# SIMULTANEOUS DIOPHANTINE APPROXIMATIONS AND HERMITE'S METHOD 

Alain Durand

$$
\begin{aligned}
& \text { In this paper we generalize a result of Mahler on rational } \\
& \text { approximations of the exponential function at rational points by } \\
& \text { proving the following theorem: let } n \in \mathbb{N}^{*} \text { and } \alpha_{1}, \ldots, \alpha_{n} \text { be } \\
& \text { distinct non-zero rational numbers; there exists a constant } \\
& c=c\left(n, \alpha_{1}, \ldots, \alpha_{n}\right)>0 \text { such that } \\
& \qquad q^{n+(c / \log \log q)}\left|q_{0}+q_{1} e^{\alpha_{1}}+\ldots+q_{n} e^{\alpha_{n}}\right| \geq 1 \\
& \text { for every non-zero integer point }\left(q_{0}, q_{1}, \ldots, q_{n}\right) \text { and } \\
& q=\max \left\{\left|q_{1}\right|, \ldots,\left|q_{n}\right|, 3\right\} .
\end{aligned}
$$

1. 

In 1873, Hermite gave his famous proof of the transcendence of $e$. Since then many improvements were introduced into Hermite's method which led to the deep results of Siegel. (For this development we refer to the survey paper by Fel'dman and Shidlovskii [5] and to the appendix of Mahler's book [10].) This method enabled Mahler [8] (see also [4]) to obtain a measure of irrationality of $e$. In fact, Mahler dealt with the problem of finding an effective lower bound for $\left|e^{\alpha}-\beta\right|$ with $\alpha$ and $\beta$ rational numbers and thus determining explicitly the constants which appeared in the earlier results of Mahler [6], [7] and Popken [11]. In

Received 9 January 1980.
this paper, we apply the same method to the more general problem of determining an effective lower bound for $\left|\beta_{0}+\beta_{1} e^{\alpha_{1}}+\ldots+\beta_{n} e^{\alpha} n\right|$ where $\beta_{0}, \beta_{1}, \ldots, \beta_{n}$ and $\alpha_{1}^{\prime}, \ldots, \alpha_{n}$ are rational numbers. More precisely, we obtain

THEOREM. Let $n \in N^{*}$ and $\alpha_{1}, \ldots, \alpha_{n}$ be distinct non-zero rational numbers. There exists a constant (easily computable) $c=c\left(n, \alpha_{1}, \ldots, \alpha_{n}\right)>0$ such that

$$
q^{n+(c / \log \log q)}\left|q_{0}+q_{1} e^{\alpha_{1}}+\ldots+q_{n} e^{\alpha_{n}}\right| \geq 1
$$

for every non-zero integer point $\left(q_{0}, q_{1}, \ldots, q_{n}\right)$ and $q=\max \left\{\left|q_{1}\right|, \ldots,\left|q_{n}\right|, 3\right\}$.

By means of a transference principle (see for example Cassels [3]), it is easy to derive from this theorem the following result:

COROLLARY. Let $n \in \mathbb{N}^{*}$ and $\alpha_{1}, \ldots, \alpha_{n}$ be distinct non-zero rational numbers. There exists a constant. $c_{1}=c_{1}\left(n, \alpha_{1}, \ldots, \alpha_{n}\right)>0$ such that

$$
\max _{1 \leq j \leq n}\left\|q e^{\alpha j_{1}}\right\| \geq q^{-(1 / n)-\left(c_{1} / \log \log q\right)}
$$

for any integer $q \geq 3$. (Here $\|x\|^{i}$ denotes the distance from a real number $x$ to the nearest integer.)

REMARK. This result is to be compared with the following theorem of Baker ([1] and [2], Theorem 10.1): let $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ be distinct nonzero rational numbers; $x$ there exist two constants $c=c\left(n,-\alpha_{0}, \ldots, \alpha_{n}\right) \geqslant 0$ and $\delta=\delta\left(n, \alpha_{0}, \ldots, \alpha_{n}\right)>0$ such that for any non-zero integer point $\left(q_{0}, q_{1}, \ldots, q_{n}\right)$ with

$$
q=\max _{0 \leq j \leq n}\left(\left|q_{j}\right|\right) \geq c
$$

one has

$$
q_{0}^{*} q_{1}^{*} \ldots q_{n}^{*}\left|q_{0} e^{\alpha_{0}}+q_{1} e^{\alpha_{1}}+\ldots+q_{n} e^{\alpha_{n}}\right| \geq q^{1-\left(\delta /(\log \log q)^{\frac{1}{2}}\right)}
$$

where $q_{j}^{*}=\max \left(l,\left|q_{j}\right|\right), j=0, l, \ldots, n$.
Baker dealt with Siegel's method. (This method was likewise used by Mahler [9] for determining explicitly the constants $c$ and $\delta$.) This enabled him to obtain a lower bound which depends on the size of all the coefficients of the linear form, but with the exponent $(\log \log q)^{-\frac{3}{2}}$ in place of $(\log \log q)^{-1}$. It remains to find a method which succeeds in combining the two results.

## 2. Proof of the theorem

1. Denote by $v \geq 1$ an integer such that $v \alpha_{j}=u_{i} \in \mathbb{Z}$ for $j=1, \ldots, n$ and put $u_{0}=0$. Let $q_{0}, q_{1}, \ldots, q_{n}$ be integers, not all zero, and $q=\max \left\{\left|q_{1}\right|, \ldots,\left|q_{n}\right|, 3\right\}$. It will be shown that

$$
q^{n+(c / \log \log q)}\left|q_{0} e^{u_{0} / v}+q_{1} e^{u_{1} / v}+\ldots+q_{n} e^{u_{n} / v}\right| \geq 1
$$

where $c>0$ denotes a constant that does not depend on $q$.
Put

$$
\theta=\sum_{j=0}^{n} q_{j} e^{u_{j} / v}
$$

Let $N \in \mathbb{N}^{*}$. We define polynomials $f_{j}(x, z) \quad(0 \leq j \leq n), \quad P_{i j}(z)$ $(0 \leq i, j \leq n, \quad i \neq j)$ and $Q_{j}(z) \quad(0 \leq j \leq n) \quad$ by
$f_{j}(x, z)=\frac{v^{1-N}}{(N-1)!}\left(v_{x-u_{j}} z\right)^{N-1} \prod_{k=0}^{n}\left(v x-u_{k} z\right)^{N}$,
$P_{i j}(z)=\sum_{m=N}^{(n+1) N-1} \frac{m!}{(N-1)!} v^{m-N+1}$
$\underset{\substack{ \\v_{0}+\ldots+v_{n}=m}}{\left.\sum_{n}\binom{N-1}{v_{j}}\left(u_{i}-u_{j}\right)^{N-1-v_{j}} \prod_{\substack{k=0 \\ k \neq i, j}}^{n}\binom{N}{v_{k}}\left(u_{i}-u_{k}\right)^{N-v_{k}}\right]_{2}^{(n+1) N-m-1}, ~}$
$Q_{j}(z)=\sum_{m=N-1}^{(n+1) N-1} \frac{m!}{(N-1)!} v^{m-N+1}$

Furthermore put

$$
T_{i j}(z)=\left(1-\delta_{i j}\right) P_{i j}(z)+\delta_{i j} Q_{j}(z), \quad 0 \leq i, j \leq n,
$$

where $\delta_{i j}=0$ for $i \neq j$ and $\delta_{j j}=1$.
The coefficients of $T_{i j}$ are rational integers and $T_{i j}$ is of degree exactly $n N-1$ if $i \neq j$ and of degree exactly $n N$ if $i=j$.

It follows from the definition of $T_{i j}$ that

$$
\sum_{m \geq 0} \frac{\partial^{m}}{\partial x^{m}} f_{j}\left(\left(u_{i} / v\right) z, z\right)=T_{i j}(z), \quad 0 \leq i, j \leq n
$$

Then, by Hermite's identity, we obtain for $z \in R$ and $0 \leq i, j \leq n$,
(1) $e^{u_{i} z / v} T_{0 j}(z)-T_{i j}(z)$
where $\tilde{f}_{j}$ is the polynomial defined by

$$
\tilde{f}_{j}(t)=\frac{v^{1-N}}{(N-1)!}\left(v t-u_{j}\right)^{N-1} \prod_{\substack{k=0 \\ k \neq j}}^{n}\left(v t-u_{k}\right)^{N} .
$$

Therefore, the determinant

$$
\Delta(z)=\operatorname{det}_{\sigma_{i}, j \leq n}\left(T_{i j}(z)\right)
$$

is a polynomial in $z$ of the exact degree $n(n+1) N$ which has at $z=0$
a zero of order $n(n+1) N$. Then $\Delta(z) \neq 0$ if $z \neq 0$ and thus

$$
\Delta(1) \neq 0 .
$$

Now, we easily obtain from (1),
$\theta T_{0 j}(1)-\sum_{i=0}^{n} q_{i} T_{i j}(1)$

$$
=\sum_{i=0}^{n} q_{i} e^{u_{i} / v} \int_{0}^{u_{i} / v} e^{-t_{f}}(t, 1) d t, j=0,1, \ldots, n
$$

Since $\Delta(1) \neq 0$, at least one of the integers

$$
\sum_{i=0}^{n} q_{i}^{T}{ }_{i j}(1), j=0, \ldots, n
$$

is distinct from zero. It follows that
(2)

$$
1 \leq|\theta|\left|T_{0 j_{0}}(1)\right|+\left|\sum_{i=0}^{n} q_{i} e^{u_{i} / v} \int_{0}^{u_{i} / v} e^{-t_{f_{j}}}(t, 1) d t\right|
$$

for a suitable $j_{0} \in\{0,1, \ldots, n\}$.

$$
\begin{aligned}
& \text { 2. Let } u=\max _{1 \leq j \leq n}\left\{\left|u_{j}\right|\right\} \text {. For } j \neq 0 \text { we have } \\
& \left|T_{0 j}(1)\right| \leq v \cdot \sum_{m=N}^{(n+1) N-1} \frac{m!}{(N-1)!}\binom{n N-1}{m-N} v^{m-N} u^{(n+1) N-1-m}<\frac{[(n+1) N]!}{N!}(u+v)^{n N}, \\
& \text { and, for } j=0,
\end{aligned}
$$

$$
\left|T_{00}(1)\right| \leq \sum_{m=N-1}^{(n+1) N-1} \frac{m!}{(N-1)!}\binom{n N}{m-N+1} v^{m-N+1} u{ }^{(n+1) N-m-1}<\frac{[(n+1) N]!}{N!}(u+v)^{n N}
$$

Next, for $j=0,1, \ldots, n$,

$$
\sup _{|x| \leq u / v}\left|f_{j}(x ; 1)\right| \leq \frac{v^{1-N}}{(N-1)!}(2 u)^{(n+1) N-1}<\frac{(2 u)^{(n+1) N-1}}{(N-1)!}
$$

Then, by (2), we can write

$$
\begin{equation*}
1 \leq|\theta| \frac{[(n+1) N]!}{N!}(u+v)^{n N}+q n e^{u} \frac{(3 u)^{(n+1) N-1}}{(N-1)!} \tag{3}
\end{equation*}
$$

3. Denote by $m_{0}$ the smallest integer which satisfies

$$
\begin{equation*}
q n e^{u}(2 u)^{(n+1)\left(m_{0}+1\right)} \leq m_{0}!\text {. } \tag{4}
\end{equation*}
$$

From the definition of $m_{0}$, it follows that

$$
\begin{equation*}
\left(m_{0}-1\right)!<q n e^{u}(2 u)^{(n+1) m_{0}} \tag{5}
\end{equation*}
$$

Since

$$
(N p)!\leq N^{N p}(p!)^{N} \text { for } p \geq 1 \text { and } N \geq 1 \text {, }
$$

we have by (4), (5) and (3), with $N=m_{0}+1$,

$$
\begin{aligned}
1 & \leq 2|\theta|(n+1)^{(n+1)\left(m_{0}+1\right)}\left[\left(m_{0}+1\right)!\right]^{n}(u+v)^{n\left(m_{0}+1\right)} \\
& \leq 2|\theta|(n+1)^{(n+1)\left(m_{0}+1\right)}\left[\left(m_{0}+1\right) m_{0}\right]^{n} \cdot q^{n} n^{n} e^{n u}(2 u)^{n(n+1) m_{0}} \cdot(u+v)^{n\left(m_{0}+1\right)} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
I \leq|\theta| q^{n^{m_{1}}} c_{1}^{m_{0}} \tag{6}
\end{equation*}
$$

with some constant $c_{1}>0$ which does not depend on $q$ and $m_{0}$. We now require an upper estimate for $m_{0}$. By (5) we have

$$
m_{0}^{m_{0}+\frac{1}{2}} e^{-m_{0}}<m_{0}!<q n e^{u}(2 u)^{(n+1) m_{0}} m_{0}
$$

and thus

$$
m_{0}^{m_{0}}<q c_{2}^{m_{0}}
$$

with

$$
c_{2}=n e^{u+1}(2 u)^{n+2}
$$

From this it follows that

$$
m_{0} \leq c_{2} \frac{\log q}{\log \log q}
$$

provided $\log \log q>0$; that is, $q \geq 3$.
Finally we obtain, by (6),

$$
1 \leq|\theta| q^{n+(c / \log \log q)}
$$

with $c=c_{2} \log c_{1}$.
REMARK. The estimates occurring in the above proof are mostly quite trivial and it is clear that the constant $c$ can be greatly improved.

## References

[1] A. Baker, "On some Diophantine inequalities involving the exponential function", Canad. J. Math. 17 (1965), 616-626.
[2] Alan Baker, Transcendental number theory (Cambridge University Press, Cambridge, 1975).
[3] J.W.S. Cassels, An introduction to Diophantine approximation (Cambridge Tracts in Mathematics and Mathematical Physics, 45. Cambridge University Press, Cambridge, 1957).
[4] Alain Durand, "Note on rational approximations of the exponential function at rational points", Bull. Austral. Math. Soc. 14 (1976), 449-455.
[5] H.H. Фельдман, А.Б. Шндловсний [N.I. Fel'dman and A.B. Shidlovskii], "Раэвитие н соөременное состоянне теорин трансцендентных чисел" [The development and present state of the theory of transcendental numbers], Uspehi Mat. Nauk 22 (1967), No. 3, 3-81; Russian Math. Surveys 22 (1967), No. 3, 1-79.
[6] Kurt Mahler, "Zur Approximation der Exponentialfunktion und des Logarithmus. I', J. reine angew. Math. 166 (1932), 118-136.
[7] Kurt Mahler, "Zur Approximation der Exponentialfunktion und des Logarithmus. II", J. reine angew. Math. 166 (1932), 137-150.
[8] Kurt Mahler, "On rational approximations of the exponential function at rational points", Bull. Austral. Math. Soc. 10 (1974), 325-335.
[9] Kurt Mahler, "On a paper by A. Baker on the approximation of rational powers of $e^{\prime \prime}$, Acta Arith. 27 (1975), 61-87.
[10] Kurt Mahler, Lectures on transcendental numbers (Lecture Notes in Mathematics, 546. Springer-Verlag, Berlin, Heidelberg, New York, 1976).
[11] J. Popken, "Zur Transzendenz von $e$ ", Math. Z. 29 (1929), 525-541.

UER des Sciences de Limoges,
Départment de Mathématiques,
123 rue Albert Thomas,
87100 Limoges,
France.

