and set $C = C_A(x)$. Then, $(C, \sigma|_C)$ is totally decomposable if and only if x is contained in some inseparable subalgebra of A.

[4]

PROOF. The 'if' implication can be found in [12, (6.3 (i))]. The converse follows from Lemma 3.3.

We recall that every quaternion algebra Q over F has a *quaternion basis*, that is, a basis (1, u, v, w) satisfying $u^2 + u \in F$, $v^2 \in F^{\times}$ and w = uv = vu + v (see [9, page 25]). In this case, Q is denoted by $[\alpha, \beta)_F$, where $\alpha = u^2 + u \in F$ and $\beta = v^2 \in F^{\times}$.

LEMMA 3.5. If (Q, σ) is a quaternion algebra with orthogonal involution over F, then there is a quaternion basis (1, u, v, w) of Q such that $u, v \in \text{Sym}(Q, \sigma)$.

PROOF. Let $v \in Alt(Q, \sigma)$ be a unit. Since $v \notin F$ and $v^2 \in F^{\times}$, it is easily seen that v extends to a quaternion basis (1, u, v, w) of Q. By [13, (4.5)], $\sigma(u) = u$.

LEMMA 3.6 [13, page 7]. Let (A, σ) be a totally decomposable algebra with orthogonal involution over F. If σ is isotropic, then $(A, \sigma) \simeq (M_2(F), t) \otimes (B, \tau)$, where t is the transpose involution and (B, τ) is a totally decomposable F-algebra with orthogonal involution.

LEMMA 3.7. Let (A, σ) be a totally decomposable algebra of degree 8 with orthogonal involution over F. If σ is isotropic, then there are two inseparable subalgebras Φ_1 and Φ_2 of (A, σ) with $\Phi_1 \neq \Phi_2$.

PROOF. By Lemma 3.6, we may identify $(A, \sigma) = (Q_1, \sigma_1) \otimes (Q_2, \sigma_2) \otimes (M_2(F), t)$, where (Q_1, σ_1) and (Q_2, σ_2) are quaternion algebras with orthogonal involution. By Lemma 3.5, there exists a quaternion basis $(1, u_i, v_i, w_i)$ of Q_i over F such that $u_i, v_i \in \text{Sym}(Q_i, \sigma_i), i = 1, 2$. Let $v_3 \in \text{Alt}(M_2(F), t)$ be a unit. By scaling we may assume that $v_3^2 = 1$, because disc t is trivial (see [9, page 82]). Then,

$$\Phi_1 = F[v_1 \otimes 1 \otimes 1, 1 \otimes v_2 \otimes 1, 1 \otimes 1 \otimes v_3]$$

is an inseparable subalgebra of (A, σ) . Set

$$w = v_1 \otimes u_2 \otimes 1 + (v_1 \otimes u_2 + v_1 \otimes 1) \otimes v_3 \in \operatorname{Sym}(A, \sigma).$$

Then, $w^2 = v_1^2 \otimes 1 \otimes 1$; hence, $w^{-1} = \alpha^{-1}w$, where $\alpha = v_1^2 \in F^{\times}$. Set $\Phi_2 = w \cdot \Phi_1 \cdot w^{-1} \subseteq$ Sym $(A, \sigma)^+$. Then Φ_2 is an 8-dimensional subalgebra of (A, σ) , which is generated, as an *F*-algebra, by three elements. Also, the equality $C_A(\Phi_1) = \Phi_1$ implies that $C_A(\Phi_2) = \Phi_2$. Hence, Φ_2 is an inseparable subalgebra of (A, σ) . On the other hand, computations show that the element $w^{-1}(1 \otimes v_2 \otimes 1)w \in \Phi_2$ does not belong to Φ_1 ; hence, $\Phi_1 \neq \Phi_2$.

THEOREM 3.8. A totally decomposable algebra with orthogonal involution (A, σ) over F has a unique inseparable subalgebra if and only if either deg_F $A \leq 4$ or σ is anisotropic.

PROOF. Let Φ be an inseparable subalgebra of (A, σ) . If A is a quaternion algebra, then $\Phi = \text{Alt}(A, \sigma) \oplus F$ by dimension count. If $\deg_F A = 4$, then $\Phi = \text{Alt}(A, \sigma)^+ \oplus F$ by [15, (4.4)]. Also, if σ is anisotropic, then Φ is uniquely determined by Theorem 3.1. This proves the 'if' implication. To prove the converse, let $\deg_F A = 2^n$.

Suppose that σ is isotropic and deg_{*F*} $A \ge 8$, that is, $n \ge 3$. By Lemma 3.6, we may identify $(A, \sigma) = \bigotimes_{i=1}^{n-1} (Q_i, \sigma_i) \otimes (M_2(F), t)$, where every (Q_i, σ_i) is a quaternion algebra with orthogonal involution over *F*. By Lemma 3.7, the algebra with involution

$$(Q_{n-2},\sigma_{n-2})\otimes(Q_{n-1},\sigma_{n-1})\otimes(M_2(F),t),$$

has two inseparable subalgebras Φ_1 and Φ_2 with $\Phi_1 \neq \Phi_2$. Let Φ_3 be an inseparable subalgebra of $\bigotimes_{i=1}^{n-3}(Q_i, \sigma_i)$. Then, $\Phi_3 \otimes \Phi_1$ and $\Phi_3 \otimes \Phi_2$ are two inseparable subalgebras of (A, σ) with $\Phi_3 \otimes \Phi_1 \neq \Phi_3 \otimes \Phi_2$, proving the result. \Box

4. The isotropy index

DEFINITION 4.1 [5]. Let $(A, \sigma) \simeq \bigotimes_{i=1}^{n} (Q_i, \sigma_i)$ be a totally decomposable algebra with orthogonal involution over *F*. The *Pfister invariant* of (A, σ) is defined as $\mathfrak{Pf}(A, \sigma) := \langle \langle \alpha_1, \ldots, \alpha_n \rangle$, where $\alpha_i \in F^{\times}$ is a representative of the class disc $\sigma_i \in F^{\times}/F^{\times 2}$, for $i = 1, \ldots, n$.

According to [5, (7.2)], the isometry class of the Pfister invariant is independent of the decomposition of (A, σ) . Moreover, every inseparable subalgebra Φ of (A, σ) may be considered as an underlying vector space of $\mathfrak{Pf}(A, \sigma)$ such that $\mathfrak{Pf}(A, \sigma)(x, x) = x^2$ for $x \in \Phi$ (see [12, (5.5)]).

LEMMA 4.2. Let (A, σ) be a totally decomposable algebra with orthogonal involution over F. If $x \in \text{Sym}(A, \sigma)^+$, then $x^2 \in Q(\mathfrak{P}(A, \sigma))$.

PROOF. As already observed, $x \in S(A, \sigma)$ and $q_{\sigma}(x) = x^2$. The result therefore follows from [16, (4.3)].

For a positive integer *n*, we denote the bilinear *n*-fold Pfister form $\langle 1, ..., 1 \rangle$ by $\langle 1 \rangle^n$. We also set $\langle 1 \rangle^0 = \langle 1 \rangle$.

Let b be a bilinear Pfister form over *F*. In view of [1, A.5], one can find a nonnegative integer *r* and an anisotropic bilinear Pfister form c such that $b \simeq \langle \langle 1 \rangle \rangle^r \otimes c$. As in [13], we denote the integer *r* by i(b). If (A, σ) is a totally decomposable *F*-algebra with orthogonal involution, we simply denote i($\mathfrak{P}\mathfrak{f}(A, \sigma)$) by i(A, σ) and we call it the *isotropy index* of (A, σ) . By [5, (5.7)], (A, σ) is anisotropic if and only if i(A, σ) = 0. If $r := i(A, \sigma) > 0$, there exists a totally decomposable algebra with anisotropic orthogonal involution (B, ρ) over *F* such that $(A, \sigma) \simeq (M_{2^r}(F), t) \otimes (B, \rho)$ (see [13, page 7]). In particular, if *A* is of degree 2^n then $i(A, \sigma) = n$ if and only if $(A, \sigma) \simeq (M_{2^n}(F), t)$. Also, if σ is isotropic and Φ is an inseparable subalgebra of (A, σ) , then there exists an element $x \in \Phi$ such that $x^2 = 1$.

PROPOSITION 4.3. Let b be a bilinear n-fold Pfister form over F. If $\alpha \in Q(b) \setminus F^2$, then $i(b_{F(\sqrt{\alpha})}) = i(b) + 1$.

PROOF. Set $K = F(\sqrt{\alpha})$ and r = i(b). As $Q(\langle (1) \rangle^n) = F^2$ and $\alpha \in Q(b) \setminus F^2$, it follows that $b \neq \langle (1) \rangle^n$, that is, r < n. Write $b \simeq \langle (1) \rangle^r \otimes c$ for some anisotropic bilinear Pfister form c over F. Since Q(b) = Q(c), we have $\alpha \in Q(c)$. Hence, the pure subform of c

A.-H. Nokhodkar

represents $\alpha + \lambda^2$ for some $\lambda \in F$. By [1, A.2], there exist $\alpha_2, \ldots, \alpha_s \in F$ such that $c \simeq \langle\!\langle \alpha + \lambda^2, \alpha_2, \ldots, \alpha_s \rangle\!\rangle$. Note that $\alpha + \lambda^2 \in K^{\times 2}$; hence, $c_K \simeq \langle\!\langle 1, \alpha_2, \ldots, \alpha_s \rangle\!\rangle_K$. Since $c = \langle\!\langle \alpha + \lambda^2 \rangle\!\rangle \otimes \langle\!\langle \alpha_2, \ldots, \alpha_s \rangle\!\rangle_K$ is anisotropic and $K = F(\sqrt{\alpha + \lambda^2})$, by [7, (4.2)] the form $\langle\!\langle \alpha_2, \ldots, \alpha_s \rangle\!\rangle_K$ is anisotropic. It follows that $i(c_K) = 1$; hence, $i(b_K) = r + 1 = i(b) + 1$.

COROLLARY 4.4. Let (A, σ) be a totally decomposable algebra with orthogonal involution over F. If $x \in \text{Sym}(A, \sigma)^+$ with $\alpha = x^2 \notin F^2$, then $i((A, \sigma)_{F(\sqrt{\alpha})}) = i(A, \sigma) + 1$. In particular, $(A, \sigma) \neq (M_{2^n}(F), t)$.

PROOF. By Lemma 4.2, $\alpha \in Q(\mathfrak{P}(A, \sigma))$. The result follows from Proposition 4.3. \Box

LEMMA 4.5. Let (A, σ) be a totally decomposable algebra of degree 2^n with orthogonal involution over F and let $x \in \text{Sym}(A, \sigma)^+$ be a unit. If Φ is an inseparable subalgebra of (A, σ) , then for every unit $y \in \Phi$, there exists a positive integer k such that $(xy)^k \in \text{Sym}(A, \sigma)^+$. In addition, for such an integer k, we have $(xy)^k x = x(xy)^k$.

PROOF. Since *x* and *y* are units, the element $(xy)^r$ is a unit for every integer *r*. For $r \ge 0$, let $\Phi_r = (xy)^r \cdot \Phi \cdot (xy)^{-r}$. Then Φ_r is a 2^n -dimensional commutative subalgebra of *A*, which is generated by *n* elements and satisfies $u^2 \in F$ for every $u \in \Phi_r$. Set $\alpha = x^2 \in F^{\times}$ and $\beta = y^2 \in F^{\times}$. Then,

$$(xy)^{-r} = (y^{-1}x^{-1})^r = (\beta^{-1}y\alpha^{-1}x)^r = \alpha^{-r}\beta^{-r}(yx)^r.$$

Hence, $\Phi_r = \alpha^{-r} \beta^{-r} (xy)^r \cdot \Phi \cdot (yx)^r \subseteq \text{Sym}(A, \sigma)$, that is, Φ_r is an inseparable subalgebra of (A, σ) . However, there exists a finite number of inseparable subalgebras of (A, σ) , so $\Phi_r = \Phi_s$ for some nonnegative integers r, s with r > s. It follows that $\Phi_{r-s} = \Phi_0 = \Phi$. In particular, $(xy)^{r-s} y(xy)^{s-r} \in \Phi$ and

$$(xy)^{r-s}y(xy)^{s-r}y = y(xy)^{r-s}y(xy)^{s-r}.$$
(4.1)

Set $\lambda = \alpha^{s-r}\beta^{s-r}$, so that $(xy)^{s-r} = \lambda(yx)^{r-s}$. Substituting in (4.1),

$$\lambda(xy)^{r-s}y(yx)^{r-s}y = \lambda y(xy)^{r-s}y(yx)^{r-s}.$$

It follows that $\lambda y^2(xy)^{2(r-s)} = \lambda y^2(yx)^{2(r-s)}$, because $y^2 \in F^{\times}$. Hence, $(xy)^k = (yx)^k$, where k = 2(r-s). Also, $\sigma((xy)^k) = (yx)^k = (xy)^k$ and $((xy)^k)^2 = (xy)^k(yx)^k \in F^{\times}$; hence, $(xy)^k \in \text{Sym}(A, \sigma)^+$. Finally, $(xy)^k x = x(yx)^k = x(xy)^k$, completing the proof. \Box

PROPOSITION 4.6. Let (A, σ) be a totally decomposable algebra with orthogonal involution over F and let $x \in \text{Sym}(A, \sigma)^+$ with $x^2 \notin F^2$. Then, σ is isotropic if and only if $\sigma|_{C_A(x)}$ is isotropic.

PROOF. Since $x^2 \notin F^2$, $C_A(x)$ is a central simple algebra over $F(x) = F(\sqrt{\alpha})$, where $\alpha = x^2 \in F^{\times}$. If $\sigma|_{C_A(x)}$ is isotropic, then σ is clearly isotropic. To prove the converse, let Φ be an inseparable subalgebra of (A, σ) . Since σ is isotopic, there exists $y \in \Phi \setminus F$ with $y^2 = 1$. By Lemma 4.5, there is a positive integer k such that $(xy)^k \in \text{Sym}(A, \sigma)^+$. Let r be the minimum positive integer with $(xy)^r \in \text{Sym}(A, \sigma)^+$; hence, $(xy)^r = (yx)^r$.

We claim that $(xy)^r \neq x^r$. Suppose that $(xy)^r = x^r$. If *r* is odd, write r = 2s + 1 for some nonnegative integer *s*. The equality $(xy)^r = x^r$ then implies that $(yx)^s y(xy)^s = x^{2s} = \alpha^s$. As $(xy)^s = \alpha^s (yx)^{-s}$, we get $\alpha^s (yx)^s y(yx)^{-s} = \alpha^s$. Hence, $y = 1 \in F$, which contradicts the assumption. If *r* is even, write r = 2s for some positive integer *s*, so that $(xy)^r = x^r = \alpha^s$. Multiplying by $(xy)^{-s}$,

$$(xy)^s = \alpha^s (xy)^{-s} = \alpha^s \alpha^{-s} (yx)^s = (yx)^s.$$

It follows that $(xy)^s \in \text{Sym}(A, \sigma)^+$, contradicting the minimality of *r*. This proves the claim. According to Lemma 4.5, $(xy)^r \in C_A(x)$. Set $z = (xy)^r + x^r \in C_A(x)$. Then $z \neq 0$ and $\sigma(z)z = \alpha^r + \alpha^r = 0$, that is, $\sigma|_{C_A(x)}$ is isotropic.

THEOREM 4.7. Let (A, σ) be a totally decomposable algebra with orthogonal involution over F. Let $x \in Alt(A, \sigma)^+$ with $x^2 \notin F^2$ and let $C = C_A(x)$. If $(C, \sigma|_C)$ is totally decomposable, then $i(C, \sigma|_C) = i(A, \sigma)$.

PROOF. If $\sigma|_C$ is anisotropic, then σ is also anisotropic by Proposition 4.6; hence, $i(C, \sigma|_C) = i(A, \sigma) = 0$. Suppose that $\sigma|_C$ is isotropic. Set $r = i(C, \sigma|_C) > 0$ and K = F(x). Write $(C, \sigma|_C) \simeq (M_{2^r}(K), t) \otimes (B, \tau)$ for some totally decomposable algebra with anisotropic orthogonal involution (B, τ) over K. Note that the algebra B is nontrivial by Corollary 4.4. Since $(M_{2^r}(K), t) \simeq (M_{2^r}(F), t)_K$, we may identify $M_{2^r}(F)$ with a subalgebra of A. Let $D = C_A(M_{2^r}(F))$. Then $x \in D$,

$$(A,\sigma) \simeq (M_{2'}(F),t) \otimes (D,\sigma|_D), \tag{4.2}$$

and one has a monomorphism of *F*-algebras with involution $(B, \tau) \hookrightarrow (D, \sigma|_D)$. Considering this map as an inclusion, we see that $B = C_D(x)$. By [11, (3.5)], $x \in \operatorname{Alt}(D, \sigma|_D)$. It follows that $x \in \operatorname{Alt}(D, \sigma|_D)^+$, because $x^2 \in F$. Since (B, τ) is totally decomposable, the pair $(D, \sigma|_D)$ is also totally decomposable by Lemma 3.3. Also, Proposition 4.6 implies that $\sigma|_D$ is anisotropic, because τ is anisotropic. Hence, using (4.2) we obtain $i(A, \sigma) = r$, proving the result.

5. Stable quaternion subalgebras

In this section we study some conditions under which a symmetric square-central element of a totally decomposable algebra with orthogonal involution is contained in a stable quaternion subalgebra. We start with anisotropic involutions.

THEOREM 5.1. Let (A, σ) be a totally decomposable algebra with anisotropic orthogonal involution over F. Then every $x \in \text{Sym}(A, \sigma)^+$ is contained in a σ -invariant quaternion subalgebra of A.

PROOF. Since σ is anisotropic, Theorem 3.1 shows that *x* is contained in the unique inseparable subalgebra of (A, σ) . If $x^2 = \lambda^2$ for some $\lambda \in F$, then $(x + \lambda)^2 = 0$. Hence, $x = \lambda$ by [5, (6.1)] and the result is trivial. Otherwise, $x^2 \notin F^2$ and the conclusion follows from [12, (6.3 (ii))].

We next consider algebras of degree 4 and 8.

PROPOSITION 5.2. Let (A, σ) be a totally decomposable algebra of degree 4 with orthogonal involution over F. If $x \in \text{Sym}(A, \sigma)^+$ with $x^2 \notin F^2$, then x is contained in a σ -invariant quaternion subalgebra of A.

PROOF. By Corollary 4.4, either $i(A, \sigma) = 0$ or $i(A, \sigma) = 1$. In the first case, the result follows from Theorem 5.1. Suppose $i(A, \sigma) = 1$. Set $C = C_A(x)$ and K = F(x). By Proposition 4.6, $(C, \sigma|_C)$ is isotropic. However, $(C, \sigma|_C)$ is a quaternion *K*-algebra and the isotropy of $\sigma|_C$ implies $i(C, \sigma|_C) = 1$, that is, $(C, \sigma|_C) \simeq (M_2(K), t) \simeq (M_2(F), t)_K$. Hence, the algebra $M_2(F)$ may be identified with a subalgebra of $C \subseteq A$. The algebra $Q = C_A(M_2(F))$ is then a σ -invariant quaternion subalgebra of A containing x.

The next result follows from [7, (4.2)] and the Witt decomposition theorem [6, (1.27)]. Recall that a symmetric bilinear space (V, b) over F is called *metabolic* if there exists a subspace W of V with dim_F $W = \frac{1}{2} \dim_F V$ such that $b|_{W \times W} = 0$.

LEMMA 5.3. Let b be an anisotropic symmetric bilinear form over F and $\alpha \in F^{\times} \setminus F^{\times 2}$. Then $b \otimes \langle\!\langle \alpha \rangle\!\rangle$ is metabolic if and only if $b_{F(\sqrt{\alpha})}$ is metabolic.

Recall that two bilinear forms b and c are called *similar* if $b \simeq \lambda \cdot c$ for some $\lambda \in F^{\times}$.

LEMMA 5.4. Let \mathfrak{b} be a 4-dimensional symmetric nonalternating bilinear form over F and let $K = F(\sqrt{\alpha})$ for some $\alpha \in F^{\times} \setminus F^{\times 2}$. If $\mathfrak{b} \otimes \langle \langle \alpha \rangle \rangle$ is metabolic, then \mathfrak{b}_K is similar to a Pfister form.

PROOF. By the Witt decomposition theorem, one can write $b \simeq b_1 \perp b_2$, where b_1 is anisotropic and b_2 is metabolic. The hypothesis implies that the form $b_1 \otimes \langle a \rangle$ is metabolic. By Lemma 5.3, the form $(b_1)_K$ (and therefore b_K) is also metabolic. Since b_K is not alternating, by [6, (1.24) and (1.22(3))] either $b_K \simeq \langle a, a, b, b \rangle$ or $b_K \simeq \langle a, a \rangle \perp \mathbb{H}$, where $a, b \in K^{\times}$ and \mathbb{H} is the hyperbolic plane. In the first case, b_K is similar to $\langle 1, 1, ab, ab \rangle = \langle 1, ab \rangle$. In the second case, using the isometry $\langle a, a, a \rangle \simeq \langle a \rangle \perp \mathbb{H}$ in [6, (1.16)], we get $b_K \simeq \langle a, a, a, a \rangle$. Hence, b_K is similar to $\langle 1, 1 \rangle$.

LEMMA 5.5. Let (A, σ) be a central simple algebra of degree 4 with orthogonal involution over F and let K/F be a separable quadratic extension. If $(A, \sigma)_K$ is totally decomposable, then (A, σ) is also totally decomposable.

PROOF. By [10, (7.3)], a 4-dimensional orthogonal involution is totally decomposable if and only if its discriminant is trivial. The result therefore follows from the equality $K^{\times 2} \cap F^{\times} = F^{\times 2}$.

LEMMA 5.6 [14, (5.4)]. Let (Q, σ) be a quaternion algebra with orthogonal involution over F. If $x \in \text{Sym}(Q, \sigma)^+ \setminus F$ then there exists $\lambda \in F$ such that $x + \lambda \in \text{Alt}(Q, \sigma)^+$.

PROPOSITION 5.7. Let (A, σ) be a totally decomposable algebra of degree 8 over F. For an element $x \in \text{Sym}(A, \sigma)^+$ with $x^2 \notin F^2$, the following conditions are equivalent:

- (1) There exists a σ -invariant quaternion subalgebra of A containing x.
- (2) There exists an inseparable subalgebra Φ of (A, σ) such that $x \in \Phi$.

PROOF. If $i(A, \sigma) = 0$, by Theorems 5.1 and 3.1 both conditions are satisfied. Let $i(A, \sigma) > 0$. Then $(A, \sigma) \simeq (M_2(F), t) \otimes (Q_1, \sigma_1) \otimes (Q_2, \sigma_2)$, where $(Q_i, \sigma_i), i = 1, 2$, is a quaternion algebra with orthogonal involution over *F*. Suppose first that *x* is contained in a σ -invariant quaternion subalgebra Q_3 of *A*. By Lemma 5.6, replacing *x* with $x + \lambda$ for some $\lambda \in F$, we may assume that $x \in Alt(A, \sigma)^+$ (note that this replacement does not change the hypothesis $x^2 \notin F^2$ and the conditions (1) and (2)). Set $B = C_A(Q_3)$, $\sigma_3 = \sigma|_{Q_3}$ and $\rho = \sigma|_B$, so that $(A, \sigma) \simeq (Q_3, \sigma_3) \otimes (B, \rho)$. Then

$$(Q_3, \sigma_3) \otimes (B, \rho) \simeq (M_2(F), t) \otimes (Q_1, \sigma_1) \otimes (Q_2, \sigma_2).$$
(5.1)

Let $C = C_A(x)$ and $K = F(x) = F(\sqrt{\alpha})$, where $\alpha = x^2 \in F^{\times} \setminus F^{\times 2}$. Then $(C, \sigma|_C) \simeq (B, \rho)_K$ as *K*-algebras. We claim that $(B, \rho)_K$ is totally decomposable. The result then follows from Proposition 3.4.

By Lemma 3.5, for i = 1, 2, 3, there exists a quaternion basis $(1, u_i, v_i, w_i)$ of Q_i such that $u_i \in \text{Sym}(Q_i, \sigma_i)$. Let $\beta_i = u_i^2 + u_i \in F$. For i = 0, 1, 2, 3, define a field L_i inductively as follows: set $L_0 = F$. For $i \ge 1$ set $L_i = L_{i-1}(u_i)$ if $\beta_i \notin \wp(L_{i-1}) := \{y^2 + y \mid y \in L_{i-1}\}$ and $L_i = L_{i-1}$ otherwise. In other words, either $L_i = L_{i-1}$ or L_i/L_{i-1} is a separable quadratic extension. Note that $L_i^{\times 2} \cap F^{\times} = F^{\times 2}$; hence, either $L_i(\sqrt{\alpha}) = L_{i-1}(\sqrt{\alpha})$ or $L_i(\sqrt{\alpha})/L_{i-1}(\sqrt{\alpha})$ is a separable quadratic extension. We show that $\rho_{L_3(\sqrt{\alpha})}$ is totally decomposable, which implies that $\rho_{L_i(\sqrt{\alpha})}$ is also totally decomposable, as required.

Set $L = L_3$. Then for i = 1, 2, 3, the algebra Q_{iL} splits. Hence, $(Q_i, \sigma_i)_L \simeq (M_2(L), \tau_i)$, where τ_i is an orthogonal involution on $M_2(L)$. By (5.1),

$$(M_2(L), \tau_3) \otimes (B, \rho)_L \simeq (M_2(L), t) \otimes (M_2(L), \tau_1) \otimes (M_2(L), \tau_2).$$
 (5.2)

In particular, B_L splits and we may identify $(B, \rho)_L = Ad(b)$ for some symmetric bilinear form b over L. Since $x \in Alt(Q_3, \sigma_3)^+$, we have disc $\sigma_3 = \alpha F^{\times 2}$ and so

$$(M_2(L), \tau_3) \simeq (Q_3, \sigma_3)_L \simeq \operatorname{Ad}(\langle\!\langle \alpha \rangle\!\rangle_L), \tag{5.3}$$

by [9, (7.4)]. The right side of (5.2) is the adjoint involution of a metabolic bilinear form over *L*. Hence, it follows from (5.3) that $b \otimes \langle \langle \alpha \rangle \rangle$ is also metabolic. By Lemma 5.4, $b_{L(\sqrt{\alpha})}$ is similar to a Pfister form. Hence, $\rho_{L(\sqrt{\alpha})}$ is totally decomposable. This proves that (1) implies (2). The converse follows from [12, (6.3 (ii))].

LEMMA 5.8 [9, pages 13–14]. If b is an n-dimensional symmetric bilinear form over F, then Ad(b) $\simeq (M_n(F), t)$ if and only if b is similar to $n \times \langle 1 \rangle$.

LEMMA 5.9. Let (A, σ) be a central simple algebra of degree n with orthogonal involution over F. If $(A, \sigma) \otimes (M_m(F), \tau) \simeq (M_{mn}(F), t)$, where m is a nonnegative integer and τ is an orthogonal involution, then $(A, \sigma) \simeq (M_n(F), t)$.

[10]

PROOF. Observe first that A splits; hence, we may identify $(A, \sigma) = \operatorname{Ad}(\mathfrak{b}_1)$ and $(M_m(F), \tau) = \operatorname{Ad}(\mathfrak{b}_2)$ for some symmetric nonalternating bilinear forms \mathfrak{b}_1 and \mathfrak{b}_2 over *F*. By Lemma 5.9, $\operatorname{Ad}(\mathfrak{b}_1 \otimes \mathfrak{b}_2) \simeq \operatorname{Ad}(mn \times \langle 1 \rangle)$. Hence, the forms $\mathfrak{b}_1 \otimes \mathfrak{b}_2$ and $mn \times \langle 1 \rangle$ are similar by [9, (4.2)]. As $Q(mn \times \langle 1 \rangle) = F^2$, we obtain $Q(\mathfrak{b}_1) \subseteq \lambda \cdot F^2$ for some $\lambda \in F^{\times}$. Since \mathfrak{b}_1 is nonalternating, it is diagonalisable by [6, (1.17)] and is therefore similar to $n \times \langle 1 \rangle$. By Lemma 5.8, $(A, \sigma) \simeq (M_n(F), t)$.

THEOREM 5.10. Let (A, σ) be a totally decomposable algebra of degree 2^n with orthogonal involution over F and let $x \in \text{Sym}(A, \sigma)^+$ with $x^2 \notin F^2$. If $i(A, \sigma) = n - 1$, then the following statements are equivalent:

- (1) There exists a σ -invariant quaternion subalgebra Q of A containing x.
- (2) There exists an inseparable subalgebra Φ of (A, σ) such that $x \in \Phi$.

PROOF. The implication $(2) \Rightarrow (1)$ follows from [12, (6.3 (ii))]. For the converse, observe that by Lemma 5.6, replacing *x* with $x + \lambda$ for some $\lambda \in F$, we may assume that $x \in Alt(A, \sigma)^+$. Let $C = C_A(x)$. In view of Proposition 3.4, it suffices to show that $(C, \sigma|_C)$ is totally decomposable. Let $\tau = \sigma|_Q$, $B = C_A(Q)$ and $\rho = \sigma|_B$. Then, $(A, \sigma) \simeq (B, \rho) \otimes (Q, \tau)$. Set K = F(x), so that $(C, \sigma|_C) \simeq_K (B, \rho)_K$. Hence, it is enough to show that $(B, \rho)_K$ is totally decomposable. By Corollary 4.4, $i(A, \sigma)_K = n$, so $(A, \sigma)_K \simeq (M_{2^n}(K), t)$. It follows that $(B, \rho)_K \otimes_K (Q, \tau)_K \simeq (M_{2^n}(K), t)$. Since $x \in Q$ and $x^2 \in K^2$, the algebra Q_K splits. Hence, by Lemma 5.9, $(B, \rho)_K \simeq_K (M_{2^{n-1}}(K), t)$. In particular, $(B, \rho)_K$ is totally decomposable, proving the result.

6. Examples for isotropic involutions

In this section we show that the criteria obtained in Section 5 do not necessarily apply to arbitrary involutions.

LEMMA 6.1. Let (A, σ) be a totally decomposable algebra of degree 2^n with orthogonal involution over F. If $n \ge 2$ and $(A, \sigma) \ne (M_{2^n}(F), t)$, then there exist an element $w \in \text{Sym}(A, \sigma) \setminus (\text{Alt}(A, \sigma) \oplus F)$ and a unit $u \in \text{Alt}(A, \sigma)$ such that $u^2 \in F^{\times} \setminus F^{\times 2}$ and uw = wu.

PROOF. Let $(A, \sigma) \simeq \bigotimes_{i=1}^{n} (Q_i, \sigma_i)$ be a decomposition of (A, σ) . Since $(A, \sigma) \neq (M_{2^n}(F), t)$, (by re-indexing) we may assume that $(Q_1, \sigma_1) \neq (M_2(F), t)$. Let $u \in \operatorname{Alt}(Q_1, \sigma_1)$ be a unit, so that $u^2 \in F^{\times}$. If $u^2 \in F^{\times 2}$ then Q_1 splits and disc σ_1 is trivial. As disc *t* is also trivial (see [9, page 82]), $(Q_1, \sigma_1) \simeq (M_2(F), t)$ by [9, (7.4)], contradicting the assumption. Hence, $u^2 \in F^{\times} \setminus F^{\times 2}$. By [9, (2.6)], dim_F Sym(Q_2, σ_2) = 3 and dim_F Alt(Q_2, σ_2) = 1. Hence, there exists an element $w \in \operatorname{Sym}(Q_2, \sigma_2) \setminus (\operatorname{Alt}(Q_2, \sigma_2) \oplus F)$. The elements *u* and *w* may be identified with elements of *A*, so that uw = wu, $w \in \operatorname{Sym}(A, \sigma)$ and $u \in \operatorname{Alt}(A, \sigma)$. Observe that $\alpha + w \notin \operatorname{Alt}(Q_2, \sigma_2)$ for every $\alpha \in F$. By [11, (3.5)], it follows that $\alpha + w \notin \operatorname{Alt}(A, \sigma)$ for all $\alpha \in F$, that is, $w \in \operatorname{Sym}(A, \sigma) \setminus (\operatorname{Alt}(A, \sigma) \oplus F)$.

423

REMARK 6.2. Let (B, ρ) be a central simple algebra with involution over F and set $(A, \sigma) = (B, \rho) \otimes (M_2(F), t)$. Then every element $x \in A$ can be written as $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $a, b, c, d \in B$. The involution σ maps x to $\begin{pmatrix} \rho(a) & \rho(c) \\ \rho(b) & \rho(d) \end{pmatrix}$. It follows that

$$\operatorname{Alt}(A, \sigma) = \left\{ \begin{pmatrix} a & b \\ \rho(b) & c \end{pmatrix} \middle| a, c \in \operatorname{Alt}(B, \rho) \text{ and } b \in B \right\},$$
$$\operatorname{Sym}(A, \sigma) = \left\{ \begin{pmatrix} a & b \\ \rho(b) & c \end{pmatrix} \middle| a, c \in \operatorname{Sym}(B, \rho) \text{ and } b \in B \right\}.$$

The next result shows that Theorem 5.1 does not hold for isotropic involutions of degree ≥ 8 (see also Proposition 5.2).

PROPOSITION 6.3. Let (A, σ) be a totally decomposable algebra of degree 2^n with isotropic orthogonal involution over F. If $n \ge 3$ and $(A, \sigma) \ne (M_{2^n}(F), t)$, then there exists an element $x \in \text{Sym}(A, \sigma)^+$ with $x^2 \notin F^2$ which is not contained in any σ -invariant quaternion subalgebra of A.

PROOF. Since $i(A, \sigma) > 0$, we may identify $(A, \sigma) = (B, \rho) \otimes (M_2(F), t)$, where (B, ρ) is a totally decomposable algebra with orthogonal involution over *F*. The assumptions $n \ge 3$ and $(A, \sigma) \ne (M_{2^n}(F), t)$ imply $\deg_F B \ge 4$ and $(B, \rho) \ne (M_{2^{n-1}}(F), t)$. By Lemma 6.1, there exists an element $w \in \text{Sym}(B, \rho) \setminus (\text{Alt}(B, \rho) \oplus F)$ and a unit $u \in \text{Alt}(B, \rho)$ for which $u^2 \in F^{\times} \setminus F^{\times 2}$ and uw = wu. Set

$$x = \begin{pmatrix} w & w + u \\ w + u & w \end{pmatrix} \in A.$$

By Remark 6.2, $x \in \text{Sym}(A, \sigma) \setminus (\text{Alt}(A, \sigma) \oplus F)$. Since $u^2 \in F^{\times} \setminus F^{\times 2}$, we have $x^2 \in F^{\times} \setminus F^{\times 2}$; hence, $x \in \text{Sym}(A, \sigma)^+$. By Lemma 5.6, *x* is not contained in any σ -invariant quaternion subalgebra of *A*, because $x + \alpha \notin \text{Alt}(A, \sigma)$ for every $\alpha \in F$. \Box

We conclude by showing that the implication $(1) \Rightarrow (2)$ in Theorem 5.10 and Proposition 5.7 does not hold for arbitrary involutions. We use the ideas of [5, (9.4)]. Recall that the *canonical* involution γ on a quaternion *F*-algebra *Q* is defined as $\gamma(x) = \operatorname{Trd}_Q(x) - x$ for $x \in Q$, where $\operatorname{Trd}_Q(x)$ is the reduced trace of *x* in *Q*. For a division algebra with involution (D, θ) over *F* and $\alpha_1, \ldots, \alpha_n \in D^{\times} \cap \operatorname{Sym}(D, \theta)$, the diagonal hermitian form *h* on D^n defined by $h(x, y) = \sum_{i=1}^n \theta(x_i)\alpha_i y_i$ is denoted by $\langle \alpha_1, \ldots, \alpha_n \rangle_{\theta}$.

EXAMPLE 6.4. Let $F \neq F^2$ and let K = F(X, Y, Z), where X, Y and Z are indeterminates. Let $Q = [X, Y)_K$ and let γ be the canonical involution on Q. By [5, (9.3)], Q is a division algebra over K. Choose an element $s \in \text{Sym}(Q, \gamma)$ with $s^2 = Y$. Let ψ be the diagonal hermitian form $\langle 1, Z, s, s \rangle_{\gamma}$ over (Q, γ) and set $(B, \rho) = \text{Ad}(\psi)$. By [5, (9.4)], (B, ρ) is not totally decomposable, but $(B, \rho)_L$ is totally decomposable for every splitting field L of A.

Now, choose $\alpha \in F^{\times} \setminus F^{\times 2}$ and let $Q' = [X, \alpha)_K$ with a quaternion basis (1, u, v, w). Let τ be the involution on Q' induced by $\tau(u) = u$ and $\tau(v) = v$. Then, τ is an orthogonal

A.-H. Nokhodkar

involution and $v = \tau(uv) - uv \in Alt(Q', \tau)$. Set $(A, \sigma) = (B, \rho) \otimes_K (Q', \tau)$. Then, (A, σ) is a central simple algebra with orthogonal involution over *K*. We claim that (A, σ) is totally decomposable. Let $L = K(u) \subseteq Q'$ and set $C = C_A(1 \otimes u)$. Then, L/K is a separable quadratic extension and

$$(C,\sigma|_C) \simeq_L (B,\rho)_L \tag{6.1}$$

[13]

is a central simple *L*-algebra with orthogonal involution. Since $u^2 + u = X$, it follows that $Q_L \simeq [X, Y)_L$ splits, which implies that B_L is also split. Thus $(B, \rho)_L$ is totally decomposable, that is, $(C, \sigma|_C)$ is totally decomposable by (6.1). Using [13, (7.3)] and the isomorphism (6.1), one can find a totally decomposable algebra with orthogonal involution (C', σ') over *K* such that $(C, \sigma|_C) \simeq (C', \sigma')_L$. As $C \subseteq A$, the algebra *C'* may be identified with a subalgebra of *A*. Let $Q'' = C_A(C')$. Then, Q'' is a quaternion *K*subalgebra of *A* and $(A, \sigma) \simeq_K (C', \sigma') \otimes_K (Q'', \sigma|_{Q''})$ is totally decomposable, proving the claim.

The element $1 \otimes v \in Alt(A, \sigma)^+$ is contained in the copy of Q' in A, which is a σ invariant quaternion subalgebra of A. Note that $(C_A(1 \otimes v), \sigma|_{C_A(1 \otimes v)}) \simeq (B, \rho)_{K(v)}$ as K(v)-algebras. We show that $(B, \rho)_{K(v)}$ is not totally decomposable, which implies that $1 \otimes v$ is not contained in any inseparable subalgebra of (A, σ) , by [12, (6.3(i))]. Since $v^2 = \alpha \in F^{\times} \setminus F^{\times 2}$, we have $K(v) \simeq F(\sqrt{\alpha})(X, Y, Z)$. Hence, $Q_{K(v)}$ is still a division algebra by [5, (9.3)]. By [5, (9.4)], $(B, \rho)_{K(v)}$ is not totally decomposable.

References

- [1] J. Arason and R. Baeza, 'Relations in I^n and $I^n W_q$ in characteristic 2', J. Algebra **314**(2) (2007), 895–911.
- [2] D. Barry, 'Decomposable and indecomposable algebras of degree 8 and exponent 2 (with an appendix by A. S. Merkurjev)', *Math. Z.* **276**(3–4) (2014), 1113–1132.
- [3] D. Barry, 'Power-central elements in tensor products of symbol algebras', *Comm. Algebra* **44**(9) (2016), 3767–3787.
- [4] D. Barry and A. Chapman, 'Square-central and Artin–Schreier elements in division algebras', Arch. Math. (Basel) 104(6) (2015), 513–521.
- [5] A. Dolphin, 'Orthogonal Pfister involutions in characteristic two', J. Pure Appl. Algebra 218(10) (2014), 1900–1915.
- [6] R. Elman, N. Karpenko and A. Merkurjev, *The Algebraic and Geometric Theory of Quadratic Forms*, American Mathematical Society Colloquium Publications, 56 (American Mathematical Society, Providence, RI, 2008).
- [7] D. Hoffmann, 'Witt kernels of bilinear forms for algebraic extensions in characteristic 2', Proc. Amer. Math. Soc. 134(3) (2006), 645–652.
- [8] N. Jacobson, Finite-dimensional Division Algebras Over Fields (Springer, Berlin, 1996).
- [9] M.-A. Knus, A. S. Merkurjev, M. Rost and J.-P. Tignol, *The Book of Involutions*, American Mathematical Society Colloquium Publications, 44 (American Mathematical Society, Providence, RI, 1998).
- [10] M.-A. Knus, R. Parimala and R. Sridharan, 'Involutions on rank 16 central simple algebras', J. Indian Math. Soc. (N.S.) 57(1–4) (1991), 143–151.
- [11] M. G. Mahmoudi and A.-H. Nokhodkar, 'On split products of quaternion algebras with involution in characteristic two', J. Pure Appl. Algebra 218(4) (2014), 731–734.
- [12] M. G. Mahmoudi and A.-H. Nokhodkar, 'On totally decomposable algebras with involution in characteristic two', J. Algebra 451 (2016), 208–231.

Symmetric square-central elements

- [13] A.-H. Nokhodkar, 'Quadratic descent of totally decomposable orthogonal involutions in characteristic two', J. Pure Appl. Algebra 221(4) (2017), 948–959.
- [14] A.-H. Nokhodkar, 'On the decomposition of metabolic involutions', J. Algebra Appl., doi:10.1142/S0219498817501298.
- [15] A.-H. Nokhodkar, 'On decomposable biquaternion algebras with involution of orthogonal type', 2016, arXiv:1508.02018.
- [16] A.-H. Nokhodkar, 'Orthogonal involutions and totally singular quadratic forms in characteristic two', *Manuscripta Math.* (2017), doi:10.1007/s00229-017-0922-y.
- [17] A. Quéguiner-Mathieu and J.-P. Tignol, 'Discriminant and Clifford algebras', Math. Z. 240(2) (2002), 345–384.
- [18] L. H. Rowen, 'Central simple algebras', Israel J. Math. 29 (1978), 285–301.

A.-H. NOKHODKAR, Department of Pure Mathematics, Faculty of Science, University of Kashan, PO Box 87317-51167, Kashan, Iran e-mail: a.nokhodkar@kashanu.ac.ir

[14]