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Extensions of a semilattice by an

inverse semigroup

D.G. Green

The structure of inverse semigroup extensions of one inverse

semigroup R "by any other is analyzed in the case where R is

a semilattice. Both a representation and method of construction

are given. A brief preliminary examination is made of a certain

class of congruences, on inverse semigroups, which are intimately

related to such extensions.

Introduction

A substantial part of group theory relates to the concept of group

extensions. Since semigroup theory puts much of group theory into a more

general context, it is of some interest to try to generalize this concept

so as to deal with semigroup and, in particular, inverse semigroup

extensions.

By an "inverse semigroup extension" we shall here understand the

following: if R, S , and T are inverse semigroups, then S will be

called an "(inverse semigroup) extension of R by T" if and only if there

is at least one homomorphism / (say) of S onto T for which

ECO/"1 5 R (where E(T) denotes the set of idempotents of T ).

Occasionally we may assume, for convenience, that R c S .

Much yet remains to be done towards developing an adequate theory of

inverse semigroup extensions. Coudron [3] and D'Alarcao [4] have
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completely described one special case - idempotent-separating extensions -

wherein the /' above, when restricted to E(S) , is injective. In

addition, a lot of recent work has centred around describing the structure

of particular classes of inverse semigroups. In a number of cases, the

inverse semigroup involved has been treated effectively as an extension of

its semilattice of idempotents by some other inverse semigroup (usually a

group). The characterization of free inverse semigroups, by Scheiblich [7J

and others, is a notable example of this. Generalizing such character-

izations, the present account describes another special case of inverse

semigroup extensions - that in which R in the definition is a semi-

lattice .

In what follows, "S" denotes the natural partial order on an inverse

semigroup, "ej' represents xx (the left identity of x ), and for a

congruence p , "xp" stands for the p-class containing x while "v"

denotes the natural map of S onto S/p . All other definitions and

notation follow the conventions of [/] and [2].

Idempotent-determi ned congruences

Let p be a congruence on an inverse semigroup S . By i t s "kernel"

(kerp) we shal l mean the union of i t s kernel normal system (see [-2] page

60).

DEFINITION. A congruence p on an inverse semigroup S wil l be

referred to as "idempotent-determined" i f and only i f kerp = E(S) .

Such congruences are central to our discussion. If p i s idempotent-

determined on S , then V has the properties required by the definition

to make S an extension of E(-S) by S/p . Conversely, given an

extension S of a semilat t ice E by an inverse semigroup T , then i f

f : $> -+ T has the properties required by the definit ion, the congruence

ff~ i s idempotent-determined. We s ta r t our account, therefore, by

deriving some pert inent resu l t s about such congruences.

PROPOSITION 1 . Let S be an inverse semigroup. Every idempotent-

determined congruence on S is contained in the minimum group congruence

and the set of idempotent-determined congruences on S forms a principal

ideal in the lattice of all congruences on S .
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Proof. The f i r s t assertion is immediate, as the kernel normal system

of the minimum group congruence on -S consists of just one c lass , and th is

contains E(S) .

The kernel of the minimum congruence on S is necessarily E(S) , so

there is always at least one idempotent-determined congruence on S . Let

T denote the least congruence containing a l l idempotent-determined

congruences (the t rans i t ive closure of thei r union). Suppose xie , where

x £ S and e t E(S) . Then there are sequences pQ, . . . , p of

idempotent-determined congruences and a;,, ..., x of elements of S such

that e p ^ , a^p^g , . . . , x^p^x . As kerp^ = E(S) for every i 5 n ,

each x. , and by induction x also, must belong to E(S) . Thus T is

idempotent-determined and, by i t s defini t ion, must be maximum with th is

property. Since the set of idempotent-determined congruences on S

consists of just those congruences contained in T , i t forms a principal

ideal in the l a t t i c e of a l l congruences on S .

Notation. The maximum idempotent-determined congruence on S wil l be

denoted by x(S) .

LEMMA 1. Let p be a congruence on an inverse semigroup S . Then

p is idempotent-determined if and only if no two distinct p-equivalent

elements of S have the same left identity.

Proof. Suppose that p i s idempotent-determined. From the

definition of a congruence in terms of i t s kernel normal system ([2] page

60) and since kerp = E(S) , we see that p c {{a, b) : ab'1 S E(S)} .

Then for any p-equivalent elements x and y , as the i r inverses are

also p-equivalent, both xy and x y belong to E(S) . If further,

e = e , i t follows that x = yy x = yx y . Then, sincex y

yx~ [= xy1) £ E(S) , we have x £ y . Likewise i t follows y S x , and

hence x = y .

Conversely, i f p i s not idempotent-determined, then there exist an

idempotent e and some x $ E(S) with xpe . But i t follows that e pe ,

whence x and e are dis t inct p-equivalent elements with the same le f t
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identity.

The next result is essential to the constructions which follow. By an

"ideal" in a semilattice E we mean any subset I of E such that i 6 I

and x £ i imply x € I .

LEMMA 2. Lei p be an idempotent-determined congruence on an

inverse semigroup S and let x belong to S . Then e p is a subsemi-
X

lattice of E(S) and xp is order-isomorphic to an ideal of e p .

Proof. The first assertion follows from the fact that for any

idempotents e and f , ep = fp = e p implies e/p = e p .

To prove the second assertion, define E = \e : sv = t, s £ S} for

each t € S/p . For any t (. S/p , if there exist x and f in S such

that 0 £ E, and / 5 e , with /v = e. , then / = e. andx c x c /x

(/x)v = t , giving /" € E . So for every £ € S/p , the set E is an

• * -, • - 1

ideal in e.v

-1
Now define , : E, •+ tv~ , for each t t S/p , by e i>, = x for~c v xv

every e € E, . That <K is well-defined follows from Lemma 1 and the
X u t

fact that E. is contained in a single congruence class. That i t is one-

to-one is immediate from i t s definition and that i t is onto tv follows

from the definition of E .

Suppose xv = yv = t and x 5 y . Then x = e^j , giving

xij>. = e e £ e = y\\> . Conversely, if e 5 / in E then by checkingv x y y v v

in the definition of ty. , we see that eip. = e[fty ) . So eiK £ /ty . We

have now established that each î  is an order-isomorphism and the second
t

assertion follows.

Representation of extensions

In this section we shall take S to be an inverse semigroup extension

of a semilattice E (= E(S)J by an inverse semigroup T , with if
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denoting a homomorphism of S onto T of the type required by the

definition of extension. We now construct a representation of S .

With the subsets E, , t € T , of E as given in the previous

section define (where T replaces S/p in the obvious way)

S' = {le, t) : t t T, e Z Et} .

Further, for each element (e, t) of S' , define a map 4>(e, t) : E -»• E

t>y

Me, t) = [e^t)f[eii^~
X ,

fo r e v e r y / € E (with 1/1, as b e f o r e ) . F i n a l l y , d e f i n e an o p e r a t i o n °

on S ' by

( e , t ) o ( / , u) = (/((,(e , t), tu) , f o r a l l ( e , t ) , ( / , u) i n S ' .

LEMMA 3 . 27ie maps <f>(e, t ) , ( e , t ) € S 1 , and ° a r e well-defined

and eaeh <j)(e, t ) i s a homomorphism.

Proof. I t follows from the definition that for any / € E , f4>(e, t)

i s idempotent in S , so each <Ke, t) is well-defined.

Suppose / 6 E , u € T . Then for any (e , t ) t S1 ,

fi>(e, t) = (e^.J [fty J (fty J [ety J . But fl6^*] (/^ Jj<|> = tu , so

f<i>(e, t) 6 E and th i s shows that ° is well-defined.

Finally, for any (e, t) in S' , any / , ff in E ,

= Me, t)g<$>(e, t) .

So <i>(e, t) is a homomorphism.

The pair (-S', o) i s thus a groupoid and we can at once use i t to

represent S in terms of E and T .

THEOREM 1. With S and S' as described above:

(i) S is isomorphic to S' ;
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(ii) E(S ' ) = { ( e , f) : f i E(T) and e 6 E } .

Proof. (i) Define 6 : S -»• S ' by x6 = (e , X(f>] , for every

x (. S . By d e f i n i t i o n of t h e E , each e belongs t o E , , so 8 i s a

t x xq>

w e l l - d e f i n e d map. I t i s onto S' s i nce for any ( e , t) E S ' ,

[ety,) 9 = (e, t) . I t i s one-to-one s ince i f xQ = yQ , then
[e , xcj>) = (e , ycf>] , g iv ing e = e and x<f> = i/<() . Then, as (fx))"1 i sx y x y

idempotent-determined, x = y . Finally, 6 is a homomorphism since

x8 o yB = [ey§[ex, x<f>),

= (xy)B , for any x and j in S .

For any ( e , x) € E(S') , we have [e${e, x), xx) = ( e , x) ,

whence x € E(T) . Conversely , / 6 E(T) and e € E . g ives

e<j)(e, f)=e ( s ince e^^, must be idempotentj , whereupon (e, f) i s

idempotent i n S ' .

Construction of extensions

We shall now derive a method for constructing extensions of a given

semilattice by any suitable inverse semigroup. To ensure that all of the

extensions possible can be produced this way, it suffices to show that the

construction in the previous section can be obtained by our method. To do

this we shall first obtain some properties of the above representation.

These will state necessary conditions that our construction must satisfy if

it is to provide extensions. It will turn out that they also give

s uffi c i ent c ondi ti ons.

LEMMA 4. In the representation, the sets E, , t € T , and maps $

and <j>(e, t), (e, t) € S' , satisfy:

(1) each E is an ideal in (e.)<f> ;

(2) if e 6 E(T) , then E = ef1 ;

(3) for each t € T , the sets E, and E [u = t ) are
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isomorphic under a map *. : E, •+ E , such that

* = [*t)~ [e*+ wHl be denoted by e* whenever the

t is understood);

(U) if g € E(T) , tten e<t>(/. g) = ef , for each e Z E(S)

every f € E ;

(5) / o r a l l t € T and e € E, j
~c

(6) / o r any (e, t), ( / , u) in S1 ,

H e , t)$(f, u ) = cj>(e<j>(/, u ) , u t ) .

Proof. ( l) Proven in Lemma 2.

(2) If e € E(T) , then Eg = {e^ : x<i> = e] = e<fX , as M" 1 is

idempptent-determined.

(3) Since 4> is a homomorphism, i i - 4 ! is a bijection of t(j)

onto t'1^'1 ; a lso , as x < y i f and only i f i " S i / " , th is map is an

order-isomorphism. So, from Lemma 2, we have the order-isomorphisms

t = ** = * * = E
u •

The result ing isomorphism is the mapping * : ax~ ^-+ x x , for x(j> = t

which clearly has the desired propert ies .

(h) If g € E(T) , then necessarily f$ = g and hence /ty = / ,

for any / f E . So e<K/, #) = / « / = e / , for a l l e e E .

(5) By definit ion,

ei){e\ t"1) = [e^i)e[e^i)~
1, [u = t"1) ,

= f e ^ J ' ^ f e i l / J , by the proof of (3 ) ,

= e* .

(6) For any g t E , both sides of the equation give (xy)g{xy)~ ,
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where x = /ty and y = etji .

REMARK. Property ( l ) i s in fact implied by the right side of the

equation in (6) , which requires that e$(f, u) 6 E . However, we retain

( l ) as a condition, for completeness.

The definition of inverse semigroup extensions puts res t r i c t ions upon

the class of inverse semigroups by which we can extend a given inverse

semigroup. In accordance with t h i s , l e t E be a semilattice and T be

any inverse semigroup such that there is a homomorphism <j> : E -*• T which

i s onto E(T) . Now, t rea t ing the resul t s in Lemma h as conditions, we

can form a set S' jus t as before, by selecting for the sets E any

subsets of E satisfying conditions ( l) to (3). If, further, we can

choose, for each (e , t) € S' , endomorphisms 4>(e, t) : £ - » • £ satisfying

conditions {h) to (6) , then an operation o can be defined on S' exactly

as before. The following properties now characterize this construction:

THEOREM 2 . With E, T, <J> and S' as above:

( a ) (S1, °) is an inverse semigroup;

(b) E(S') = He, e<|>) : e € E} ;

(c) T is a homomorphic image of S' under

a : (e, x) •—* x ;

(d) S' is an inverse semigroup extension of E by T •

(e) the maximum idempotent-determined congruences on S' and

T are related by

T ( S ' ) =

Proof. (a) Condition (6) implies that E 4(e, t) c E , for every
It VU

u € T and (e , t) € S' , hence ensuring that o i s well-defined. The
associa t iv i ty of o also follows from condition (6) by application in the

defini t ion of ° . Conditions (3) and (5) ensure that [e*, t"1) wil l be

an inverse of (e , t) , for any (e, t) 6 S

From the definit ion of ° i t immediately follows that i f (e , x) and

(/» h) say, are idempotent in 5 ' , then x and y must be idempotent in
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T . But then, from condition (h), it follows that

(e, x) o (/, y) = (ef, xy) = (fe, yx) = (/, y) ° (e, x) .

So idempotents commute in S' and this completes the proof that S' is an

inverse semigroup.

(£>) Condition (2) ensures that each (e, e4>) belongs to S' . That

it is idempotent follows from condition (h) and the fact that <j> is a

homomorphism.

Conversely, we saw above that (e, x) € E(S') implies that x is

idempotent in T . Since e € e <j>~ , it follows that e<(> = x . Note that

this result makes E{S ') isomorphic to E under (e, e<j>) i—• e .

(c) Since, under multiplication in S' , the second components of

elements of S1 combine by multiplication in T , a is immediately a

homomorphism. That it is onto T follows from the construction of S' .

id) The kernel of aa is E(S') which, from (b) above, is

isomorphic to t . So E(T)a = E and this, together with (c), gives

the result.

(e) For any elements (e, t) and (/, u) of 5' ,

(e, t) (a-r(T)cf1) (/, w) if and only if t\{T)u . Thus, since T(T) is

idempotent-determined, and (e, f) is idempotent in S' if and only if f

is in T , the congruence ax(T)a is idempotent-determined also.

Given T(S') we can define a congruence T on T by sxt if and

only if there exist (e, s) and (/", t) in S' with (e, S)T(S')(/, t) .

As kerx(S') = {(e, e<j)) : e £ E} it follows that kerT = E(T) . So

T c T(T) . Then (e, S)T(3')(/, *) implies (e, s)cn{f, t)a , whence

(e> a)aT(T)(/, t)a . This gives T(S') C atlTla" and the result follows.

Comments and examples

(1) In our construction of extensions, if both E and T are

semilattices, then (f> must be onto T and it follows, from result (b ) of

Theorem 2, that S' is isomorphic to E .

(2) In the construction, if § is an embedding of E into T , then
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E must be isomorphic to E(T) , making S' isomorphic to T .

(3) If T is a group, then the inverse semigroup E x T , with usual

product, is an extension of E by T . This follows via the construction

of Theorem 2, taking E. = E , and mappings f<t>(e, t) = ef and *, = u ,

for each t € T -and e £ E. .

(4) Any F-inverse semigroup (see [5]) is an extension of its semi-

lattice of idempotents by its maximum group homomorphic image. To show

this, a construction for F-inverse semigroups can be obtained by

specifying extra conditions in our construction above. The following extra

conditions suffice to meet the requirements given by McFadden and 0'Carrol I

in [5]:

(a) T is a group;

(b) each E is a principal ideal of E ;

(c) for every (e, t) € S' , <f>(e, t) = <(>(l., t) (called <t>.

in [5]), where 1. is maximum in E, ;

(d) l(j>(l,, t] = 1 , where 1 is maximum in E .

(5) The free inverse semigroup ly on a set X is an extension of

its semilattice of idempotents by 6^ - the free group on X . This is

shown by checking that the representation of 1^ (as given in [6] say,

which is readily adaptable to our notation) satisfies the conditions we

have given.
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