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Abstract. Two topics concerning A-type stars are discussed: starspots associated with the
strong magnetic fields and the prospects for asteroseismology. Considering starspots as analogous
to sunspots is misleading. The photosphere of starspots of a magnetic A-star is higher than
the normal photosphere, contrary to sunspots. As for the prospects of asteroseismology, it is
demonstrated how well (or poorly) we can probe the internal structure of the distant stars using
a limited number of p-mode frequencies. Although the detectable eigenmodes must be limited
to be � � 4, if the observational error is of the order of 10−3, inversion has still some hope.

Keywords. Stars: chemically peculiar, stars: interiors, stars: oscillations, stars: spots

1. Is the level of starspots of Ap stars lower than its surroundings?
1.1. Introduction: Gough’s argument

Many Ap stars are known to have strong magnetic fields, which seem to be, roughly
speaking, approximately dipole fields. In most cases the magnetic field strength is cycli-
cally varying, and such variation is thought to be caused by the rotation of the star whose
magnetic axis is inclined to the rotation axis. The photometric changes are dependent on
the color band used in the observations. Typically the star is darkest in the V -band at the
phase of magnetic maximum. The correlation between the darkness and the magnetism
reminds us of sunspots. We believe that the Ap stars have global dipole-like magnetic
fields, of the order of several hundreds Gauss or more, associated with giant starspots,
although the mechanism generating such starspots and the nature of their structure have
not been established.

The geometrical level of sunspots is slightly lower than the surrounding photospheric
level. This can be seen when we see sunspots near the limb. One might think that the
situation is similar for the starspots of Ap stars. Considering starspots as the analogs of
sunspots is, however, misleading. We need to pay attention to the differences between
starspots and sunspots. Gough (2003) pointed out that the starspots of Ap stars must be
higher than their surroundings. Starspots are not transient like sunspots and their size is
very large, occupying perhaps 20% or more of a hemisphere. With this in mind, he and his
colleagues modelled the equilibrium envelope in the magnetic polar regions by suppressing
convection and using a normal envelope in the magnetic equatorial zone (Balmforth
et al. 2001). The outcome of their calculation was that the starspots’ photosphere is
only slightly cooler than the normal photosphere and that the starspots’ photosphere
is slightly higher than the normal photosphere. Since this conclusion might be contrary
to what one might expect, we carry out a ‘Gedankenexperiment’ to see if the level of
starspots is indeed higher than the normal photosphere.

1.2. Radiative case
Let us consider a radiative envelope. For early A-type stars, the convection zones associ-
ated with the hydrogen and the helium ionization zones are thin and shallow. Convective
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energy transport is inefficient so that the envelope is almost radiative. It is expected
that, due to the magnetic pressure, the gas pressure in the magnetic polar regions is
lower than in the normal envelope. A decrease in gas pressure would lead to a decrease
in temperature, if the density were unchanged. However, the magnetic polar regions may
be quite large. Hence the thermal balance on a global scale should be taken into account.
A decrease in temperature would lead to a steep temperature gradient, if the radius were
kept unchanged. But the temperature gradient is determined by the amount of radiation
flux:

F rad = − 4ac

3κρ
T 3∇T, (1.1)

where F rad denotes the radiative energy flux, T the temperature, κ the opacity, ρ the
density, a the radiation density constant, c the speed of the light, and ∇ the gradient
operator. To maintain the temperature gradient, the magnetic polar regions have to ex-
pand slightly. Consequencely the density becomes lower there. A decrease in gas pressure
is mainly compensated by a decrease in density rather than in temperature, and the
level of the photosphere of the magnetic polar regions is slightly higher than the normal
photosphere. The magnetic polar regions must look like a pair of big plateaus.

1.3. Convective case
For stars such as F-type or late A-type stars, with smaller effective temperatures, the
efficiency of convective energy transport becomes more important. Magnetic fields work
to suppress convection or to lower the efficiency of convective energy transport. In a
uniform sector of a magnetic field, whether the motion in the layer is monotonically
growing (dynamically unstable) is dependent on the superadiabaticity and the Alfvén
frequency. The latter is dependent on the wavenumber k and the magnetic field B.
For a dipole field, the magnetic field is almost vertical in the magnetic polar regions
and almost horizontal near the magnetic equator of the star. Since B · k is large in
the magnetic polar regions, the monotonic convection motion may be suppressed and
the motion may be oscillatory there. On the other hand, the motion is supposed to be
convectively unstable at the magnetic equator of the star, because B · k is small there.

In the magnetic polar regions, suppression of the convective energy transport efficiency
leads to a steep temperature gradient. If the radius of the star were unchanged, the
temperature there would become cooler. This means that the total luminosity, L =
πR2σT 4

eff , would decrease, where σ and Teff denote the Stefan-Boltzmann constant and
the effective temperature, respectively. If we assume that the star is in thermal balance,
the luminosity of the star is determined by the nuclear energy generation, which is not
influenced by the surface magnetic fields, and should be unchanged. To keep the total
luminosity unchanged, the stellar radius has to be slightly larger. Thus the elevation
of the photosphere in the magnetic polar regions must be slightly higher than in the
equatorial region. The magnetic polar regions are a pair of slightly cool plateaus.

1.4. Summary and discussion
In both cases, we have reached the same conclusion as Gough (2003). The geometric
level of the photosphere of starspots is higher than its surroundings, contrary to the
case of sunspots. Starspots in the magnetic polar regions should be regarded as a pair
of slightly cool plateaus with a slightly lower density. For an Ap star with Teff � 8000 K
and B � 1 kG, the temperature difference between the photosphere of the magnetic polar
regions (starspots) and the that of the magnetic equator is estimated to be of the order of
several hundreds Kelvin. Since the temperature of the magnetic polar regions is expected
to be lower than the magnetic equator of the star, some energy transfer is expected to

https://doi.org/10.1017/S1743921304004879 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921304004879


A theorist’s view of the A-star laboratory 453

occur from the magnetic equator to the poles. This might cause chemical diffusion in
the horizontal direction. The lower density at the magnetic polar regions enhances the
pulsation amplitude there compared to the magnetic equator.

2. Prospects of asteroseismology: how much information can we get
from asteroseismology?

2.1. Introduction
Stimulated by the success of helioseismology, a similar attempt to probe the internal
structure of stars in general has been encouraged. Uninterrupted, long-term observa-
tions with high precision photometry or Doppler measurements from space have been
proposed. MOST is indeed now working (Matthews et al. 2004). A-type stars should be
among the target stars of asteroseismology. Many δ Scuti stars are rich in observed os-
cillation frequencies. roAp stars are unique objects as they have very strong magnetism
and chemical peculiarity. However, the seismological approach to stars in general is much
more difficult than that for the Sun. The great success of helioseismology is based on:
(1) the large number of oscillation modes that have been detected, (2) the modes have
been well identified, and (3) a good solar model is available which can be used as a
reference model for the inversion procedure. The situation is different for distant stars.
The stellar image usually cannot be resolved into a two-dimensional disk image. For a
star oscillating with a high � mode, the stellar surface is divided into many small regions
oscillating in different phases, and then the contributions of each region are canceled
by others so that the total amplitude of the variability of the star is too small to be
detected. As a consequence, the observable eigenmodes in an individual star are likely to
be restricted to only those with � � 4. In this situation, how much information can we
get by asteroseismology about the invisible interior of stars? What is the limit?

2.2. Numerical experiments
Now by assuming that the mode identification is complete and that a good model is
available, I demonstrate how well we can probe the invisible interior of stars by utilizing
a limited number of oscillation modes. The principal aim is to find the limit of seismic
inversion in the best case. We can use simple stellar models suitable for this purpose,
otherwise we would have to worry about various uncertainties in the physics. Let us
adopt two polytrope stars, one with the polytropic index N = 3.01 and the other with
N = 3.00. We treat the calculated eigenfrequencies of the polytrope N = 3.01 as if
they were the observational data, and try to reproduce the model by carrying out the
inversion of this data set. The polytrope star with N = 3.00 is adopted as a reference
model in the inversion procedure. Since the equation to solve in constructing models is
the well-known Lane-Emden equation (see, e.g., Hansen & Kawaler 1994), anyone can
reproduce the following results. However, we should be careful about the numerical pre-
cision. Eigenfrequencies of linear, adiabatic, radial and nonradial p-modes are computed
by solving the pulsation equations in the same manner, that is, the four first-order dif-
ferential equations are solved even in the case of � = 0 (cf. Unno et al. 1989). Since the
models are polytropic stars, the mechanical outer boundary condition for pulsation is
the zero boundary condition, that is, the Lagrangian perturbation of pressure is set to
be zero, δp = 0, at the surface.

The p-mode pulsation characteristics of a star are determined by the sound-speed and
the density profiles in the star. It is known that the eigenfrequencies obey a variational
principle. Hence, if we take the polytrope star with N = 3.00 as a reference model and
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Figure 1. Examples of the kernels K
(1)
n,�(r) (left panel) and K

(2)
n,�(r) (right panel) of the

polytrope star with N = 3.0. These are the kernels for p5-mode of � = 5.

Figure 2. The results of inversion of p-modes with � � 100 and ω2/(GM/R3) � 2000. We
assumed in the inversion procedure that each of the differences is a piecewise constant function
with a step of ∆r/R = 0.1. The left panel shows the inferred difference in the sound-speed
profile and the true difference (a smoothed curve), while the right panel shows that in the
density profile.

compare its eigenfrequencies with those of the polytrope star N = 3.01, the difference
in the eigenfrequencies between them are expressed in terms of the differences in the
sound-speed and the density profiles between these two stars:

δωn,�

ωn,�
=

∫ {
δc

c
K

(1)
n,�(r) +

δρ

ρ
K

(2)
n,�(r)

}
dr. (2.1)

where ωn,� and ξn,� denote the eigenfrequency and the normalized eigenfunction of the
mode (ω2

n,�

∫
ξ∗

n,�·ξn,�dm = 1) with radial order n and spherical degree �, respectively, and
c(r) and ρ(r) denote the sound-speed and the density profiles, respectively, as functions
of the distance r to the center. Equation (2.1) should be regarded as a set of integral
equations with two unknown functions δc(r) and δρ(r), and K

(1)
n,�(r) and K

(2)
n,�(r) are the

kernels which are computed with the reference model for the given mode. The explicit
expression of the kernels K

(1)
n,�(r) and K

(2)
n,�(r) can be seen in Gough & Thompson (1991).

Figure 1 shows the kernels for p5 mode of � = 5. Various sophisticated methods of solving
this type of integral equations have been invented. Here, we solve a set of equations (2.1)
for various eigenmodes with the help of the singular value decomposition (SVD) and
obtain the unknown functions δc(r) and δρ(r) (cf. Press et al. 1992).

Let us see first that, if modes up to � = 100 were detected, the true difference of the
star would be admirably well reproduced from the reference model. For this purpose, let
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Figure 3. The results of inversion of p-modes with � < 5 and ω2/(GM/R3) � 2000. In the
inversion procedure each of the differences is assumed to be a piecewise constant function with a
step of ∆r/R = 0.1. The left panel shows the inferred difference in the sound-speed profile and
the true difference (a smoothed curve), while the right panel shows that in the density profile.

us use all the p-modes with � � 100 and ω2/(GM/R3) � 2000. The total number of
modes used in the inversion is then 450. Here we assume that both δc(r) and δρ(r) are
piecewise constant functions with a step of ∆r/R = 0.1, rather than smooth function,
that is, we consider an expansion of δc(r) and δρ(r) in terms of a piecewise constant
function. The problem is then to determine the twenty coefficients for the piecewise
constant functions from 450 equations. Figure 2 shows the inverted results. In each panel,
the true difference between the star (the polytrope star with N = 3.01) and the reference
model (the polytrope star with N = 3.0) is shown as a smooth function. As seen in this
figure (particularly in the left panel showing δc/c), the inversion reproduces admirably
well the true difference, particularly in the range of 0.2 � r/R � 0.9. The gap between
the inverted results and the true difference is substantial for r/R � 0.1. This is partly
because the number of modes reaching near the center is small and partly because the
sound speed is so high near the center that the sound wave is insensitive to this region. The
gap between the inverted results and the true difference is also substantial for 0.9 � r/R.
This is because the number of modes for which the inner turning point is located near
the surface is small. These tendency is seen in the helioseismic inversion.

Let us reduce the range of the spherical degree � of eigenmodes to 0 � � � 4. However,
since the current aim is to prospect the ultimately reachable possibility of asteroseismol-
ogy in the extremely idealistic case, let us still adopt all the p-modes for which frequency
ω2/(GM/R3) � 2000, using a total of 200 p-modes in the inversion. The results are
shown in Fig. 3. As seen in this figure, the SVD inversion whose results are shown by
the step functions is much worse than the case of inversion of modes with � � 100, but it
is still satisfactorily successful in such an idealistic case. The total number of modes has
been obviously overestimated, and the mode identification has been assumed to be per-
fect. Furthermore, it has been assumed that the observational frequency determination
is error free. Obviously these assumptions are unrealistic. But we should regard these
inverted results as the ultimately reachable points of asteroseismology. We cannot expect
better results than these, but we can expect these results in the extremely idealistic case.

Since the frequency data are assumed to be error free, all the inversion error is the
systematic error, that is, the intrinsic error which is the dependent on the inversion
method (SVD in the present case). One might get an impression from Fig. 3 that the
density profile is reproduced better than the sound-speed profile. This is not true. The
left panel of Fig. 4 shows the systematic error of the inverted results shown in Fig. 3. It
clearly shows that the systematic error in the sound-speed inversion is smaller than that
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Figure 4. Left: Systematic error (intrinsic error which is dependent on the inversion method;
SVD in the present case): It should be noted that systematic error in the sound-speed inversion
is smaller than that in the density inversion. Right: Total error in the case that observational
error is 0.03%.

in the density inversion. In reality, observational error is unavoidable. As a simulation, let
us add 0.03% error into the observational data set and estimate its effect on inversion. An
observational error of 0.03% can be reached with 3-months of uninterrupted photometric
observations, if the period is measured with accuracy of 10 s for a single cycle of pulsation
in the case where the period is 300 s. The right panel of Fig. 4 shows the total error in
this case. We would say that inversion still has some hope.

2.3. Summary and discussion

We demonstrated how well (or poorly) we can probe the internal structure of the distant
stars using a limited number of p-mode frequencies. Although the detectable eigenmodes
must be limited to be � � 4, the inversion is still highly satisfactory in the extremely
idealistic (200 modes with no observational error) case. We conclude from the present
simulation that if the observational error is of the order of 10−3, inversion still has some
hope.

We restricted ourselves to inversion based on the absolute values of frequencies. How-
ever, there are other possibilities of inversion based on the relative differences among
the eigenfrequencies, such as the frequency difference between the consecutive p-modes
for which radial order n differs by 1, or the frequency difference between the p-modes
for which the radial orders are the same but their spherical degrees � differ by 2. An-
other example is the second derivative, ωn+1,� − 2ωn,� + ωn−1,�, which is sensitive to a
discontinuity in the stellar structure.
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Discussion

Balona: The eigenfrequencies of a roAp star are affected by the magnetic field. Therefore
we need to correct the observed frequencies for this effect before the data can be used for
asteroseismology. I believe we are still very far from being able to do this with confidence,
so maybe roAp stars are, at present, not good candidates for asteroseismology.

Shibahashi: Correcting the magnetic effect for the frequencies is hard. The inversion
of the absolute values of the observed frequencies may be inappropriate for roAp stars
at present as you point out. Probably taking the differences or the differentiation of the
observed frequencies may be useful in this case.

Breger: I would like to be more optimistic. For normal A stars we can easily detect
� > 5 modes through line-profile changes. The � = |m| = 8 ∼ 14 modes are easily
detected. With better observations to account for narrower lines and short periods � � 5
could (or might) be doable.

Michel: I also have a more optimistic point of view. You adopted a polytrope model for
simplicity and clarity of the demonstration, but this type of model omits considerable
physics which we are strongly interested in and that we want to probe with stellar
seismology. The existence of a convective core and of a steep µ-gradient at its edge is
one example. Models show that the existence of mixed modes in stars more massive
than the Sun makes possible the building of inversion kernels sensitive to this very deep
region, while the center of the Sun is still out of reach because of the lack of observed
g-modes. Another example would be the depth of the outer convection zone which can
be probed with pseudo-oscillations in the second order difference, for instance, with the
same efficiency using low � modes only or high � modes. I could also quote published
papers showing that for δ Scuti stars, for instance, there is great hope to obtain by
inversion the rotational profile, using only low � modes (Goupil, M.-J. et al. 1996, A&A
305, 487).

Shibahashi: Yes, taking the differences or the differentiation of the observed frequencies
opens another possibility of inversion in asteroseismology. What I intended to stress here
is that even a limited number of modes, much smaller than the solar case, are potentially
very useful to deduce detailed information on the structure of the star.

Cunha: In Balmforth et al. (2001) we modelled the star by a spot, where convection is
suppressed, and the equatorial region, where it is not suppressed. To keep the interior
the same, we have allowed for a change its effective temperature, Teff , and the luminosity
L at the surface. The luminosity L was allowed to change to account for a ‘side-leak’
of energy, due to the difference in energy transport in the two regions. Can you please
comment on the differences between this spot model and the model you described?

H. Shibahashi: If a ‘side-leak’ is allowed, the temperature of starspots must be lower
than the case of no side-leak, otherwise the total luminosity of the star would be larger
than the energy generation. I think the hydrostatic balance is handled well in Balmforth
et al. (2001), but I am not certain that the thermal balance is handled well in their
model.
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