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Abstract

In this manuscript we use realistic data to conduct a network meta-analysis using a Bayesian
approach to analysis. The purpose of this manuscript is to explain, in lay terms, how to inter-
pret the output of such an analysis. Many readers are familiar with the forest plot as an
approach to presenting the results of a pairwise meta-analysis. However when presented
with the results of network meta-analysis, which often does not include the forest plot, the
output and results can be difficult to understand. Further, one of the advantages of
Bayesian network meta-analyses is in the novel outputs such as treatment rankings and the
probability distributions are more commonly presented for network meta-analysis. Our
goal here is to provide a tutorial for how to read the outcome of network meta-analysis rather
than how to conduct or assess the risk of bias in a network meta-analysis.

Introduction

Rationale

Network meta-analysis is a common method of analysis in human health and increasingly
used in veterinary science (Lu and Ades, 2004; Dias et al., 2014; O’Connor et al., 2014;
O’Connor et al., 2016). Network meta-analysis is defined as ‘The simultaneous synthesis of evi-
dence of all pairwise comparisons across more than two interventions’ (Coleman, 2010).
Although frequently used as a synonym for network meta-analysis, a mixed treatment
comparisons meta-analysis is a subset of a network meta-analysis which has ‘A statistical
approach used to analyze a network of evidence with more than two interventions which are
being compared indirectly, and at least one pair of interventions compared both directly and
indirectly’ (Coleman, 2010). Direct comparisons of interventions are the observed effect
obtained from trials or observational studies that compared the pair of interventions of inter-
est. Whereas indirect comparisons of interventions are calculated based on the results of trials
that did not directly compare the pair of interventions of interest. Network meta-analysis
offers the advantage of enabling the combined assessment of more than two treatments,
and the mixed treatment comparison ‘component’ of meta-analysis has the additional feature
of enabling indirect estimation of treatment comparisons that might not be available in the
literature in a formal statistical manner (Lu and Ades, 2004; Dias et al., 2014). Most network
meta-analyses are also mixed treatment comparisons meta-analyses. We use the term network
meta-analysis throughout this manuscript.

We illustrate the advantage of a network meta-analysis over pairwise comparisons, using
two previously conducted meta-analyses. In an previous meta-analysis of treatment of
Bovine respiratory disease (BRD) complex two pairwise meta-analyses and corresponding
forest plots were reported. One pairwise meta-analysis compared the efficacy of tulathromycin
to florfenicol and the other tulathromycin to tilmicosin (Wellman and O’Connor, 2007). Each
meta-analysis used only direct comparison of tulathromycin to florfenicol or tulathromycin to
tilmicosin from the published literature. This dual approach to pairwise meta-analysis, left
readers without an estimate of the comparative efficacy of florfenicol to tilmycosin because
no randomized controlled trials were available at the time for that direct effect. The reader
was left to try to make a non-statistical naive estimate of the comparison of florfenicol to
tilmycosin from the pair of forest plots. The problems with a naive estimate of comparative
efficacy are many but include an inability to articulate how differences in the number of
study subjects and studies are incorporated into the uncertainty about the naive estimate.
Subsequently, a network meta-analysis was conducted and because of the ability to ‘borrow’
information from the network of evidence, an estimate of the comparative efficacy of florfeni-
col to tilmycosin was estimated indirectly and the comparative ranking of the three antibiotics
was obtained (O’Connor et al., 2014; O’Connor et al., 2016). The network meta-analysis
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provided a point estimate of comparative efficacy and a 95% cred-
ible interval for the estimate which is an advantage of non-
statistical approaches. Given that many producers and veterinar-
ians are interested in comparisons of interventions for which no
randomized controlled trials are available, network meta-analysis
is very useful and is increasingly being adopted.

Objectives

As reports of network meta-analyses become more common, it is
essential to introduce the approach to readers and to provide
guidance as to how to interpret the results. Therefore, with this
tutorial we provide a simple example of a network meta-analysis
and explain how to interpret some of the more common outputs
provided by authors of network meta-analyses. We describe a
Bayesian approach to network meta-analysis, as reviews using
this approach often provide more outputs that require interpret-
ation compared to a frequentist network meta-analysis. The tutor-
ial is not aimed at helping readers critically appraise a network
meta-analysis or to conduct a network meta-analysis. Critical
appraisal of a network meta-analysis requires an assessment of
the data informing the meta-analysis and an understanding of
what assumptions are relevant to the model and analysis approach
(Lu and Ades, 2009; Reken et al., 2016). These topics are beyond
the scope of this manuscript and the reader is directed to other
sources (Hoaglin et al., 2011; Jansen et al., 2011). Here the reader
should infer that the data used and the assumptions made for the
model are valid i.e. the study populations are exchangeable and
that the transitivity assumption is valid. The transitivity assump-
tion implies that each enrolled subject in a given study would be
eligible for enrollment in the other studies. Our focus is on under-
standing the output of the network meta-analysis. We make the
assumption that the reader is familiar with frequentist approaches
to the conduct of pairwise meta-analyses and is familiar with
interpreting pairwise meta-analysis and so we build upon that
knowledge. Sometimes we compare the output to a pairwise
meta-analysis to assist in this interpretation.

Organization

The organization of the tutorial is as follows. We first provide a
very basic introduction to the concept of network meta-analysis,
followed by a description of the data-set that we have used for
illustrative purposes in this tutorial. We then briefly present the
Bayesian model used, mainly for completeness. The final section
presents the common outputs reported from a Bayesian network
meta-analysis using our tutorial dataset and a non-statistical
interpretation of those outputs.

A lay explanation of network meta-analysis

Network meta-analysis uses information from a web of studies.
The overall concept has been succinctly described by others
(Dias and Caldwell, 2019). The underlying idea is very simple: con-
sider three friends, Anne, Ben, and Charles. If we know that Ben is
7 cm taller than Anne, and that Charles is 10 cm taller than Anne,
then we know that Charles is 3 cm taller than Ben, and is therefore
the tallest. We can also rank the friends in terms of who is tallest as
1 = Charles, 2 = Ben, and 3 = Anne. So, by taking Anne’s height as
reference and measuring the heights of the others compared with
hers, we know how everyone’s height compares to each other and
how to order the friends by height. The only assumption being

made is that the heights we measured are an accurate reflection
of the true heights of the three friends (in other words, we used a
sufficiently accurate measuring tool). It is easy to see that the
same relative heights and ranks would be obtained if one of the
male friends had been the reference, and how the height relation-
ships would extend if more than three friends had been measured.
This is exactly how NMA works, although we also take the uncer-
tainty (i.e. the sampling error) in the relative effect estimates into
account, as is standard in meta-analysis (Dias and Caldwell,
2019). If we translate that concept to the reviews of clinical trials
for bovine respiratory disease discussed above, instead of friends
we are interested in antibiotic treatments and instead of height
we are interested in the effect of the antibiotic treatment on the
outcome i.e. the risk of being retreated for BRD for each treat-
ment. This means that Anne could be substituted for florfenicol,
Ben for tulathromycin, and Charles for tilmicosin. Height is
replaced, in this example, as the risk of being diagnosed with
BRD after being treated i.e. a treatment failure. In the example
above, we had information about how florfenicol compared to
tulathromycin and for tilmicosin compared to tulathromycin,
and we will use that information to make inference about florfe-
nicol and tilmicosin.

The data-set

For the rest of the tutorial, we use a data-set that is not specific to
any particular treatment of species or disease. The data-set used
for the analysis consists of five treatments labeled A, B, C, D,
and E. The outcome in all the trials is the same binary variable
i.e. diseased or not diseased. The event of interest is disease,
and as the data set relates to treatments, the goal of treatment is
to prevent disease. In this example, the most effective treatment
has a lowest risk of the disease. The data-set has 25 two arm trials
and 1 three arm trial and therefore 53 study arms. The data used
in this example are reported in Table 1. This data-set and analysis
uses arm level data, in the form of frequency counts, because these
data were presented by the author of the original studies. Some
network meta-analyses use a relative (or comparative) measure
such as the odds ratio (OR) because the authors of the original
study did not report the arm-level frequency count data or the
arm level frequency count data are not valid because of adjust-
ment for covariates.

The network of studies

The network of studies created by this data-set is provided in
Fig. 1. This plot is often referred to as the network plot. This net-
work plot is a common approach to displaying the evidence
included in the network meta-analysis. This plot documents the
number of treatment and the number of treatment arms that
are included in the data-set. Each treatment is a node. In our
plot, the size of the node is a relative descriptor of the number
of arms available for the meta-analysis. In our plot the number
of arms is also included in parentheses. In Fig. 1 we can see
that the largest node is for A. Treatment A has 19 treatment
arms compared to 13, 11, 1, and 9 for B, C, D, and E respectively.
The network plot also attempts to illustrate to the reader how the
network is connected. When there are lines between the nodes,
this indicates that a direct comparison is available in the network
of studies. If the width of line differs between nodes, this is usually
indicative of the relative size of the study populations for each
comparison. In this data-set, we have arm-level frequency count
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Table 1. The arm level data for the 26 studies included in the network meta-analysis of five treatments

Study
Number of

event in arm 1
Number of

event in arm 2
Number of

event in arm 3
Total. number

in arm 1
Total. number

in arm 2
Total. number

in arm 3 Total Arm 1 Arm 2 Arm 3
Number
of arms Arm 1 Arm 2 Arm 3

1 25 17 20 41 84 100 225 A B C 3 1 2 3

2 36 32 41 84 125 A B 2 1 2

3 19 7 25 25 50 A B 2 1 2

4 20 5 25 50 75 A B 2 1 2

5 41 47 50 100 150 A B 2 1 2

6 122 69 160 314 474 A E 2 1 5

7 236 53 402 399 801 A E 2 1 5

8 23 15 27 52 79 A E 2 1 5

9 175 166 281 274 555 B E 2 2 5

10 57 20 119 118 237 B E 2 2 5

11 19 12 100 100 200 B E 2 2 5

12 19 7 100 100 200 B E 2 2 5

13 16 21 258 254 512 B E 2 2 5

14 42 15 50 100 150 A B 2 1 2

15 64 34 154 154 308 A C 2 1 3

16 34 15 53 106 159 A C 2 1 3

17 70 42 130 129 259 A C 2 1 3

18 92 31 121 121 242 A C 2 1 3

19 35 20 45 90 135 A C 2 1 3

20 41 62 59 117 176 A C 2 1 3

21 37 15 43 85 128 A C 2 1 3

22 16 21 18 35 53 A C 2 1 3

23 70 35 122 123 245 A B 2 1 2

24 204 71 300 300 600 A D 2 1 4

25 111 66 523 526 1049 C E 2 3 5

26 60 50 305 297 602 B C 2 2 3
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data so we are aware of the number of animals enrolled in each
study (Table 1). Sometimes, a network meta-analysis is conducted
based on comparative estimates,(such as the OR or risk ratio) and
in that situation the number of participants might be unknown
and the line width can be used to represent the number of studies.
Sometimes authors might use an equal line width between nodes
and do not incorporate additional information visually. In our
example, we know that the line from C to E is a single study.
As C–E study has more participants (1049 participants, study
25 in Table 1) compared to the number of participants in study
A–D (600 participants, study 24 in Table 1). C–E study has a
thicker line connecting the two nodes. Once the nodes and
lines are organized, we can then compare the information avail-
able. For example, from Fig. 1 we can see a line directly between
A and D. This direct path is not connected to other nodes and
means there is a single study comparing A to D. An indirect
path is a line connecting two nodes that goes through another
node. Indirect path are used for indirect comparisons. In our
example, there are no indirect paths from A to D, but three indir-
ect paths from A to E (E to C to A; E to B to A; E to C to B to A).

Assessing and interpreting the geometry of the network

The network geometry can provide some information and is often
assessed visually and with statistical approaches (Salanti et al.,
2008). The network geometry does not have an influence on
the approach to analysis per say i.e. different network geometries
do not mean a different meta-analysis approach. However, it is
important to evaluate the network geometry to understand how
many comparative estimates from the network will be based on
indirect evidence only or a mixture of indirect and direct evi-
dence. For example, from Fig. 1 we can see only one direct path
between A and D is available. Therefore, when the meta-analysis
is conducted only data from the direct study of A to D will con-
tribute to the estimation of the treatment effect of D, although
data from multiple studies will contribute to the estimation of
A. However, for the comparison of A to E, there are both direct
paths and indirect paths. Direct evidence of the effect of E will

come from the three empirical studies that compare A to
E. However, there are also three indirect paths from A to E
(A–B–E, A–C–E, A–B–C–E) and these will be used to create an
indirect estimate. One of those indirect paths is a path from A
to C and then from C to E. If the data are consistent, as described
above, then we can use these indirect estimates of the treatment
effect of E and A to help us estimate the effect of E compared
to A. Examination of the network helps clarify which is and is
not an indirect estimate.

Based on recommendations for reporting of network
meta-analysis, the probability of an inter-species encounter
(PIE) index and the C-score test is often reported statistics asso-
ciated with the network geometry (Salanti et al., 2008; Hutton
et al., 2015). The PIE index is a continuous variable that decreases
in value as unevenness increases. It has been suggested that the
PIE index values of 0.75 or less can be considered to reflect lim-
ited diversity (Salanti et al., 2008). Networks with few treatments
are not diverse, and when networks have the same number of
treatments, a network has less diversity when the treatments are
not equally represented. Therefore if we had the same five treat-
ments but the 53 arms were more evenly distributed across all
the possible pairwise comparisons, such a network would have
a higher PIE score. The C score represents co-occurrence and
assesses if particular pairwise comparisons of specific treatments
are preferred or avoided. In our example, we see co-occurrence
does occur i.e. the comparison of A to B occurs more often
than other comparisons. However, if we had the same five treat-
ments, and four studies each of all possible comparisons, which
would be 40 arms, there would be no co-occurrence. For our
example, the PIE score is 0.75, the maximum PIE score we can
obtain given five treatments and 53 treatment arms is 0.81 and
the C score was 43.2 with a p value of 0.1. These results can be
interpreted as suggesting that our example network is ‘reasonably
diverse’. These numbers are simply descriptors of the network
geometry that formalize what can be evaluated visually from the
network plot. They do not have an influence on the decision to
conduct a meta-analysis nor do they suggest a particular approach
to meta-analysis.

The Bayesian analysis

The Bayesian approach to analysis is described in detail elsewhere
(Dias et al., 2010). Here we provide a summary of the model used
for completeness. A random effects Bayesian model for a continu-
ous outcome is used. The continuous outcome is the logit of the
probability of disease i.e. the log of the odds of disease. The term
the log of the odds of disease is commonly contracted to the ‘log
odds’. Let b denotes the baseline treatment of the whole network
(usually placebo but in this example A is used), and let bi denotes
the trial-specific baseline treatment of trial i. It could be the case
that b≠ bi. Suppose there are L treatments in a network. Assume a
normal distribution for the continuous measure of the treatment
effects of arm k relative to the trial-specific baseline arm bi in trial
i, yibik, with variance Vibik, such that

yibik � N (uibik, Vibik),

and

uibik �
N(dbik, s

2
bik
), for bi = b,

N(dbk − dbbi , s
2
bik
), for bi = b,

{

Fig. 1. The network of treatment arms used in network meta-analysis. The size of the
dot is a relative indicator of the number of arms and the width of the lines is a rela-
tive indicator of the number of direct comparisons (number of arms).
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where dbk is the treatment effects (log of the odds ratio) of k rela-
tive to the network baseline treatment b and where s2

bik
is the

between-trial variance. The priors of dbk and sbik are

dbk � N(0, 10000),

and there is a homogeneous variance assumption that s2
bik

= s2,
where σ∼U(0, 5). Thus, for L treatments, we have L− 1 priors to
dbl, l∈ {1, …, L}, l≠ b. For l = b, we have dbb = 0.

All Bayesian analyses require a “run in” period which is dis-
carded before the estimates are considered to converge. The num-
ber of simulations required for convergence differs by model and
data. In this analysis, the results of 5000 simulations were used to
create the posterior distributions of the parameters of interest. For
some network meta-analyses it is necessary to include an adjust-
ment for trials with more than two arms, however our example
network does not have this feature (Higgins and Whitehead,
1996; Lu and Ades, 2004). As mentioned, this paper is about
interpreting the outcome from a valid network meta-analysis,
therefore we do not include a discussion about the model used,
the choice of prior distributions, the assessment of the consistency
assumption or the assessment of convergence for the Bayesian
analysis which are all aspects of the data analysis.

Estimates from the model, direct, and indirect

From the Bayesian analysis, the primary output is the posterior
distribution of the log of the odds of disease for the baseline treat-
ment (A in our example) and the log of the odds ratio (logOR) of
treatment (B, C, D, or E) compared to the baseline treatment (A).
In our example, the baseline treatment is A and we have five treat-
ments. From the network meta-analysis, we therefore obtain four
relative estimates of the treatment effects which are usually
referred to as basic parameters:

• the log of the odds ratio (logOR) of treatment B compared to
treatment A,

• the log of the odds ratio (logOR) of C compared to A, and
• the log of the odds ratio (logOR) of D compared to A, and
• the log of the odds ratio (logOR) of E compared to A.

After estimation of the basic parameters, all possible pairwise
comparisons are derived from the basic parameters. These derived
comparisons are sometimes called the functional parameters,
because they are ‘a function of’ the basic parameters. If the
basic parameter is estimated as B compared to A, and C compared
to A, then the logOR of B compared to C is obtained by the dif-
ference in the logOR of B compared to A minus the logOR of C
compared to A. Because we are using a Bayesian framework for
the analysis, the reported information for the basic and functional

parameters for each treatment is based on the posterior distribu-
tion. Once we have these results we can present them to the
reader.

Measures of association from the models: direct and indirect

A common approach to presenting such data is in a table with the
treatments on the diagonal. The row treatment is usually the
numerator and the column as the denominator. By convention
we have listed the treatments alphabetically. Here because the
event is disease, we therefore a positive logOR, an OR greater
than one and a risk ratio greater than one, indicates that the
risk of disease is higher in the numerator. The posterior mean
is a key characteristic of the posterior distribution. The means
of the distribution of the pairwise comparisons of the log odds
ratios are given in the upper right hand side of Table 2. When
the posterior distribution is not symmetrical, the posterior
median can also be reported together with the mean to character-
ize the distribution. The 95% credible intervals of the pairwise
comparisons of the log odds ratios appear in the lower left
hand side of the table. The estimate of the log OR of A compared
to D is 2.101 and the 95% credible interval is in the range of 1.582
to 2.645. Because there is only one study available for the com-
parison of D to A, the Bayesian estimate of the effect of D used
only data from that study. The estimate of the baseline treatment
A used data from multiple studies. Examining the raw study data
for the single comparison between A and D in Table 1 we can see
that the log odds ratio is 1.925 which is given by:

log
204/96
71/229

( )
= 1.925

The difference in the estimates of D to A obtained from the raw
data and the network meta-analysis relates to the Bayesian estima-
tion procedure because the Bayesian method synthesizes the data
information as well as the prior information. For the other basic
parameters, there are multiple estimates of the treatment effect,
both direct and indirect. These data contribute to the estimation
of the treatment effect. For example, from a frequentist pairwise
meta-analysis of A to B using a random effects model we would
obtain an estimate of the logOR of 2.230. The network
meta-analysis estimate of the logOR of A to B differs from this
frequentist pairwise meta-analysis estimate for two reasons: (1)
the data from other indirect comparisons are used to determine
the effect of B and (2) Bayesian estimation method.

For example, in Table 2, the estimate of B compared to C is
−0.213, is obtained from 1.888–2.101 =−0.213. Similarly, the
estimate of C compared to E is 0.690, which is obtained from
2.579–1.888 (with rounding error). In our example, the functional
parameters are assumed to be valid because we have informed the

Table 2. The estimated log odds ratio from all possible pairwise comparisons in the network meta-analysis of five treatment groups.

A 2.101 1.888 1.934 2.579

(1.582_2.645) B −0.213 −0.167 0.477

(1.395_2.397) (−0.855_0.425) C 0.046 0.690

(0.418_3.462) (−1.782_1.447) (−1.560_1.632) D 0.644

(1.970_3.202) (−0.098_1.047) (−0.008_1.400) (−0.985_2.278) E

The row treatment is the numerator and the column as the denominator. The treatments are listed alphabetically. The event is disease, therefore a positive logOR indicates that the risk of
disease is higher in the numerator.
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reader that the consistency assumption has been previously
checked. There are approaches to assessing the consistency
assumption and authors of network meta-analyses should con-
duct and report this assessment (Dias et al., 2010; Dias et al.,
2014). We can look also at the raw data for the comparison of
C to E, and we obtain the estimate of the logOR of 0.630 using
eqn 1. The mean of the functional parameter for the comparison
of C to E, which uses both direct and indirect evidence, can be
found in Table 2 (0.690) and does seem consistent with the direct
estimate.

log
111/412
66/460

( )
= 0.630 (1)

Most authors do not report the logOR because it is difficult to
interpret (O’Connor, 2013; O’Connor, 2014). Instead most
authors of network meta-analyses transform the basic parameters
and the functional parameters to another scale such as the OR or
the risk ratio.

We begin by discussing the OR estimates and 95% credible
intervals for these. These estimates shown in Table 3 are obtained
by exponentiation of the logOR for each chain. Some readers will
notice that the exponent of the point estimates in Table 2 does not
equal the point estimates of the OR reported in Table 3. This is
because the exponent of the point estimates in Table 2 is the expo-
nent of the mean of the log odds ratios, whereas the point esti-
mate in Table 3 is the mean of the exponent of the log odds
ratios. Here we have reported the mean of the posterior distribu-
tion of the OR.

The issue of concern about reporting the OR scale is that this
measure of association is also difficult for researchers and clini-
cians to interpret correctly (although more interpretable than
the log odds ratio) and is non-collapsible (Sainani et al., 2009;
O’Connor, 2013; Grant, 2014; Mansournia and Greenland,
2015). Non-collapsibility of the OR is the phenomenon that
when estimating the exposure outcome association with the OR,
collapsing over the other covariate(s), the conditional OR does

not necessarily equal the marginal OR even in the absence of con-
founding and effect modification. Further, when the outcome is
common, the OR is misinterpreted as the risk ratio, it can lead
to an overestimation of the magnitude of effect (Grant, 2014).
To illustrate, consider an example where the risk of disease is
80% (160/200) in the exposed group and 20% (40/200) in the
unexposed group. The point estimate of the OR is 15.7 while
the risk ratio is 4. Clearly, it is incorrect to discuss the risk as
increasing 16 fold with exposure.

As a consequence of this potential for misinterpretation, there
is preference for reporting risk-based measures of association
(Grant, 2014). Therefore, network meta-analyses often report
the basic and functional parameters on the risk ratio scale as in
Table 4. To obtain these risk ratio estimates, the risk ratio is cal-
culated for each simulation from the logit. As mentioned the con-
tinuous outcome is the logit. We can use the expit to calculate the
risk of disease in each treatment group using the same baseline in
each simulation. The risk ratio is then obtained by dividing these
two risks for each simulation. The mean risk ratios in Table 4 are
therefore not the direct exponent of the mean OR reported in
Table 3. Some readers might try to back calculate the mean risk
ratio using the mean baseline risk and the mean odd ratios
reported in Table 3 because they are familiar with eqn 2 and
find an imperfect match. When consumers of network
meta-analyses use this approach to matching the mean OR to
the mean risk ratio and the match is not exact, this can seem
like an error. However, such an approach is not valid because
the risk ratio calculation from a Bayesian framework samples
from a distribution of baseline risks in each simulation when cal-
culating the relative risks.

RR = OR
1− p0 + p0 × OR

(2)

Therefore the data in Table 4 are the mean and distribution
characteristics for the formula above arising from the Markov
Chain Monte Carlo (MCMC) process. However, if the reader

Table 3. The estimated OR from all possible pairwise comparisons in the network meta-analysis of five treatment groups.

A 8.161 6.587 6.91 13.166

(4.864_14.085) B 0.809 0.850 1.611

(4.033_10.986) (0.425_1.530) C 1.049 1.993

(1.520_31.871) (0.168_4.252) (0.210_5.115) D 1.899

(7.174_24.576) (0.906_2.849) (0.992_4.055) (0.373_9.759) E

The row treatment is the numerator and the column as the denominator. The treatments are listed alphabetically. The event is disease, therefore an OR greater than one indicates that the
risk of disease is higher in the numerator.

Table 4. The estimated risk ratio from all possible pairwise comparisons in the network meta-analysis of five treatment groups with the summary of baseline risk to
be mean = 0.713, median = 0.728, 2.5% limit = 0.45, 97.5% limit = 0.899.

A 2.929 2.508 2.557 4.266

(1.616_5.942) B 0.864 0.894 1.438

(1.488_4.814) (0.527_1.355) C 1.033 1.671

(1.114_10.832) (0.330_3.322) (0.396_3.801) D 1.604

(2.009_9.828) (0.929_2.359) (0.995_3.068) (0.431_4.717) E

The row treatment is the numerator and the column as the denominator. The treatments are listed alphabetically. The event is disease, therefore an risk ratio greater than one indicates that
the risk of disease is higher in the numerator.
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uses the point estimates from Table 3 and the mean of the poster-
ior of the baseline from formula on eqn 2 then the calculation is
equal to 3

RR = meanOR
1−meanp0 +meanp0 ×meanOR

(3)

Additional outputs: ranking plots

The major advantage of a Bayesian analysis is that additional out-
puts can be obtained that can enhance the information obtained
from the MCMC simulations. One of the most commonly used
outputs is the ranking plot. The risk of disease for each treatment
from each simulation is used for the ranking plot. This risk of dis-
ease was discussed above in the calculation of the risk ratio. For
each simulation, the absolute risk of the outcome is ranked
from the lowest to highest, and then converted to a number
from 1 to the number of treatments. In our example, the ranks
are from 1 to 5. What is ranked high or low depends upon the
review question. For this example, the goal is to have the lowest
risk of disease, therefore, we would want a low risk of disease to
have a lower rank. In our simulation, a rank of one is similar to
coming first. After the simulation is complete, the mean rank
for each treatment over all simulations is calculated. The rank
of the upper 97.5% of the rankings across all simulations and
the rank that marks the lowest 2.5% of the rankings across all
simulations are also reported. Together these two points are
referred to as the 95% credible interval in Bayesian analyses.
For our example, the ranking plot is shown in Fig. 2. The rankings
show that A is consistently ranked lowest, i.e. it has the highest
treatment risk (4.99, upper and lower intervals of 5). Note that
these results are not incorrect because the limits are based on
the observed data at the 2.5, 50, and 97.5% points of the distribu-
tion. For example, suppose we have 100 rankings of A, and only 1
ranking is 4, and all other rankings are 5. The mean ranking is not
five, however, the rankings at the 2.5, 50, and 97.5% quantiles of
the distribution are 5. E has the highest mean rank and therefore
the ‘best’ treatment with a mean rank of 1.28, and the 95% cred-
ible interval of 1 to 3. The ranking plot describes on average (and
jointly) which treatment ranks ‘best’. There are several interesting
points about the ranking plot that aid interpretation. First, it is
inherent in the concept of ranking in that all treatments are
ordered. Therefore, the clinical relevance of differences in ranks
might be meaningless and the evidence to support differences
in ranks should also include evaluation of the mean and the

distribution of ranks. In our example, the difference in the average
rank between the 1st and 2nd ranked treatments is much larger
than the difference between the average rank of the 2nd and
3rd ranked treatments, however the difference in ranks is the
same. Therefore, being ‘one’ rank apart does not have the same
interpretation across the treatments

Despite combining all the ranks onto one plot, the ranking
plot should be carefully interpreted when thinking of the com-
parison of pairs of treatments. A more meaningful interpretation
is to focus on the range of ranks a single treatment can have. A
wide 95% credible interval suggests that a single treatment has a
wide variety of rankings over all the simulations i.e. the posterior
distribution of the rank has large variation. As the rank is a rela-
tive measure about the joint rankings, a posterior distribution of
the rank with large variation can be a result of either the posterior
distribution of the disease risk for a treatment having large vari-
ation or the posterior distribution of the disease risk of other
treatments having large variation. Notice here that we are discuss-
ing the posterior distribution of two outputs, the disease risk and
the rankings.

For example, let’s imagine a ranking plot with three treatments
X, Y, and Z. Let each of the treatments Y and Z have a posterior
distribution of the disease risk which has small variation. Also, let
treatment X have a posterior distribution of the disease risk which
has large variation. There are only three possible rankings 1, 2,
and 3. When the rankings are calculated based on sampling
from the posterior distributions of disease risk for X, Y, and Z,
the variation that is observed in the posterior distribution of the
rank of Y and Z will largely be driven by the large variation in
the posterior distribution of disease risk for X in each simulation.
Because the posterior distribution of disease risk of X is highly
variable, one time it may be ranked 1st and another time 3rd.
This means although Y and Z have quite consistent disease risk,
the ranking they obtain is more variable than suggested by the
posterior distribution of the disease risk. Of course, the example
is overly simplified, and is more complicated when there are
numerous treatments. In our example data, treatment B and
D have the same credible intervals (1 to 4) but as B has a better
average rank than D, we would conclude that B on average ranks
better than D. If we further imagine that the treatments B and
D retained the mean ranks reported in Fig. 2 and Table 5 but B
has the same credible interval from 1 to 4 but D had a credible
interval from 2 to 3.5. In this situation, we should still conclude
that B has a better average rank than D but B is more variable.
The rankings do not translate to a direct comparison of how

Fig. 2. The ranking plot of five treatments included in the meta-analysis. Lower rankings have lower incidence of the disease.
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often B is better than D and rankings plots should not be inter-
rupted as pairwise comparisons. The inference about pairwise
comparisons with particular treatments is discussed below. A
wide range of ranks might be a function of variation in estimates
from the studies or few data points to base the estimate upon. If
the 95% credible intervals of treatments never overlap then it can
be concluded that one treatment is better than the other at least
95% of the time. For example, we can conclude that at least
95% of the time that E, B, D, and C had lower disease risk than
A. The analysis in the next sections provides more transparent
metrics for these inferences.

Additional outputs: pairwise probability of being lower
disease risk

Another possible output of interest is the probability that one
treatment has a lower disease risk than another i.e. is better.
Using the risk data from each simulation, it is possible to deter-
mine the probability that B has a lower risk of disease than D
i.e. lower risk of disease is a better outcome. The risk of disease
in each simulation is determined, and then all possible compari-
sons made. An indicator is made for the treatment with the lowest
risk and summed over all simulations and the proportion calcu-
lated. For example, if the following are the risk of disease of
three simulations

• 25% for A, 17% for B, 16% for C, 12% for D, and 10% for E
• 25% for A, 16% for B, 17% for C, 12% for D, and 10% for E,
• 23% for A, 18% for B, 17% for C, 12% for D, and 9% for E,

Then the probability that E is better than A (B, C or D) would be
1 because the disease risk is always lower in E. The probability
that C is better than B would be 0.66, and the probability that
B is better than C is 0.33 because the disease risk for C is
lower than B in 2 of the 3 simulations. For our example, these
pairwise probabilities are provided in Table 6. It can be seen

that the credible intervals are not normally distributed about
the mean rank.

Additional outputs: probability of having the lowest or highest
disease risk

Another common output in network meta-analyses is the prob-
ability of being the ‘best’ or ‘worst’ treatment option which,
more precisely, is the probability of having the lowest or highest
absolute risk of disease. This is calculated in much the same
way as the pairwise probability of being ‘better’. For each simula-
tion, the lowest disease risk is identified among the five treatments
i.e. which treatment has the lowest disease risk and an indicator is
created. For each simulation, the treatment with the lowest risk of
disease receives the indicator is 1 and all other treatments receive
the indicator 0. After all the simulations, the number of 1’s for
each treatment are summed and the proportion calculated. This
gives the probability of having the lowest risk. The same approach
is used to obtain the probability of having the highest disease risk.
For our example, these proportions are reported in Table 7. Again,
we see that treatment A is less efficacious than the other treat-
ments. The probability that A is the best treatment is zero and
the probability that it is the worst treatment is extremely high.

Additional outputs: posterior distribution of probability of the
event

Above we have described how rankings, pairwise probabilities,
and best and worst ranks are obtained from the Bayesian network
meta-analysis. As discussed, these outputs are created for each
simulation using the risk of disease estimated. Each of these
risk estimates can be plotted as a distribution. Figure 3 and
Table 8 present the posterior distribution of the disease risk for
all treatments. These plots provide a visual representation of the
risk data over all the simulations. What can be seen is that for
treatment A, the estimates of disease risk are skewed to higher dis-
ease risks. Similarly the other treatments are skewed to lower dis-
ease risks. It can also be seen that treatment E has the highest peak
close to 0 which means a lower average risk of disease and a nar-
rower credible interval compared to other treatments. If a reader
wants to know exactly how often treatment E had a lower risk of
disease than treatment A this information is reported in the pair-
wise probability. Similarly, this plot helps the reader to under-
stand the rankings for treatments B and C, which are very
similar. We see that treatment B has a higher peak closer to
zero than treatment C, which would explain why it ranks better
a small number of times i.e. its mean rankings are slightly better.

Table 5. Summary of the distribution of the rankings for the five treatments

Treatment Mean SD 2.5% 50% 97.5%

A 4.99 0.09 5 5 5

C 3.25 0.74 2 3 4

D 2.87 1.21 1 3 4

B 2.61 0.74 1 3 4

E 1.28 0.53 1 1 3

Table 6. The probability that one treatment has a lower disease risk than
another treatment.

A 0.000 0.000 0.008 0.000

1.000 B 0.755 0.588 0.050

1.000 0.245 C 0.475 0.026

0.992 0.412 0.525 D 0.205

1.000 0.950 0.974 0.795 E

The upper quadrant provides the probability that the row treatment has a lower disease risk
than the column treatment. The treatments are listed alphabetically. The event is disease
and therefore a lower disease risk is the preferred outcome.

Table 7. The probability of having the lowest disease risk (best) and the
probability of being the highest disease risk (worst)

Treatment
Probability of
lowest disease risk

Probability of
highest disease risk

A 0.00 0.992

B 0.031 0.00

C 0.014 0.00

D 0.201 0.008

E 0.754 0.00

The treatments are listed alphabetically. The event is disease and therefore a lower risk is
the preferred outcome.
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We can also see that the limits of the distributions of the posterior
distributions of B and C are almost exactly the same i.e. 1 to 4. If
the reader want to better understand the workings of the average
ranking in the ranking plot this posterior distribution plot often
clarifies that information.

Overall interpretation

The role of a network meta-analysis is not to provide recommen-
dations but rather to synthesize the research in a manner that

facilitates interpretation. Therefore, the conclusion drawn from
these results would depend upon the end-users question and
externalities such as cost and potential for adverse events and
the validity of the data informing the network meta-analysis.
The results of network meta-analyses are a decision-supporting
tool rather than a decision-making tool. Still, here we illustrate
examples of some conclusions that might be drawn if we assume
that all externalities are equal (something that would rarely be
true) and that the data included represent all current knowledge.

If the end-user were interested in a particular pairwise com-
parison, such as knowing if E is likely to be more effective than
A, then results show there is a 100% probability that E is more
effective than A (Table 6). If the reader is interested in how
much more worse A is compared to E, this information is
found in the magnitude of the mean OR (Table 3) and mean
risk ratios (Table 4). If the reader wanted to know how much bet-
ter E is compared to A, these OR and RR can be inverted. Further,
the credible intervals of these posterior distributions suggest the
reader can have reasonable confidence in those estimates. The
number of studies available means that end-user can have a con-
fidence in this conclusion i.e. it seems unlikely that another study
would dramatically change this inference. Alternatively, if the
end-user is interested in another pair of treatments such D versus
B, the end-user would have difficulty reaching an interpretation,
because we only have one study involving D. From Table 6 we

Fig. 3. The distribution of the probability of the event for each treatment. The event is disease and therefore a lower risk is the preferred outcome.

Table 8. Summary of the distribution of the probability of disease risk for five
treatments

Treatment Mean SD 2.5% 50% 97.5%

A 0.713 0.117 0.45 0.728 0.899

B 0.265 0.122 0.081 0.247 0.549

C 0.305 0.13 0.1 0.289 0.595

D 0.313 0.18 0.053 0.282 0.721

E 0.189 0.102 0.05 0.169 0.44

The treatments are listed alphabetically. The event is disease and therefore a lower risk is
the preferred outcome.
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can see that there is a 60% posterior probability that Treatment B
has a lower risk of the adverse event than D. If the reader wanted
to know more about the magnitude of effect, this is in Table 3 and
Table 4. The average difference in relative risks is not large, indi-
cated by the risk ratio is close to 1, i.e. 0.894 and the credible
interval is very wide (0.330 to 3.322). This is reflective of the
fact that we only have 1 study with results about D, therefore
the posterior distribution of the risk is quite flat. The end-user
should reach a cautious conclusion that B is more effective than
D for these reasons, and should expect that as data about D
becomes available, the inference could change.

Alternatively, perhaps the end-user is interested in all treat-
ments relatively rather than pairwise comparisons. Treatment E
has the highest mean rank 5 and the highest probability of having
the lowest disease risk 7. The expected magnitude of the effect of
E compared to all other treatments is reported in either Table 3 or
Table 4. The credible intervals are narrow and a reasonable num-
ber of studies inform this conclusion. Interestingly, D has the
second highest probability of having the lowest disease risk.
This result might be unexpected if the end-user has interpreted
the pairwise results for treatments B and D. Figure 3 helps the
end-user to understand this result. We can see the distribution
of D has some density to the left of B, and these points result
in the conclusion that D has a higher probability of being ranked
1st than B. This differs from the pairwise probability data which
looks at how often Treatment B had a lower risk of the event than
treatment B. Because we only have one study for D, the flat prior
used in the Bayesian model is influencing the distribution of
D. Again, for treatment D, the end-user should reach a cautious
conclusion about the rank of D relative to the other treatments,
and should expect that as data about D becomes available, the
inference could change.

Conclusions

The aim of this paper was to describe in lay terms the interpret-
ation of outputs frequently reported with network meta-analyses.
Other rarer outputs may be included as authors of reviews seek to
provide the readers with information about the results.
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