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Interactions of particles and radiation

with matter

When the intervals, passages, connections, weights, impulses, collisions,
movement, order, and position of the atoms interchange, so also must

the things formed by them change.

Lucretius

Particles and radiation can be detected only through their interactions
with matter. There are specific interactions for charged particles which
are different from those of neutral particles, e.g. of photons. One can say
that every interaction process can be used as a basis for a detector concept.
The variety of these processes is quite rich and, as a consequence, a large
number of detection devices for particles and radiation exist. In addition,
for one and the same particle, different interaction processes at different
energies may be relevant.

In this chapter, the main interaction mechanisms will be presented in
a comprehensive fashion. Special effects will be dealt with when the indi-
vidual detectors are being presented. The interaction processes and their
cross sections will not be derived from basic principles but are presented
only in their results, as they are used for particle detectors.

The main interactions of charged particles with matter are ionisation
and excitation. For relativistic particles, bremsstrahlung energy losses must
also be considered. Neutral particles must produce charged particles in
an interaction that are then detected via their characteristic interaction
processes. In the case of photons, these processes are the photoelectric
effect, Compton scattering and pair production of electrons. The elec-
trons produced in these photon interactions can be observed through their
ionisation in the sensitive volume of the detector.
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2 1 Interactions of particles and radiation with matter

1.1 Interactions of charged particles

Charged particles passing through matter lose kinetic energy by excitation
of bound electrons and by ionisation. Excitation processes like

e− + atom → atom∗ + e− (1.1)
↪→ atom + γ

lead to low-energy photons and are therefore useful for particle detectors
which can record this luminescence. Of greater importance are pure scat-
tering processes in which incident particles transfer a certain amount of
their energy to atomic electrons so that they are liberated from the atom.

The maximum transferable kinetic energy to an electron depends on
the mass m0 and the momentum of the incident particle. Given the
momentum of the incident particle

p = γm0βc , (1.2)

where γ is the Lorentz factor (= E/m0c
2), βc = v the velocity, and m0 the

rest mass, the maximum energy that may be transferred to an electron
(mass me) is given by [1] (see also Problem 1.6)

Emax
kin =

2mec
2β2γ2

1 + 2γme/m0 + (me/m0)2
=

2mep
2

m2
0 +m2

e + 2meE/c2
. (1.3)

In this case, it makes sense to give the kinetic energy, rather than
total energy, since the electron is already there and does not have to
be produced. The kinetic energy Ekin is related to the total energy E
according to

Ekin = E −m0c
2 = c

√
p2 +m2

0c
2 −m0c

2 . (1.4)

For low energies

2γme/m0 � 1 (1.5)

and under the assumption that the incident particles are heavier than
electrons (m0 > me) Eq. (1.3) can be approximated by

Emax
kin ≈ 2mec

2β2γ2 . (1.6)

A particle (e.g. a muon, mμc
2 = 106 MeV) with a Lorentz factor of γ =

E/m0c
2 = 10 corresponding to E = 1.06 GeV can transfer approximately

100 MeV to an electron (mass mec
2 = 0.511 MeV).
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1.1 Interactions of charged particles 3

If one neglects the quadratic term in the denominator of Eq. (1.3),
(me/m0)2 � 1, which is a good assumption for all incident particles
except for electrons, it follows that

Emax
kin =

p2

γm0 +m2
0/2me

. (1.7)

For relativistic particles Ekin ≈ E and pc ≈ E holds. Consequently, the
maximum transferable energy is

Emax ≈ E2

E +m2
0c

2/2me
(1.8)

which for muons gives

Emax =
E2

E + 11 GeV
. (1.9)

In the extreme relativistic case
(
E � m2

0c
2/2me

)
, the total energy can

be transferred to the electron.
If the incident particle is an electron, these approximations are no longer

valid. In this case, one gets, compare Eq. (1.3),

Emax
kin =

p2

me + E/c2
=
E2 −m2

ec
4

E +mec2
= E −mec

2 , (1.10)

which is also expected in classical non-relativistic kinematics for particles
of equal mass for a central collision.

1.1.1 Energy loss by ionisation and excitation

The treatment of the maximum transferable energy has already shown
that incident electrons, in contrast to heavy particles (m0 � me), play a
special rôle. Therefore, to begin with, we give the energy loss for ‘heavy’
particles. Following Bethe and Bloch [2–8]∗, the average energy loss dE
per length dx is given by

−dE
dx

= 4πNAr
2
emec

2z2Z

A

1
β2

(
ln

2mec
2γ2β2

I
− β2 − δ

2

)
, (1.11)

∗ For the following considerations and formulae, not only the original literature but also
secondary literature was used, mainly [1, 4–12] and references therein.
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4 1 Interactions of particles and radiation with matter

where

z – charge of the incident particle in units of the elementary charge

Z,A – atomic number and atomic weight of the absorber

me – electron mass

re – classical electron radius (re = 1
4πε0

· e2

mec2 with ε0 – permittivity
of free space)

NA – Avogadro number (= number of atoms per gram atom) = 6.022·
1023 mol−1

I – mean excitation energy, characteristic of the absorber material,
which can be approximated by

I = 16 Z0.9 eV for Z > 1 .

To a certain extent, I also depends on the molecular state of
the absorber atoms, e.g. I = 15 eV for atomic and 19.2 eV for
molecular hydrogen. For liquid hydrogen, I is 21.8 eV.

δ – is a parameter which describes how much the extended trans-
verse electric field of incident relativistic particles is screened
by the charge density of the atomic electrons. In this way,
the energy loss is reduced (density effect, ‘Fermi plateau’ of
the energy loss). As already indicated by the name, this den-
sity effect is important in dense absorber materials. For gases
under normal pressure and for not too high energies, it can be
neglected.
For energetic particles, δ can be approximated by

δ = 2 ln γ + ζ ,

where ζ is a material-dependent constant.
Various approximations for δ and material dependences for
parameters, which describe the density effect, are discussed
extensively in the literature [9]. At very high energies

δ/2 = ln(�ωp/I) + lnβγ − 1/2 ,

where �ωp =
√

4πNer3e mec
2/α = 28.8

√
� 〈Z/A〉 eV is the

plasma energy (� in g/cm3), Ne the electron density, and α the
fine-structure constant.
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1.1 Interactions of charged particles 5

A useful constant appearing in Eq. (1.11) is

4πNAr
2
emec

2 = 0.3071
MeV
g/cm2 . (1.12)

In the logarithmic term of Eq. (1.11), the quantity 2mec
2γ2β2 occurs in

the numerator, which, according to Eq. (1.6), is identical to the maximum
transferable energy. The average energy of electrons produced in the ion-
isation process in gases equals approximately the ionisation energy [2, 3].

If one uses the approximation for the maximum transferable energy,
Eq. (1.6), and the shorthand

κ = 2πNAr
2
emec

2z2 · Z
A

· 1
β2 , (1.13)

the Bethe–Bloch formula can be written as

−dE
dx

= 2κ
(

ln
Emax

kin

I
− β2 − δ

2

)
. (1.14)

The energy loss −dE/dx is usually given in units of MeV/(g/cm2). The
length unit dx (in g/cm2) is commonly used, because the energy loss per
area density

dx = � · ds (1.15)

with � density (in g/cm3) and ds length (in cm) is largely independent of
the properties of the material. This length unit dx consequently gives the
area density of the material.

Equation (1.11) represents only an approximation for the energy loss
of charged particles by ionisation and excitation in matter which is, how-
ever, precise at the level of a few per cent up to energies of several hundred
GeV. However, Eq. (1.11) cannot be used for slow particles, i.e., for parti-
cles which move with velocities which are comparable to those of atomic
electrons or slower. For these velocities (αz � β ≥ 10−3, α = e2

4πε0�c :
fine-structure constant) the energy loss is proportional to β. The energy
loss of slow protons, e.g. in silicon, can be described by [10–12]

−dE
dx

= 61.2 β
GeV

g/cm2 , β < 5 · 10−3 . (1.16)

Equation (1.11) is valid for all velocities

β � αz . (1.17)
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6 1 Interactions of particles and radiation with matter

Table 1.1. Average energy loss of minimum-ionising particles in various mate-
rials [10–12]; gases for standard pressure and temperature

Absorber dE
dx

∣∣
min [ MeV

g/cm2 ] dE
dx

∣∣
min [MeV

cm ]

Hydrogen (H2) 4.10 0.37 · 10−3

Helium 1.94 0.35 · 10−3

Lithium 1.64 0.87
Beryllium 1.59 2.94
Carbon (Graphite) 1.75 3.96
Nitrogen 1.82 2.28 · 10−3

Oxygen 1.80 2.57 · 10−3

Air 1.82 2.35 · 10−3

Carbon dioxide 1.82 3.60 · 10−3

Neon 1.73 1.56 · 10−3

Aluminium 1.62 4.37
Silicon 1.66 3.87
Argon 1.52 2.71 · 10−3

Titanium 1.48 6.72
Iron 1.45 11.41
Copper 1.40 12.54
Germanium 1.37 7.29
Tin 1.26 9.21
Xenon 1.25 7.32 · 10−3

Tungsten 1.15 22.20
Platinum 1.13 24.24
Lead 1.13 12.83
Uranium 1.09 20.66
Water 1.99 1.99
Lucite 1.95 2.30
Shielding concrete 1.70 4.25
Quartz (SiO2) 1.70 3.74

Given this condition, the energy loss decreases like 1/β2 in the low-energy
domain and reaches a broad minimum of ionisation near βγ ≈ 4. Rela-
tivistic particles (β ≈ 1), which have an energy loss corresponding to this
minimum, are called minimum-ionising particles (MIPs). In light absorber
materials, where the ratio Z/A ≈ 0.5, the energy loss of minimum-ionising
particles can be roughly represented by

− dE
dx

∣∣∣∣
min

≈ 2
MeV
g/cm2 . (1.18)

In Table 1.1, the energy losses of minimum-ionising particles in different
materials are given; for further values, see [10–12].
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1.1 Interactions of charged particles 7

The energy loss increases again for γ > 4 (logarithmic rise or relativistic
rise) because of the logarithmic term in the bracket of Eq. (1.11). The
increase follows approximately a dependence like 2 ln γ.

The decrease of the energy loss at the ionisation minimum with increas-
ing atomic number of the absorber originates mainly from the Z/A term
in Eq. (1.11). A large fraction of the logarithmic rise relates to large
energy transfers to few electrons in the medium (δ rays or knock-on elec-
trons). Because of the density effect, the logarithmic rise of the energy
loss saturates at high energies.

For heavy projectiles (e.g. like copper nuclei), the energy loss of slow
particles is modified because, while being slowed down, electrons get
attached to the incident nuclei, thereby decreasing their effective charge.

The energy loss by ionisation and excitation for muons in iron is shown
in Fig. 1.1 [10, 11, 13].

The energy loss according to Eq. (1.11) describes only energy losses
due to ionisation and excitation. At high energies, radiation losses become
more and more important (see Sect. 1.1.5).

Figure 1.2 shows the ionisation energy loss for electrons, muons, pions,
protons, deuterons and α particles in air [14].

Equation (1.11) gives only the average energy loss of charged particles
by ionisation and excitation. For thin absorbers (in the sense of Eq. (1.15),
average energy loss 〈ΔE〉 � Emax), in particular, strong fluctuations
around the average energy loss exist. The energy-loss distribution for thin
absorbers is strongly asymmetric [2, 3].
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Fig. 1.1. Energy loss by ionisation and excitation for muons in iron and its
dependence on the muon momentum.
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8 1 Interactions of particles and radiation with matter
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Fig. 1.2. Energy loss for electrons, muons, pions, protons, deuterons and α
particles in air [14].

This behaviour can be parametrised by a Landau distribution. The
Landau distribution is described by the inverse Laplace transform of
the function ss [15–18]. A reasonable approximation of the Landau
distribution is given by [19–21]

L(λ) =
1√
2π

· exp
[
−1

2
(λ+ e−λ)

]
, (1.19)

where λ characterises the deviation from the most probable energy loss,

λ =
ΔE − ΔEW

ξ
, (1.20)

ΔE – actual energy loss in a layer of thickness x,
ΔEW – most probable energy loss in a layer of thickness x,

ξ = 2πNAr
2
emec

2z2Z

A
· 1
β2�x = κ�x (1.21)

(�− density in g/cm3, x− absorber thickness in cm).

The general formula for the most probable energy loss is [12]

ΔEW = ξ

[
ln

(
2mec

2γ2β2

I

)
+ ln

ξ

I
+ 0.2 − β2 − δ(βγ)

]
. (1.22)
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1.1 Interactions of charged particles 9

For example, for argon and electrons of energies up to 3.54 MeV from a
106Rh source the most probable energy loss is [19]

ΔEW = ξ

[
ln

(
2mec

2γ2β2

I2 ξ

)
− β2 + 0.423

]
. (1.23)

The most probable energy loss for minimum-ionising particles (βγ = 4)
in 1 cm argon is ΔEW = 1.2 keV, which is significantly smaller than the
average energy loss of 2.71 keV [2, 3, 19, 22]. Figure 1.3 shows the energy-
loss distribution of 3 GeV electrons in a thin-gap drift chamber filled with
Ar/CH4 (80:20) [23].

Experimentally, one finds that the actual energy-loss distribution is
frequently broader than represented by the Landau distribution.

For thick absorber layers, the tail of the Landau distribution origi-
nating from high energy transfers, however, is reduced [24]. For very
thick absorbers

(dE
dx · x � 2mec

2β2γ2
)
, the energy-loss distribution can

be approximated by a Gaussian distribution.
The energy loss dE/dx in a compound of various elements i is given by

dE
dx

≈
∑

i

fi
dE
dx

∣∣∣∣
i

, (1.24)
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Fig. 1.3. Energy-loss distribution of 3 GeV electrons in a thin-gap drift chamber
filled with Ar/CH4 (80:20) [23].
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10 1 Interactions of particles and radiation with matter

where fi is the mass fraction of the ith element and dE
dx

∣∣
i
, the average

energy loss in this element. Corrections to this relation because of the
dependence of the ionisation constant on the molecular structure can be
safely neglected.

The energy transfers to ionisation electrons can be so large that these
electrons can cause further ionisation. These electrons are called δ rays or
knock-on electrons. The energy spectrum of knock-on electrons is given
by [1, 10–12, 25]

dN
dEkin

= ξ · F

E2
kin

(1.25)

for I � Ekin ≤ Emax
kin .

F is a spin-dependent factor of order unity, if Ekin � Emax
kin [12]. Of

course, the energy spectrum of knock-on electrons falls to zero if the
maximum transferable energy is reached. This kinematic limit also con-
strains the factor F [1, 25]. The spin dependence of the spectrum of the
knock-on electrons only manifests itself close to the maximum transferable
energy [1, 25].

The strong fluctuations of the energy loss in thin absorber layers are
quite frequently not observed by a detector. Detectors only measure the
energy which is actually deposited in their sensitive volume, and this
energy may not be the same as the energy lost by the particle. For exam-
ple, the energy which is transferred to knock-on electrons may only be
partially deposited in the detector because the knock-on electrons can
leave the sensitive volume of the detector.

Therefore, quite frequently it is of practical interest to consider only
that part of the energy loss with energy transfers E smaller than a given
cut value Ecut. This truncated energy loss is given by [10–12, 26]

−dE
dx

∣∣∣∣
≤Ecut

= κ

(
ln

2mec
2β2γ2Ecut

I2 − β2 − δ

)
, (1.26)

where κ is defined by Eq. (1.13). Equation (1.26) is similar, but not iden-
tical, to Eq. (1.11). Distributions of the truncated energy loss do not show
a pronounced Landau tail as the distributions (1.19) for the mean value
(1.11). Because of the density effect – expressed by δ in Eqs. (1.11) or
(1.26), respectively – the truncated energy loss approaches a constant at
high energies, which is given by the Fermi plateau.

So far, the energy loss by ionisation and excitation has been described
for heavy particles. Electrons as incident particles, however, play a spe-
cial rôle in the treatment of the energy loss. On the one hand, the total
energy loss of electrons even at low energies (MeV range) is influenced by
bremsstrahlung processes. On the other hand, the ionisation loss requires
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1.1 Interactions of charged particles 11

special treatment because the mass of the incident particle and the target
electron is the same.

In this case, one can no longer distinguish between the primary and
secondary electron after the collision. Therefore, the energy-transfer prob-
ability must be interpreted in a different manner. One electron after
the collision receives the energy Ekin and the other electron the energy
E−mec

2 −Ekin (E is the total energy of the incident particle). All possi-
ble cases are considered if one allows the energy transfer to vary between
0 and 1

2(E −mec
2) and not up to E −mec

2.
This effect can be most clearly seen if in Eq. (1.11) the maximum energy

transfer Emax
kin of Eq. (1.6) is replaced by the corresponding expression for

electrons. For relativistic particles, the term 1
2(E −mec

2) can be approx-
imated by E/2 = 1

2γmec
2. Using z = 1, the ionisation loss of electrons

then can be approximated by

−dE
dx

= 4πNAr
2
emec

2Z

A
· 1
β2

(
ln
γmec

2

2I
− β2 − δ∗

2

)
, (1.27)

where δ∗ takes a somewhat different value for electrons compared to
the parameter δ appearing in Eq. (1.11). A more precise calculation
considering the specific differences between incident heavy particles and
electrons yields a more exact formula for the energy loss of electrons due
to ionisation and excitation [27],

−dE
dx

= 4πNAr
2
emec

2Z

A
· 1
β2

[
ln
γmec

2β
√
γ − 1√

2I

+
1
2
(1 − β2) − 2γ − 1

2γ2 ln 2 +
1
16

(
γ − 1
γ

)2
]

. (1.28)

This equation agrees with the general Bethe–Bloch relation (1.11) within
10%–20%. It takes into account the kinematics of electron–electron
collisions and also screening effects.

The treatment of the ionisation loss of positrons is similar to that of
electrons if one considers that these particles are of equal mass, but not
identical charge.

For completeness, we also give the ionisation loss of positrons [28]:

−dE
dx

= 4πNAr
2
emec

2Z

A

1
β2

{
ln
γmec

2β
√
γ − 1√

2I

− β2

24

[
23 +

14
γ + 1

+
10

(γ + 1)2
+

4
(γ + 1)3

]}
. (1.29)

Since positrons are antiparticles of electrons, there is, however, an addi-
tional consideration: if positrons come to rest, they will annihilate with
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12 1 Interactions of particles and radiation with matter

an electron normally into two photons which are emitted anticollinearly.
Both photons have energies of 511 keV in the centre-of-mass system,
corresponding to the rest mass of the electrons. The cross section for
annihilation in flight is given by [28]

σ(Z,E) =
Zπr2e
γ + 1

[
γ2 + 4γ + 1
γ2 − 1

ln(γ +
√
γ2 − 1) − γ + 3√

γ2 − 1

]
. (1.30)

More details about the ionisation process of elementary particles, in
particular, its spin dependence, can be taken from the books of Rossi and
Sitar et al. [1–3].

1.1.2 Channelling

The energy loss of charged particles as described by the Bethe–Bloch
formula needs to be modified for crystals where the collision partners
are arranged on a regular lattice. By looking into a crystal it becomes
immediately clear that the energy loss along certain crystal directions
will be quite different from that along a non-aligned direction or in an
amorphous substance. The motion along such channelling directions is
governed mainly by coherent scattering on strings and planes of atoms
rather than by the individual scattering off single atoms. This leads to
anomalous energy losses of charged particles in crystalline materials [29].

It is obvious from the crystal structure that charged particles can only
be channelled along a crystal direction if they are moving more or less
parallel to crystal axes. The critical angle necessary for channelling is
small (approx. 0.3◦ for β ≈ 0.1) and decreases with energy. For the axial
direction (〈111〉, body diagonal) it can be estimated by

ψ [degrees] = 0.307 · [z · Z/(E · d)]0.5 , (1.31)

where z and Z are the charges of the incident particle and the crystal
atom, E is the particle’s energy in MeV, and d is the interatomic spacing
in Å. ψ is measured in degrees [30].

For protons (z = 1) passing through a silicon crystal (Z = 14; d =
2.35 Å), the critical angle for channelling along the direction-of-body
diagonals becomes

ψ = 13 μrad/
√
E [TeV] . (1.32)

For planar channelling along the face diagonals (〈110〉 axis) in silicon
one gets [29]

ψ = 5 μrad/
√
E [TeV] . (1.33)
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1.1 Interactions of charged particles 13

Of course, the channelling process also depends on the charge of the
incident particle.

For a field inside a crystal of silicon atoms along the 〈110〉 crystal
direction, one obtains a value of 1.3 · 1010 V/cm. This field extends over
macroscopic distances and can be used for the deflection of high-energy
charged particles using bent crystals [30].

Channelled positive particles are kept away from a string of atoms and
consequently suffer a relatively small energy loss. Figure 1.4 shows the
energy-loss spectra for 15 GeV/c protons passing through a 740 μm thick
germanium crystal [30]. The energy loss of channelled protons is lower by
about a factor of 2 compared to random directions through the crystal.

1.1.3 Ionisation yield

The average energy loss by ionisation and excitation can be transformed
into a number of electron–ion pairs produced along the track of a charged
particle. One must distinguish between primary ionisation, that is the
number of primarily produced electron–ion pairs, and the total ionisation.
A sufficiently large amount of energy can be transferred to some primarily
produced electrons so that they also can ionise (knock-on electrons). This
secondary ionisation together with the primary ionisation forms the total
ionisation.

The average energy required to form an electron–ion pair (W value)
exceeds the ionisation potential of the gas because, among others, inner
shells of the gas atoms can also be involved in the ionisation process,
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Fig. 1.4. The energy-loss spectra for 15 GeV/c protons passing through a 740 μm
thick germanium crystal [30].
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14 1 Interactions of particles and radiation with matter

Table 1.2. Compilation of some properties of gases. Given is the average effec-
tive ionisation potential per electron I0 , the average energy loss W per produced
ion pair, the number of primary (np), and total (nT ) produced electron–ion pairs
per cm at standard pressure and temperature for minimum-ionising particles
[10, 11, 31–33]

Gas Density � [g/cm3] I0 [eV] W [eV] np [cm−1] nT [cm−1]

H2 8.99 · 10−5 15.4 37 5.2 9.2
He 1.78 · 10−4 24.6 41 5.9 7.8
N2 1.25 · 10−3 15.5 35 10 56
O2 1.43 · 10−3 12.2 31 22 73
Ne 9.00 · 10−4 21.6 36 12 39
Ar 1.78 · 10−3 15.8 26 29 94
Kr 3.74 · 10−3 14.0 24 22 192
Xe 5.89 · 10−3 12.1 22 44 307
CO2 1.98 · 10−3 13.7 33 34 91
CH4 7.17 · 10−4 13.1 28 16 53
C4H10 2.67 · 10−3 10.8 23 46 195

and a fraction of the energy of the incident particle can be dissipated by
excitation processes which do not lead to free electrons. The W value of
a material is constant for relativistic particles and increases only slightly
for low velocities of incident particles.

For gases, the W values are around 30 eV. They can, however, strongly
depend on impurities in the gas. Table 1.2 shows the W values for
some gases together with the number of primary (np) and total (nT)
electron–ion pairs produced by minimum-ionising particles (see Table 1.1)
[10, 11, 31–33].

The numerical values for np are somewhat uncertain because experi-
mentally it is very difficult to distinguish between primary and secondary
ionisation. The total ionisation (nT) can be computed from the total
energy loss ΔE in the detector according to

nT =
ΔE

W
. (1.34)

This is only true if the transferred energy is completely deposited in the
sensitive volume of the detector.

In solid-state detectors, charged particles produce electron–hole pairs.
For the production of an electron–hole pair on the average 3.6 eV in sili-
con and 2.85 eV in germanium are required. This means that the number
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1.1 Interactions of charged particles 15

of charge carriers produced in solid-state detectors is much larger com-
pared to the production rate of electron–ion pairs in gases. Therefore, the
statistical fluctuations in the number of produced charge carriers for a
given energy loss is much smaller in solid-state detectors than in gaseous
detectors.

The production of pairs of charge carriers for a given energy loss is
a statistical process. If, on average, N charge-carrier pairs are produced
one would näıvely expect this number to fluctuate according to Poisson
statistics with an error of

√
N . Actually, the fluctuation around the aver-

age value is smaller by a factor
√
F depending on the material; this was

demonstrated for the first time by Fano [34]. If one considers the situation
in detail, the origin of the Fano factor is clear. For a given energy deposit,
the number of produced charge carriers is limited by energy conservation.

In the following, a formal justification for the Fano factor will be given
[34, 35]. Let E = Etotal be the fixed energy deposited in a detector, e.g.
by an X-ray photon or a stopping α particle. This energy is transferred in
p steps to the detector medium, in general, in unequal portions Ep in each
individual ionisation process. For each interaction step, mp electron–ion
pairs are produced. After N steps, the total energy is completely absorbed
(Fig. 1.5).

Let

m
(e)
p = Ep

W be the expected number of ionisations in the step p, and

n(e) = E
W be the average expected number of the totally produced

electron–ion pairs.

The quantity, which will finally describe the energy resolution, is

σ2 =
〈
(n− n)2

〉
, (1.35)

Etotal

Ep

N

step p of energy absorption

en
er

gy
 E

 

p

Fig. 1.5. Energy loss in N discrete steps with energy transfer Ep in the pth
step [35].
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16 1 Interactions of particles and radiation with matter

where n is the average value over many experiments for fixed energy
absorption:

σ2 =
1
L

L∑
k=1

(nk − n)2 . (1.36)

That is, we perform L gedanken experiments, where in experiment k
a total number nk electron–ion pairs is produced. In experiment k the
energy is transferred to the detector medium in Nk steps, where in the
pth interval the number of produced electron–ion pairs is mpk;

nk − n =
Nk∑
p=1

mpk − E

W
=

Nk∑
p=1

mpk − 1
W

Nk∑
p=1

Epk . (1.37)

The second term in the sum constrains the statistical character of the
charge-carrier production rate through energy conservation. Therefore,
one would expect that the fluctuations are smaller compared to an
unconstrained accidental energy-loss process.

The energy E is subdivided consequently into Nk discrete steps each
with energy portion Epk. If we introduce

νpk = mpk − Epk

W
, (1.38)

it follows that

nk − n =
Nk∑
p=1

νpk . (1.39)

The variance for L experiments is given by

σ2(n) =
1
L

·
L∑

k=1︸︷︷︸
L experiments

(
Nk∑
p=1

νpk

)2

︸ ︷︷ ︸
per experiment

, (1.40)

σ2(n) =
1
L

⎛⎝ L∑
k=1

Nk∑
p=1

ν2
pk +

L∑
k=1

Nk∑
i�=j

νikνjk

⎞⎠ . (1.41)

Let us consider the mixed term at first:

1
L

L∑
k=1

Nk∑
i�=j

νikνjk =
1
L

L∑
k=1

Nk∑
i=1

νik

⎛⎝ Nk∑
j=1

νjk − νik

⎞⎠ . (1.42)
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1.1 Interactions of charged particles 17

The last term in the bracket of Eq. (1.42) originates from the suppression
of the product νikνjk for i = j, which is already contained in the quadratic
terms.

For a given event k the average value

νk =
1
Nk

Nk∑
j=1

νjk (1.43)

can be introduced. Using this quantity, one gets

1
L

L∑
k=1

Nk∑
i�=j

νikνjk =
1
L

L∑
k=1

Nkνk(Nkνk − νk) . (1.44)

In this equation the last term νik has been approximated by the average
value νk. Under these conditions one obtains

1
L

L∑
k=1

Nk∑
i�=j

νikνjk =
1
L

L∑
k=1

Nk(Nk − 1)ν2
k = (N2 −N)ν2 , (1.45)

if one assumes that Nk and νk are uncorrelated, and νk = ν, if Nk is
sufficiently large.

The average value of ν, however, vanishes according to Eq. (1.38), conse-
quently the second term in Eq. (1.41) does not contribute. The remaining
first term gives

σ2(n) =
1
L

L∑
k=1

Nk∑
p=1

ν2
pk =

1
L

L∑
k=1

Nkν2
k = Nν2 = N · (mp − Ep/W )2 .

(1.46)

In this case mp is the actually measured number of electron–ion pairs in
the energy-absorption step p with energy deposit Ep.

Remembering that N = n
mp

, leads to

σ2(n) =
(mp − Ep/W )2

mp
n . (1.47)

The variance of n consequently is

σ2(n) = F · n (1.48)

with the Fano factor

F =
(mp − Ep/W )2

mp
. (1.49)
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18 1 Interactions of particles and radiation with matter

Table 1.3. Fano factors for typical detector
materials at 300K [35, 36]

Absorber F

Ar + 10% CH4 ≈ 0.2
Si 0.12
Ge 0.13
GaAs 0.10
Diamond 0.08

As a consequence, the energy resolution is improved by the factor
√
F

compared to Poisson fluctuations. However, it must be remembered that
one has to distinguish between the occasional very large fluctuations of
the energy loss (Landau fluctuations) in thin absorber layers and the fluc-
tuation of the number of produced electron–ion pairs for a given fixed
well-defined energy loss. This last case is true for all particles which
deposit their total energy in the sensitive volume of the detector.

Table 1.3 lists some Fano factors for various substances at 300 K [35, 36].
The improvement on the energy resolution can be quite substantial.

1.1.4 Multiple scattering

A charged particle traversing matter will be scattered by the Coulomb
potentials of nuclei and electrons. In contrast to the ionisation energy loss
which is caused by collisions with atomic electrons, multiple-scattering
processes are dominated by deflections in the Coulomb field of nuclei.
This leads to a large number of scattering processes with very low devia-
tions from the original path. The distribution of scattering angles due to
multiple Coulomb scattering is described by Molière’s theory [10–12, 37].
For small scattering angles it is normally distributed around the average
scattering angle Θ = 0. Larger scattering angles caused by collisions of
charged particles with nuclei are, however, more frequent than expected
from a Gaussian distribution [38].

The root mean square of the projected scattering-angle distribution is
given by [10–12]

Θproj.
rms =

√
〈Θ2〉 =

13.6 MeV
βcp

z

√
x

X0
[1 + 0.038 ln(x/X0)] , (1.50)

where p (in MeV/c) is the momentum, βc the velocity, and z the
charge of the scattered particle. x/X0 is the thickness of the scattering
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1.1 Interactions of charged particles 19

medium, measured in units of the radiation length (see Sect. 1.1.5)
[1, 39, 40]

X0 =
A

4αNAZ2r2e ln(183 Z−1/3)
, (1.51)

where Z and A are the atomic number and the atomic weight of the
absorber, respectively.

Equation (1.50) is already an approximation. For most practical appli-
cations Eq. (1.50) can be further approximated for particles with z =
1 by

Θproj.
rms =

√
〈Θ2〉 ≈ 13.6 MeV

βcp

√
x

X0
. (1.52)

Equation (1.50) or (1.52) gives the root mean square of the projected
distribution of the scattering angles. Such a projected distribution is, for
example, of interest for detectors, which provide only a two-dimensional
view of an event. The corresponding root mean square deviation for non-
projected scattering angles is increased by factor

√
2 so that we have

Θspace
rms ≈ 19.2 MeV

βcp

√
x

X0
. (1.53)

1.1.5 Bremsstrahlung

Fast charged particles lose, in addition to their ionisation loss, energy
by interactions with the Coulomb field of the nuclei of the traversed
medium. If the charged particles are decelerated in the Coulomb field
of the nucleus, a fraction of their kinetic energy will be emitted in form
of photons (bremsstrahlung).

The energy loss by bremsstrahlung for high energies can be described
by [1]

−dE
dx

≈ 4α ·NA · Z
2

A
· z2

(
1

4πε0
· e2

mc2

)2

· E ln
183
Z1/3 . (1.54)

In this equation

Z,A – are the atomic number and atomic weight of the medium,

z,m,E – are the charge number, mass and energy of the incident
particle.
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20 1 Interactions of particles and radiation with matter

The bremsstrahlung energy loss of electrons is given correspondingly by

−dE
dx

≈ 4αNA · Z
2

A
r2e · E ln

183
Z1/3 (1.55)

if E � mec
2/αZ1/3.

It should be pointed out that, in contrast to the ionisation energy
loss, Eq. (1.11), the energy loss by bremsstrahlung is proportional to the
energy of the particle and inversely proportional to the mass squared of
the incident particles.

Because of the smallness of the electron mass, bremsstrahlung energy
losses play an especially important rôle for electrons. For electrons (z =
1, m = me) Eq. (1.54) or Eq. (1.55), respectively, can be written in the
following fashion:

−dE
dx

=
E

X0
. (1.56)

This equation defines the radiation length X0. An approximation for X0
has already been given by Eq. (1.51).

The proportionality

X−1
0 ∝ Z2 (1.57)

in Eq. (1.51) originates from the interaction of the incident particle with
the Coulomb field of the target nucleus.

Bremsstrahlung, however, is also emitted in interactions of incident par-
ticles with the electrons of the target material. The cross section for this
process follows closely the calculation of the bremsstrahlung energy loss
on the target nucleus, the only difference being that for atomic target
electrons the charge is always equal to unity, and therefore one obtains
an additional contribution to the cross section, which is proportional to
the number of target electrons, that is ∝ Z. The cross section for brems-
strahlung must be extended by this term [9]. Therefore, the factor Z2 in
Eq. (1.51) must be replaced by Z2+Z = Z(Z+1), which leads to a better
description of the radiation length, accordingly,†

X0 =
A

4αNAZ(Z + 1)r2e ln(183 Z−1/3)
{g/cm2} . (1.58)

In addition, one has to consider that the atomic electrons will screen
the Coulomb field of the nucleus to a certain extent. If screening effects

† Units presented in curly brackets just indicate that the numerical result of the formula is
given in the units shown in the brackets, i.e., in this case the radiation length comes out in
g/cm2.
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are taken into account, the radiation length can be approximated by
[10–12]

X0 =
716.4 ·A[g/mol]

Z(Z + 1) ln(287/
√
Z)

g/cm2 . (1.59)

The numerical results for the radiation length based on Eq. (1.59) deviate
from those of Eq. (1.51) by a few per cent.

The radiation length X0 is a property of the material. However, one can
also define a radiation length for incident particles other than electrons.
Because of the proportionality

X0 ∝ r−2
e (1.60)

and the relation

re =
1

4πε0
· e2

mec2
, (1.61)

the ‘radiation length’, however, also has a dependence on the mass of the
incident particle,

X̃0 ∝ m2 . (1.62)

The radiation lengths given in the literature, however, are always meant
for electrons.

Integrating Eq. (1.54) or (1.56), respectively, leads to

E = E0 e−x/X0 . (1.63)

This function describes the exponential attenuation of the energy of
charged particles by radiation losses. Note the distinction from the expo-
nential attenuation of the intensity of a photon beam passing through
matter (see Sect. 1.2, Eq. (1.92)).

The radiation length of a mixture of elements or a compound can be
approximated by

X0 =
1∑N

i=1 fi/Xi
0

, (1.64)

where fi are the mass fractions of the components with the radiation
length Xi

0.
Energy losses due to bremsstrahlung are proportional to the energy

while ionisation energy losses beyond the minimum of ionisation are pro-
portional to the logarithm of the energy. The energy, where these two
interaction processes for electrons lead to equal energy losses, is called
the critical energy Ec,

https://doi.org/10.1017/9781009401531.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401531.004


22 1 Interactions of particles and radiation with matter

−dE
dx

(Ec)
∣∣∣∣
ionisation

= −dE
dx

(Ec)
∣∣∣∣
bremsstrahlung

. (1.65)

The energy distribution of bremsstrahlung photons follows a 1/Eγ law
(Eγ – energy of the emitted photon). The photons are emitted preferen-
tially in the forward direction (Θγ ≈ mec

2/E). In principle, the critical
energy can be calculated from the Eqs. (1.11) and (1.54) using Eq. (1.65).
Numerical values for the critical energy of electrons are given in the
literature [9–11]. For solids the equation

Ec =
610 MeV
Z + 1.24

(1.66)

describes the critical energies quite satisfactorily [41]. Similar parametri-
sations for gases, liquids and solids are given in [12]. The critical energy
is related to the radiation length by

(
dE
dx

)
·X0 ≈ Ec . (1.67)

Table 1.4 lists the radiation lengths and critical energies for some mate-
rials [9–12]. The critical energy – as well as the radiation length – scales
as the square of the mass of the incident particles. For muons (mμ =
106 MeV/c2) in iron one obtains:

Eμ
c ≈ Ee

c ·
(
mμ

me

)2

= 890 GeV . (1.68)

1.1.6 Direct electron-pair production

Apart from bremsstrahlung losses, additional energy-loss mechanisms
come into play, particularly at high energies. Electron–positron pairs can
be produced by virtual photons in the Coulomb field of the nuclei. For
high-energy muons this energy-loss mechanism is even more important
than bremsstrahlung losses. The energy loss by trident production (e.g.
like μ+nucleus → μ+e++e−+nucleus) is also proportional to the energy
and can be parametrised by

−dE
dx

∣∣∣∣
pair pr.

= bpair(Z,A,E) · E ; (1.69)
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Table 1.4. Radiation lengths and critical energies for some absorber materi-
als [9–12]. The values for the radiation lengths agree with Eq. (1.59) within a
few per cent. Only the experimental value for helium shows a somewhat larger
deviation. The numerical results for the critical energies of electrons scatter
quite significantly in the literature. The effective values for Z and A of mix-
tures and compounds can be calculated for A by Aeff =

∑N
i=1 fiAi, where fi

are the mass fractions of the components with atomic weight Ai. Correspond-
ingly, one obtains the effective atomic numbers using Eqs. (1.59) and (1.64).
Neglecting the logarithmic Z dependence in Eq. (1.59), Zeff can be calculated
from Zeff · (Zeff + 1) =

∑N
i=1 fiZi(Zi + 1), where fi are the mass fractions of

the components with charge numbers Zi. For the practical calculation of an effec-
tive radiation length of a compound one determines first the radiation length of
the contributing components and then determines the effective radiation length
according to Eq. (1.64)

Material Z A X0 [g/cm2] X0 [cm] Ec [MeV]

Hydrogen 1 1.01 61.3 731 000 350
Helium 2 4.00 94 530 000 250
Lithium 3 6.94 83 156 180
Carbon 6 12.01 43 18.8 90
Nitrogen 7 14.01 38 30 500 85
Oxygen 8 16.00 34 24 000 75
Aluminium 13 26.98 24 8.9 40
Silicon 14 28.09 22 9.4 39
Iron 26 55.85 13.9 1.76 20.7
Copper 29 63.55 12.9 1.43 18.8
Silver 47 109.9 9.3 0.89 11.9
Tungsten 74 183.9 6.8 0.35 8.0
Lead 82 207.2 6.4 0.56 7.40
Air 7.3 14.4 37 30 000 84
SiO2 11.2 21.7 27 12 57
Water 7.5 14.2 36 36 83

the b(Z,A,E) parameter varies only slowly with energy for high energies.
For 100 GeV muons in iron the energy loss due to direct electron-pair
production can be described by [25, 42, 43]

− dE
dx

∣∣∣∣
pair pr.

= 3 · 10−6 · E

MeV
MeV
g/cm2 , (1.70)

i.e. − dE
dx

∣∣∣∣
pair pr.

= 0.3
MeV
g/cm2 . (1.71)
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The spectrum of total energy of directly produced electron–positron
pairs at high energy transfers is steeper than the spectrum of bremsstrah-
lung photons. High fractional energy transfers are therefore dominated by
bremsstrahlung processes [25].

1.1.7 Energy loss by photonuclear interactions

Charged particles can interact inelastically via virtual gauge particles (in
this case, photons) with nuclei of the absorber material, thereby losing
energy (nuclear interactions).

In the same way as for energy losses through bremsstrahlung or direct
electron-pair production, the energy loss by photonuclear interactions is
proportional to the particle’s energy,

−dE
dx

∣∣∣∣
photonucl.

= bnucl.(Z,A,E) · E . (1.72)

For 100 GeV muons in iron the energy-loss parameter b is given by
bnucl. = 0.4 · 10−6 g−1 cm2 [25], i.e.,

−dE
dx

∣∣∣∣
photonucl.

= 0.04
MeV
g/cm2 . (1.73)

This energy loss is important for leptons and negligible for hadrons in
comparison to direct nuclear interactions.

1.1.8 Total energy loss

In contrast to energy losses due to ionisation those by bremsstrahlung,
direct electron-pair production and photonuclear interactions are charac-
terised by large energy transfers with correspondingly large fluctuations.
Therefore, it is somewhat problematic to speak of an average energy
loss for these processes because extremely large fluctuations around this
average value can occur [44, 45].

Nevertheless, the total energy loss of charged particles by the above
mentioned processes can be parametrised by

−dE
dx

∣∣∣∣
total

= −dE
dx

∣∣∣∣
ionisation

−dE
dx

∣∣∣∣
brems.

−dE
dx

∣∣∣∣
pair pr.

−dE
dx

∣∣∣∣
photonucl.

= a(Z,A,E) + b(Z,A,E) · E , (1.74)

where a(Z,A,E) describes the energy loss according to Eq. (1.11) and
b(Z,A,E) is the sum over the energy losses due to bremsstrahlung, direct
electron-pair production and photonuclear interactions. The parameters
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Fig. 1.6. Variation of the b parameters with energy for muons in iron. Plotted
are the fractional energy losses by direct electron-pair production (bpair), brems-
strahlung (bbrems), and photonuclear interactions (bnucl), as well as their sum
(btotal) [42].
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Fig. 1.7. Contributions to the energy loss of muons in iron [42].

a and b and their energy dependence for various particles and materials
are given in the literature [46].

Figure 1.6 shows the b parameters and in Fig. 1.7 the various energy-loss
mechanisms for muons in iron in their dependence on the muon energy
are presented [42].

Up to energies of several hundred GeV the energy loss in iron due to
ionisation and excitation is dominant. For energies in excess of several
TeV direct electron-pair production and bremsstrahlung represent the
main energy-loss processes. Photonuclear interactions contribute only at
the 10% level. Since the energy loss due to these processes is proportional
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to the muon’s energy, this opens up the possibility of muon calorimetry
by means of energy-loss sampling [47].

The dominance of the energy-proportional interaction processes over
ionisation and excitation depends, of course, on the target material. For
uranium this transition starts around several 100 GeV, while in hydro-
gen bremsstrahlung and direct electron-pair production prevail only at
energies in excess of 10 TeV.

1.1.9 Energy–range relations for charged particles

Because of the different energy-loss mechanisms, it is nearly impossible
to give a simple representation of the range of charged particles in mat-
ter. The definition of a range is in any case complicated because of the
fluctuations of the energy loss by catastrophic energy-loss processes, i.e.
by interactions with high energy transfers, and because of the multiple
Coulomb scattering in the material, all of which lead to substantial range
straggling. In the following, therefore, some empirical formulae are given,
which are valid for certain particle species in fixed energy ranges.

Generally speaking, the range can be calculated from:

R =
∫ m0c2

E

dE
dE/dx

. (1.75)

However, since the energy loss is a complicated function of the energy, in
most cases approximations of this integral are used. For the determination
of the range of low-energy particles, in particular, the difference between
the total energy E and the kinetic energy Ekin must be taken into account,
because only the kinetic energy can be transferred to the material.

For α particles with kinetic energies between 2.5 MeV ≤ Ekin ≤ 20 MeV
the range in air (15 ◦C, 760 Torr) can be described by [48]

Rα = 0.31(Ekin/MeV)3/2 cm . (1.76)

For rough estimates of the range of α particles in other materials one can
use

Rα = 3.2 · 10−4

√
A/(g/mol)
�/(g cm−3)

·Rair {cm} (1.77)

(A atomic weight) [48]. The range of α particles in air is shown in Fig. 1.8.
For protons with kinetic energies between 0.6 MeV ≤ Ekin ≤ 20 MeV

the range in air [48] can be approximated by

Rp = 100 ·
(

Ekin

9.3 MeV

)1.8

cm . (1.78)
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Fig. 1.8. Range of α particles in air [48].
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Fig. 1.9. Absorption of electrons in aluminium [49, 50].

The range of low-energy electrons (0.5 MeV ≤ Ekin ≤ 5 MeV) in
aluminium is described [48] by

Re = 0.526 (Ekin/MeV − 0.094) g/cm2 . (1.79)

Figure 1.9 shows the absorption of electrons in aluminium [49, 50]. Plotted
is the fraction of electrons (with the energy Ekin), which penetrate through
a certain absorber thickness.

This figure shows the difficulty in the definition of a range of a particle
due to the pronounced range straggling, in this case mainly due to the fact
that electrons will experience multiple scattering and will bremsstrahl in
the absorber. For particles heavier than the electron the range is much
better defined due to the reduced effect of multiple scattering (

〈
Θ2

〉 ∝
1/p). The extrapolation of the linear part of the curves shown in Fig. 1.9
to the intersection with the abscissa defines the practical range [50]. The
range of electrons defined in this way is shown in Fig. 1.10 for various
absorbers [50].

For higher energies the range of muons, pions and protons can be taken
from Fig. 1.11 [12].
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Fig. 1.10. Practical range of electrons in various materials [50].

The range of high-energy muons can be obtained by integrating
Eq. (1.75), using Eqs. (1.74) and (1.11), and neglecting the logarithmic
term in Eq. (1.11). This leads to

Rμ(Eμ) =
1
b

ln
(

1 +
b

a
Eμ

)
. (1.80)

For 1 TeV muons in iron Eq. (1.80) yields

Rμ(1 TeV) = 265 m . (1.81)

A numerical integration for the range of muons in rock (standard rock
with Z = 11, A = 22) yields for Eμ > 10 GeV [51]

Rμ(Eμ) =
[
1
b

ln(1 +
b

a
Eμ)

] (
0.96

lnEμ,n − 7.894
lnEμ,n − 8.074

)
(1.82)

with a = 2.2 MeV
g/cm2 , b = 4.4 · 10−6 g−1 cm2 and Eμ,n = Eμ/MeV. This

energy–range dependence of muons in rock is shown in Fig. 1.12.

1.1.10 Synchrotron-radiation losses

There are further energy-loss processes of charged particles like Cherenkov
radiation, transition radiation and synchrotron radiation . Cherenkov radi-
ation and transition radiation will be discussed in those chapters where
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Cherenkov detectors and transition-radiation detectors are described.
Synchrotron-radiation losses are of general importance for charged-
particle detection and acceleration, therefore a brief account on their
essentials is given here.

Any charged particle accelerated in a straight line or on a curved
path will emit electromagnetic radiation. This energy loss is particularly
important for electrons deflected in a magnetic field.

The radiated power from an accelerated electron can be worked out
from classical electrodynamics,

P =
1

4πε0
2e2

3c3
a2 , (1.83)

where a is the acceleration. For the general case one has to consider
relativistic effects. From

a =
1
m0

dp
dτ

(1.84)

and the proper time τ = t/γ one gets

a =
1
m0

· γd(γm0v)
dt

= γ2 dv
dt

= γ2 · v
2

r
(1.85)

for an acceleration on a circle of radius r (v2/r is the centrifugal
acceleration).

This gives [40, 52]

P =
1

4πε0
2e2

3c3
γ4 v

4

r2
=

1
6πε0

e2c
γ4

r2
(1.86)

for relativistic particles with v ≈ c. For electrons one gets

P =
e2c

6πε0

(
E

mec2

)4

· 1
r2

= 4.22 · 103 E
4 [GeV4]
r2 [m2]

GeV/s . (1.87)

The energy loss per turn in a circular accelerator is

ΔE = P · 2πr
c

=
e2

3ε0
γ4

r
= 8.85 · 10−5 E

4 [GeV4]
r [m]

GeV . (1.88)
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For the Large Electron–Positron collider LEP at CERN with a bending
radius in the dipoles of 3100 m one obtains for a beam energy of 100 GeV

ΔE = 2.85 GeV per turn , (1.89)

while for the Large Hadron Collider LHC for proton beam energies of
7 TeV in the LEP tunnel one has

ΔE = 8.85 · 10−5 ·
(
me

mp

)4
E4 [GeV4]
r [m]

GeV = 6 · 10−6 GeV = 6 keV .

(1.90)

The emitted synchrotron photons have a broad energy spectrum with a
characteristic (critical) energy of

Ec =
3c
2r

�γ3 . (1.91)

They are emitted into a forward cone with opening angle ∝ 1
γ . In partic-

ular, for electron accelerators the synchrotron-radiation loss is a severe
problem for high-energy electrons. Therefore, electron accelerators for
E � 100 GeV have to be linear instead of circular.

On the other hand, the synchrotron radiation from circular electron
machines is used for other fields of physics like solid state or atomic
physics, biophysics or medical physics. Here the high brilliance of these
machines, often augmented by extra bending magnets (undulators and
wigglers) provides excellent opportunities for structure analysis of a
large variety of samples. Also the dynamical behaviour of fast biological
processes can be investigated.

1.2 Interactions of photons

Photons are detected indirectly via interactions in the medium of the
detector. In these processes charged particles are produced which are
recorded through their subsequent ionisation in the sensitive volume of
the detector. Interactions of photons are fundamentally different from ion-
isation processes of charged particles because in every photon interaction,
the photon is either completely absorbed (photoelectric effect, pair pro-
duction) or scattered through a relatively large angle (Compton effect).
Since the absorption or scattering is a statistical process, it is impossible
to define a range for γ rays. A photon beam is attenuated exponentially
in matter according to

I = I0 e−μx . (1.92)
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The mass attenuation coefficient μ is related to the cross sections for the
various interaction processes of photons according to

μ =
NA

A

∑
i

σi , (1.93)

where σi is the atomic cross section for the process i, A the atomic weight
and NA the Avogadro number.

The mass attenuation coefficient (according to Eq. (1.93) given
per g/cm2) depends strongly on the photon energy. For low energies
(100 keV ≥ Eγ ≥ ionisation energy) the photoelectric effect dominates,

γ + atom → atom+ + e− . (1.94)

In the range of medium energies (Eγ ≈ 1 MeV) the Compton effect, which
is the scattering of photons off quasi-free atomic electrons,

γ + e− → γ + e− , (1.95)

has the largest cross section, and at higher energies (Eγ � 1 MeV) the
cross section for pair production dominates,

γ + nucleus → e+ + e− + nucleus . (1.96)

The length x in Eq. (1.92) is an area density with the unit g/cm2. If
the length is measured in cm, the mass attenuation coefficient μ must be
divided by the density � of the material.

1.2.1 Photoelectric effect

Atomic electrons can absorb the energy of a photon completely, while –
because of momentum conservation – this is not possible for free electrons.
The absorption of a photon by an atomic electron requires a third colli-
sion partner which in this case is the atomic nucleus. The cross section
for absorption of a photon of energy Eγ in the K shell is particularly
large (≈ 80% of the total cross section), because of the proximity of
the third collision partner, the atomic nucleus, which takes the recoil
momentum. The total photoelectric cross section in the non-relativistic
range away from the absorption edges is given in the non-relativistic Born
approximation by [53]

σK
photo =

(
32
ε7

)1/2

α4 · Z5 · σe
Th {cm2/atom} , (1.97)

where ε = Eγ/mec
2 is the reduced photon energy and σe

Th = 8
3 π r

2
e =

6.65 · 10−25 cm2 is the Thomson cross section for elastic scattering of
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photons on electrons. Close to the absorption edges, the energy depen-
dence of the cross section is modified by a function f(Eγ, E

edge
γ ). For

higher energies (ε � 1) the energy dependence of the cross section for the
photoelectric effect is much less pronounced,

σK
photo = 4πr2eZ

5α4 · 1
ε
. (1.98)

In Eqs. (1.97) and (1.98) the Z dependence of the cross section is approx-
imated by Z5. This indicates that the photon does not interact with an
isolated atomic electron. Z-dependent corrections, however, cause σphoto
to be a more complicated function of Z. In the energy range between
0.1 MeV ≤ Eγ ≤ 5 MeV the exponent of Z varies between 4 and 5.

As a consequence of the photoelectric effect in an inner shell (e.g. of
the K shell) the following secondary effects may occur. If the free place,
e.g. in the K shell, is filled by an electron from a higher shell, the energy
difference between those two shells can be liberated in the form of X rays
of characteristic energy. The energy of characteristic X rays is given by
Moseley’s law,

E = Ry (Z − 1)2
(

1
n2 − 1

m2

)
, (1.99)

where Ry ( = 13.6 eV) is Rydberg’s constant and n and m are the principal
quantum numbers characterising the atomic shells. For a level transition
from the L shell (m = 2) to the K shell (n = 1) one gets

E(Kα) =
3
4
Ry (Z − 1)2 . (1.100)

However, this energy difference can also be transferred to an electron
of the same atom. If this energy is larger than the binding energy of
the shell in question, a further electron can leave the atom (Auger effect,
Auger electron). The energy of these Auger electrons is usually quite small
compared to the energy of the primary photoelectrons.

If the photoionisation occurs in the K shell (binding energy BK), and
if the hole in the K shell is filled up by an electron from the L shell
(binding energy BL), the excitation energy of the atom (BK −BL) can be
transferred to an L electron. If BK − BL > BL, the L electron can leave
the atomic shell with an energy BK − 2BL as an Auger electron.

1.2.2 Compton effect

The Compton effect is the scattering of photons off quasi-free atomic elec-
trons. In the treatment of this interaction process, the binding energy of
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Fig. 1.13. Definition of kinematic variables in Compton scattering.

the atomic electrons is neglected. The differential probability of Comp-
ton scattering φc(Eγ, E

′
γ) dE′

γ for mec
2/2 < E′

γ < Eγ is given by the
Klein–Nishina formula

φc(Eγ, E
′
γ) dE′

γ = πr2e
NAZ

A

mec
2

Eγ

dE′
γ

E′
γ

[
1 +

(
E′

γ

Eγ

)2

− E′
γ

Eγ
sin2 θγ

]
,

(1.101)

where θγ is the scattering angle of the photon in the laboratory system (see
Fig. 1.13) and Eγ, E

′
γ are the energies of the incident and scattered photon

[54, 55]. The total cross section for Compton scattering per electron is
given by [55]

σe
c = 2πr2e

[(
1 + ε

ε2

){
2(1 + ε)
1 + 2ε

− 1
ε

ln(1 + 2ε)
}

+
1
2ε

ln(1 + 2ε)

− 1 + 3ε
(1 + 2ε)2

]
{cm2/electron} , (1.102)

where

ε =
Eγ

mec2
. (1.103)

The angular and energy distributions of Compton electrons are discussed
in great detail in R.D. Evans [56] and G. Hertz [48]. For the energy
spectrum of Compton electrons one gets

dσe
c

dEkin
=

dσe
c

dΩ
2π

ε2mec2

[
(1 + ε)2 − ε2 cos2 θe

(1 + ε)2 − ε(2 + ε) cos2 θe

]2

, (1.104)

where

dσe
c

dΩ
=
r2e
2

(
E′

γ

Eγ

)2 [
Eγ

E′
γ

− E′
γ

Eγ
− sin2 θγ

]
. (1.105)
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For Compton scattering off atoms the cross section is increased by the fac-
tor Z, because there are exactly Z electrons as possible scattering partners
in an atom; consequently σatomic

c = Z · σe
c .

At high energies the energy dependence of the Compton-scattering cross
section can be approximated by [57]

σe
c ∝ ln ε

ε
. (1.106)

The ratio of scattered to incident photon energy is given by

E′
γ

Eγ
=

1
1 + ε(1 − cos θγ)

. (1.107)

For backscattering (θγ = π) the energy transfer to the electron reaches
a maximum value, leading to a ratio of scattered to incident photon
energy of

E′
γ

Eγ
=

1
1 + 2ε

. (1.108)

The scattering angle of the electron with respect to the direction of the
incident photon can be obtained from (see Problem 1.5)

cot θe = (1 + ε) tan
θγ

2
. (1.109)

Because of momentum conservation the scattering angle of the electron,
θe, can never exceed π/2.

In Compton-scattering processes only a fraction of the photon energy
is transferred to the electron. Therefore, one defines an energy scattering
cross section

σcs =
E′

γ

Eγ
· σe

c (1.110)

and subsequently an energy-absorption cross section

σca = σe
c − σcs . (1.111)

The latter is relevant for absorption processes and is related to the prob-
ability that an energy Ekin = Eγ − E′

γ is transferred to the target
electron.

In passing, it should be mentioned that in addition to the normal Comp-
ton scattering of photons on target electrons at rest, inverse Compton
scattering also exists. In this case, an energetic electron collides with a
low-energy photon and transfers a fraction of its kinetic energy to the
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photon which is blueshifted to higher frequencies. This inverse Compton-
scattering process plays an important rôle, e.g. in astrophysics. Starlight
photons (eV range) can be shifted in this way by collisions with energetic
electrons into the X-ray (keV) or gamma (MeV) range. Laser photons
backscattered from high-energy electron beams also provide energetic γ
beams which are used in accelerator experiments [58].

Naturally, Compton scattering does not only occur with electrons, but
also for other charged particles. For the measurement of photons in par-
ticle detectors, however, Compton scattering off atomic electrons is of
special importance.

1.2.3 Pair production

The production of electron–positron pairs in the Coulomb field of a
nucleus is only possible if the photon energy exceeds a certain threshold.
This threshold energy is given by the rest masses of two electrons plus
the recoil energy which is transferred to the nucleus. From energy and
momentum conservation, this threshold energy can be calculated to be

Eγ ≥ 2mec
2 + 2

m2
e

mnucleus
c2 . (1.112)

Since mnucleus � me , the effective threshold can be approximated by

Eγ ≥ 2mec
2 . (1.113)

If, however, the electron–positron pair production proceeds in the
Coulomb field of an electron, the threshold energy is

Eγ ≥ 4mec
2 . (1.114)

Electron–positron pair production in the Coulomb field of an electron is,
however, strongly suppressed compared to pair production in the Coulomb
field of the nucleus.

In the case that the nuclear charge is not screened by atomic electrons,
(for low energies the photon must come relatively close to the nucleus to
make pair production probable, which means that the photon sees only
the ‘naked’ nucleus),

1 � ε <
1

αZ1/3 , (1.115)

the pair-production cross section is given by [1]

σpair = 4αr2eZ
2
(

7
9

ln 2ε− 109
54

)
{cm2/atom} ; (1.116)

https://doi.org/10.1017/9781009401531.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401531.004


1.2 Interactions of photons 37

for complete screening of the nuclear charge, however,
(
ε � 1

αZ1/3

)
[1]

σpair = 4αr2eZ
2
(

7
9

ln
183
Z1/3 − 1

54

)
{cm2/atom} . (1.117)

(At high energies pair production can also proceed at relatively large
impact parameters of the photon with a respect to the nucleus. But in
this case the screening of the nuclear charge by the atomic electrons must
be taken into account.)

For large photon energies, the pair-production cross section approaches
an energy-independent value which is given by Eq. (1.117). Neglecting
the small term 1

54 in the bracket of this equation, this asymptotic value
is given by

σpair ≈ 7
9

4α r2eZ
2 ln

183
Z1/3 ≈ 7

9
· A

NA
· 1
X0

, (1.118)

see Eq. (1.51).
The partition of the energy between the produced electrons and

positrons is uniform at low and medium energies and becomes slightly
asymmetric at large energies. The differential cross section for the cre-
ation of a positron of total energy between E+ and E+ + dE+ with an
electron of total energy E− is given by [53]

dσpair

dE+
=

αr2e
Eγ − 2mec2

· Z2 · f(ε, Z) {cm2/(MeV · atom)} . (1.119)

f(ε, Z) is a dimensionless, non-trivial function of ε and Z. The trivial
Z2 dependence of the cross section is, of course, already considered in
a factor separated from f(ε, Z). Therefore, f(ε, Z) depends only weakly
(logarithmically) on the atomic number of the absorber, see Eq. (1.117).
f(ε, Z) varies with Z only by few per cent [14]. The dependence of this
function on the energy-partition parameter

x =
E+ −mec

2

Eγ − 2mec2
=

Ekin
+

Ekin
pair

(1.120)

for average Z values is shown in Fig. 1.14 for various parameters ε
[14, 59, 60]. The curves shown in Fig. 1.14 do not just include the pair
production on the nucleus, but also the pair-production probability on
atomic electrons (∝ Z), so that the Z2 dependence of the pair-production
cross section, Eq. (1.119), is modified to Z(Z + 1) in a similar way as
was argued when the electron-bremsstrahlung process was presented, see
Eq. (1.58). The angular distribution of the produced electrons is quite
narrow with a characteristic opening angle of Θ ≈ mec2/Eγ.
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Fig. 1.14. Form of the energy-partition function f(ε, Z, x) with ε = Eγ/mec
2

as parameter. The total pair-production cross section is given by the area under
the corresponding curve in units of Z(Z + 1)αr2e [14, 59, 60].

1.2.4 Total photon absorption cross section

The total mass attenuation coefficient, which is related to the cross sec-
tions according to Eq. (1.93), is shown in Figs. 1.15–1.18 for the absorbers
water, air, aluminium and lead [48, 56, 61, 62].

Since Compton scattering plays a special rôle for photon interactions,
because only part of the photon energy is transferred to the target elec-
tron, one has to distinguish between the mass attenuation coefficient
and the mass absorption coefficient. The mass attenuation coefficient
μcs is related to the Compton-energy scattering cross section σcs, see
Eq. (1.110), according to Eq. (1.93). Correspondingly, the mass absorption
coefficient μca is calculated from the energy absorption cross section σca,
Eq. (1.111) and Eq. (1.93). For various absorbers the Compton-scattering
cross sections, or absorption coefficients shown in Figs. 1.15–1.18, have
been multiplied by the atomic number of the absorber, since the Compton-
scattering cross section, Eq. (1.102), given by the Klein–Nishina formula is
valid per electron, but in this case, the atomic cross sections are required.

Ranges in which the individual photon interaction processes dominate,
are plotted in Fig. 1.19 as a function of the photon energy and the atomic
number of the absorber [14, 50, 53].

Further interactions of photons (photonuclear interactions, photon–
photon scattering, etc.) are governed by extremely low cross sections.
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Fig. 1.15. Energy dependence of the mass attenuation coefficient μ and mass
absorption coefficient μa for photons in water [48, 56, 61, 62]. μph describes the
photoelectric effect, μcs the Compton scattering, μca the Compton absorption
and μp the pair production. μa is the total mass absorption coefficient (μa =
μph +μp +μca) and μ is the total mass attenuation coefficient (μ = μph +μp +μc,
where μc = μcs + μca).
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Fig. 1.16. Energy dependence of the mass attenuation coefficient μ and mass
absorption coefficient μa for photons in air [48, 56, 61, 62].
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Therefore, these processes are of little importance for the detection of pho-
tons. However, these processes are of large interest in elementary particle
physics and particle astrophysics.
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Fig. 1.19. Ranges in which the photoelectric effect, Compton effect and pair
production dominate as a function of the photon energy and the target charge
number Z [14, 50, 53].

1.3 Strong interactions of hadrons

Apart from the electromagnetic interactions of charged particles strong
interactions may also play a rôle for particle detection. In the following
we will sketch the strong interactions of hadrons.

In this case, we are dealing mostly with inelastic processes, where
secondary strongly interacting particles are produced in the collision. The
total cross section for proton–proton scattering can be approximated by
a constant value of 50 mb (1 mb = 10−27 cm2) for energies ranging from
2 GeV to 100 TeV. Both the elastic and inelastic part of the cross section
show a rather strong energy dependence at low energies [12, 63],

σtotal = σelastic + σinel . (1.121)

The specific quantity that characterises the inelastic processes is the aver-
age interaction length λI, which describes the absorption of hadrons in
matter according to

N = N0 e−x/λI . (1.122)

The value of λI can be calculated from the inelastic part of the hadronic
cross section as follows:

λI =
A

NA · � · σinel
. (1.123)

If A is given in g/mol, NA in mol−1, � in g/cm3 and the cross section in
cm2, then λI has the unit cm. The area density corresponding to λI {cm}
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Table 1.5. Total and inelastic cross sections as well as collision and interac-
tion lengths for various materials derived from the corresponding cross sections
[10–12]

Material Z A σtotal σinel λT · � λI · �
[barn] [barn] [g/cm2] [g/cm2]

Hydrogen 1 1.01 0.0387 0.033 43.3 50.8
Helium 2 4.0 0.133 0.102 49.9 65.1
Beryllium 4 9.01 0.268 0.199 55.8 75.2
Carbon 6 12.01 0.331 0.231 60.2 86.3
Nitrogen 7 14.01 0.379 0.265 61.4 87.8
Oxygen 8 16.0 0.420 0.292 63.2 91.0
Aluminium 13 26.98 0.634 0.421 70.6 106.4
Silicon 14 28.09 0.660 0.440 70.6 106.0
Iron 26 55.85 1.120 0.703 82.8 131.9
Copper 29 63.55 1.232 0.782 85.6 134.9
Tungsten 74 183.85 2.767 1.65 110.3 185
Lead 82 207.19 2.960 1.77 116.2 194
Uranium 92 238.03 3.378 1.98 117.0 199

would be λI · � {g/cm2}. The collision length λT is related to the total
cross section σtotal according to

λT =
A

NA · � · σtotal
. (1.124)

Since σtotal > σinel, it follows that λT < λI.
The interaction and collision lengths for various materials are given in

Table 1.5 [10–12].
Strictly speaking, the hadronic cross sections depend on the energy

and vary somewhat for different strongly interacting particles. For the
calculation of the interaction and collision lengths, however, the cross
sections σinel and σtotal have been assumed to be energy independent and
independent of the particle species (protons, pions, kaons, etc.).

For target materials with Z ≥ 6 the interaction and collision lengths,
respectively, are much larger than the radiation lengths X0 (compare
Table 1.4).

The definitions for λI and λT are not uniform in the literature.
The cross sections can be used to calculate the probabilities for inter-

actions in a simple manner. If σN is the nuclear-interaction cross section
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(i.e. per nucleon), the corresponding probability for an interaction per
g/cm2 is calculated to be

φ{g−1 cm2} = σN ·NA [mol−1]/g , (1.125)

where NA is Avogadro’s number. In the case that the atomic cross section
σA is given, it follows that

φ{g−1 cm2} = σA · NA

A
, (1.126)

where A is the atomic weight.

1.4 Drift and diffusion in gases‡

Electrons and ions, produced in an ionisation process, quickly lose their
energy by multiple collisions with atoms and molecules of a gas. They
approach a thermal energy distribution, corresponding to the temperature
of the gas.

Their average energy at room temperature is

ε =
3
2
kT = 40 meV , (1.127)

where k is the Boltzmann constant and T the temperature in Kelvin.
They follow a Maxwell–Boltzmann distribution of energies like

F (ε) = const · √
ε · e−ε/kT . (1.128)

The locally produced ionisation diffuses by multiple collisions correspond-
ing to a Gaussian distribution

dN
N

=
1√

4πDt
exp

(
− x2

4Dt

)
dx , (1.129)

where dN
N is the fraction of the charge which is found in the length element

dx at a distance x after a time t. D is the diffusion coefficient. For linear
or volume diffusion, respectively, one obtains

σx =
√

2Dt , (1.130)

σvol =
√

3 · σx =
√

6Dt . (1.131)

‡ Extensive literature to these processes is given in [2, 3, 12, 31, 32, 64–70].
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Table 1.6. Average mean free path λion , diffusion constant Dion and mobilities
μion of ions in some gases for standard pressure and temperature [32, 71]

Gas λion [cm] Dion [cm2/s] μion

[
cm/s
V/cm

]
H2 1.8 · 10−5 0.34 13.0
He 2.8 · 10−5 0.26 10.2
Ar 1.0 · 10−5 0.04 1.7
O2 1.0 · 10−5 0.06 2.2

The average mean free path in the diffusion process is

λ =
1

Nσ(ε)
, (1.132)

where σ(ε) is the energy-dependent collision cross section, and N = NA
A �

the number of molecules per unit volume. For noble gases one has N =
2.69 · 1019 molecules/cm3 at standard pressure and temperature.

If the charge carriers are exposed to an electric field, an ordered drift
along the field will be superimposed over the statistically disordered
diffusion. A drift velocity can be defined according to

�vdrift = μ(E) · �E · p0

p
, (1.133)

where

μ(E) – energy-dependent charge-carrier mobility,

�E – electric field strength, and

p/p0 – pressure normalised to standard pressure.

The statistically disordered transverse diffusion, however, is not influenced
by the electric field.

The drift of free charge carriers in an electric field requires, however,
that electrons and ions do not recombine and that they are also not
attached to atoms or molecules of the medium in which the drift proceeds.

Table 1.6 contains numerical values for the average mean free path, the
diffusion constant and the mobilities of ions [32, 71]. The mobility of ions
does not depend on the field strength. It varies inversely proportional to
the pressure, i.e. μ · p ≈ const [72, 73].

The corresponding quantity for electrons strongly depends on the
energy of the electrons and thereby on the field strength. The mobilities
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Fig. 1.20. Dependence of the root-mean-square deviation of an originally
localised electron cloud after a drift of 1 cm in various gases [32, 74].

of electrons in gases exceed those of ions by approximately three orders
of magnitude.

Figure 1.20 shows the root-mean-square deviation of an originally
localised electron cloud for a drift of 1 cm [32, 74]. The width of the
electron cloud σx =

√
2Dt per 1 cm drift varies significantly with the field

strength and shows characteristic dependences on the gas. For a gas mix-
ture of argon (75%) and isobutane (25%) values around σx ≈ 200 μm are
measured, which limit the spatial resolution of drift chambers. In prin-
ciple, one has to distinguish between the longitudinal diffusion in the
direction of the field and a transverse diffusion perpendicular to the elec-
tric field. The spatial resolution of drift chambers, however, is limited
primarily by the longitudinal diffusion.

In a simple theory [75] the electron drift velocity can be expressed by

�vdrift =
e

m
�E τ( �E, ε) , (1.134)

where �E is the field strength and τ the time between two collisions, which
in itself depends on �E. The collision cross section, and as a consequence
also τ , depends strongly on the electron energy ε and passes through
pronounced maxima and minima (Ramsauer effect). These phenomena
are caused by interference effects, if the electron wavelength λ = h/p
(h – Planck’s constant, p – electron momentum) approaches molecular
dimensions. Of course, the electron energy and electric field strength are
correlated. Figure 1.21 shows the Ramsauer cross section for electrons in
argon as a function of the electron energy [76–81].
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Fig. 1.21. Ramsauer cross section for electrons in argon as a function of the
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Fig. 1.22. Drift velocities of electrons in pure argon and in argon with minor
additions of nitrogen [32, 76, 82, 83].

Even small contaminations of a gas can drastically modify the drift
velocity (Fig. 1.22 [32, 76, 82, 83]).

Figure 1.23 shows the drift velocities for electrons in argon–methane
mixtures [32, 84–86] and Fig. 1.24 those in argon–isobutane mixtures [32,
85, 87–89].

As an approximate value for high field strengths in argon–isobutane
mixtures a typical value for the drift velocity of

vdrift = 5 cm/μs (1.135)

is observed. The dependence of the drift velocity on the field strength,
however, may vary considerably for different gases [69, 85, 90]. Under
comparable conditions the ions in a gas are slower by three orders of
magnitude compared to electrons.
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The drift velocity and, in general, the drift properties of electrons in
gases are strongly modified in the presence of a magnetic field. In addition
to the electric force, now the Lorentz force also acts on the charge carriers
and forces the charge carriers into circular or spiral orbits.

The equation of motion for the free charge carriers reads

m�̈x = q �E + q · �v × �B +m�A(t) , (1.136)

where m�A(t) is a time-dependent stochastic force, which has its origin
in collisions with gas molecules. If one assumes that the time average of
the product m · �A(t) can be represented by a velocity-proportional friction
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force −m�v/τ , where τ is the average time between two collisions, the drift
velocity can be derived from Eq. (1.136) [31] to be

�vdrift =
μ

1 + ω2τ2

(
�E +

�E × �B

B
ωτ +

( �E · �B) · �B
B2 ω2τ2

)
, (1.137)

if one assumes that for a constant electric field a drift with constant
velocity is approached, i.e., �̇vdrift = 0. In Eq. (1.137)

μ = e · τ/m is the mobility of the charge carriers, and
ω = e ·B/m is the cyclotron frequency (from mrω2 = evB).

In the presence of electric and magnetic fields the drift velocity has com-
ponents in the direction of �E, of �B, and perpendicular to �E and �B [91],
see also Eq. (1.137). If �E ⊥ �B , the drift velocity �vdrift along a line forming
an angle α with the electric field can be derived from Eq. (1.137) to be

|�vdrift| =
μE√

1 + ω2τ2
. (1.138)

The angle between the drift velocity �vdrift and �E (Lorentz angle) can be
calculated from Eq. (1.137) under the assumption of �E ⊥ �B,

tanα = ωτ ; (1.139)

if τ is taken from Eq. (1.134), it follows that

tanα = vdrift · B
E

. (1.140)

This result may also be derived if the ratio of the acting Lorentz force
e�v × �B (with �v ⊥ �B) to the electric force e �E is considered.

For E = 500 V/cm and a drift velocity in the electric field of vdrift =
3.5 cm/μs, a drift velocity in a combined electric and magnetic field (�E ⊥
�B) is obtained from Eq. (1.138) for B = 1.5 T on the basis of these simple
considerations to be

v(E = 500 V/cm, B = 1.5 T) = 2.4 cm/μs ; (1.141)

correspondingly the Lorentz angle is calculated from Eq. (1.140) to be

α = 46◦ , (1.142)

which is approximately consistent with the experimental findings and the
results of a more exact calculation (Fig. 1.25) [32, 87].
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Fig. 1.25. Dependence of the electron drift velocity �vdrift and the Lorentz angle
α on the magnetic field for low electric field strengths (500 V/cm) in a gas mixture
of argon (67.2%), isobutane (30.3%) and methylal (2.5%) [32, 87].

Small admixtures of electronegative gases (e.g. oxygen) considerably
modify the drift behaviour due to electron attachment. For a 1% fraction
of oxygen in argon at a drift field of 1 kV/cm the average mean free
path of electrons for attachment is of the order 5 cm. Small admixtures of
electronegative gases will reduce the charge signal and in case of strong
electronegative gases (such as chlorine) operation of a drift chamber may
be even impossible.

Because of the high density the effect of impurities is even more pro-
nounced for liquefied gases. For liquid-noble-gas chambers the oxygen
concentration must stay below the ppm (≡ 10−6) level. ‘Warm’ liquids,
like tetramethylsilane (TMS) even require to reduce the concentration of
electronegative impurities to below ppb (≡ 10−9).

1.5 Problems

1.1 The range of a 100 keV electron in water is about 200 μm. Estimate
its stopping time.

1.2 The energy loss of TeV muons in rock can be parametrised by

−dE
dx

= a+ bE ,

where a stands for a parametrisation of the ionisation loss and
the b term includes bremsstrahlung, direct electron-pair pro-
duction and nuclear interactions (a ≈ 2 MeV/(g/cm2), b =
4.4 · 10−6 (g/cm2)−1) Estimate the range of a 1 TeV muon in rock.
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1.3 Monoenergetic electrons of 500 keV are stopped in a silicon counter.
Work out the energy resolution of the semiconductor detector if a
Fano factor of 0.1 at 77 K is assumed.

1.4 For non-relativistic particles of charge z the Bethe–Bloch formula
can be approximated by

−dEkin

dx
= a

z2

Ekin
ln(bEkin) ,

where a and b are material-dependent constants (different from
those in Problem 1.2). Work out the energy–range relation if
ln(bEkin) can be approximated by (bEkin)1/4.

1.5 In Compton telescopes for astronomy or medical imaging one fre-
quently needs the relation between the scattering angle of the
electron and that of the photon. Work out this relation from
momentum conservation in the scattering process.

1.6 The ionisation trail of charged particles in a gaseous detector is
mostly produced by low-energy electrons. Occasionally, a larger
amount of energy can be transferred to electrons (δ rays, knock-on
electrons). Derive the maximum energy that a 100 GeV muon can
transfer to a free electron at rest in a μe collision.

1.7 The production of δ rays can be described by the Bethe–Bloch for-
mula. To good approximation the probability for δ-ray production
is given by

φ(E) dE = K
1
β2

Z

A
· x

E2 dE ,

where

K = 0.154 MeV/(g/cm2),

Z,A = atomic number and mass of the target,

x = absorber thickness in g/cm2.

Work out the probability that a 10 GeV muon produces a δ ray of
more than E0 = 10 MeV in an 1 cm argon layer (gas at standard
room temperature and pressure).

1.8 Relativistic particles suffer an approximately constant ionisation
energy loss of about 2 MeV/(g/cm2). Work out the depth–intensity
relation of cosmic-ray muons in rock and estimate the intensity
variation if a cavity of height Δh = 1 m at a depth of 100 m were
in the muon beam.
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Operation, ETH-Zürich-Report (1983)

[86] W.N. English & G.C. Hanna, Grid Ionization Chamber Measurement of
Electron Drift Velocities in Gas Mixtures, Canad. J. Phys. 31 (1953) 768–97

[87] A. Breskin et al., Recent Observations and Measurements with High-
Accuracy Drift Chambers, Nucl. Instr. Meth. 124 (1975) 189–214

[88] A. Breskin et al., Further Results on the Operation of High-Accuracy Drift
Chambers, Nucl. Instr. Meth. 119 (1974) 9–28

[89] G. Charpak & F. Sauli, High-Accuracy Drift Chambers and Their Use in
Strong Magnetic Fields, Nucl. Instr. Meth. 108 (1973) 413–26

[90] J. Va’vra et al., Measurement of Electron Drift Parameters for Helium and
CF4-Based Gases, Nucl. Instr. Meth. 324 (1993) 113–26

[91] T. Kunst et al., Precision Measurements of Magnetic Deflection Angles and
Drift Velocities in Crossed Electric and Magnetic Fields, Nucl. Instr. Meth.
A423 (1993) 127–40

https://doi.org/10.1017/9781009401531.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401531.004



