
1 A Single Atom

Learning Objectives

• Discuss the Coulomb interaction, the spin-orbit coupling, and the hyperfine coupling as
the three effects that determine atomic structure.

• Highlight the importance of the separation of energy scales of these three effects.

• Introduce different atomic structures of alkali-metal, alkaline-earth-metal, and magnetic
atoms.

• Introduce the long-lived excited states in alkaline-earth atoms, and their applications,
such as to atomic optical clocks.

• Discuss the Zeeman structure of atoms in a magnetic field.

• Discuss the idea of magnetic trapping, which can naturally lead to the emergence of a
synthetic gauge field.

• Introduce the scalar light shift and its applications, such as laser trapping, optical lattices,
and laser cooling.

• Introduce the vector light shift and its applications, such as the light-induced Zeeman
field and synthetic spin-orbit coupling.

• Discuss the synthetic spin-orbit coupling and various kinds of gauge fields generated by
the vector light shift.

• Introduce the basic idea of the stimulated Raman adiabatic passage.

1.1 Electronic Structure

Let us first consider a general Hamiltonian of Z electrons moving around a nucleus that
contains the Coulomb interaction, the spin-orbit coupling, and the hyperfine coupling.
These are the three effects that determine the electronic structure of an atom. Here we
should emphasize the important role of the separation of energy scales; that is to say, the
typical energy scales of these three terms are quite different. Thanks to the separation of
energy scales, we can analyze them one by one, which enables us to obtain a clear picture
of the electron structure.

Coulomb Interaction between Electron and Nucleus. Each electron moves around the
nucleus with an attractive Coulomb interaction between the electron and the nucleus, which
is described by
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4 A Single Atom

Ĥ0 =
Z∑

i=1

(
−�

2∇2
i

2m∗ + Vei(ri)

)
, (1.1)

where i = 1, . . . , Z labels the electrons; ri labels the coordinate of electron centering at
the nucleus; m∗ = mM/(m + M) is the reduced mass, where m is the electron mass and
M is the nucleus mass; Vei(r) = −Zκ/r is the Coulomb potentials between the electron
and the nucleus, where κ = e2/(4πε0); e is the electron charge; and ε0 is the vacuum
permittivity. The eigenstates are characterized by three quantum numbers (n, l, m). Usually
for the spherical symmetric potential, because of the SO(3) rotational symmetry, the energy
spectrum only depends on n and l and does not depend on m. However, for the 1/r Coulomb
potential, such as with a hydrogen atom, the eigenspectrum is

E = −m∗Z2κ2

2�2n2
, (1.2)

which only depends on the principal quantum number n and is independent of angular
momentum quantum number l; l can take integer values from 0 to n − 1. This extra degen-
eracy is a consequence of 1/r potential, which leads to an SO(4) symmetry larger than the
three-dimensional rotational symmetry [102]. The separation of these energy levels is of
the order of electron volts (∼ 1014Hz) because it originates from the Coulomb interaction.
The energy levels, usually named as the term-diagrams, are schematized in Figure 1.1,
where 1, 2, 3, . . . label the principal quantum number n and s, p, d, . . . represent the angu-
lar momentum quantum number l. The term-diagram for a hydrogen atom is shown in
Figure 1.1(a).

Coulomb Interaction between Electrons. The repulsive Coulomb interaction between
electrons is given by

V̂c =
∑
i<j

Vee(ri − rj), (1.3)
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�Figure 1.1 Schematic of the term-diagram: (a) the hydrogen atomwithout screening effect and (b) an alkali-metal atom with
screening effect. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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5 Electronic Structure

where Vee(r) = κ/r. Here we discuss a couple of physical consequences of this term.
First, the inner electrons of the fully filled levels screen the positive Ze charge of the
nucleus, and thus, the valence electron experiences a reduced Coulomb potential. When
the electronic orbit of the outermost electron is far from the nucleus, approximately, it
experiences a fully screened field of all the rest of the Z − 1 electrons. That is to say,
for large enough r, the effective attraction between the electron and the nucleus becomes
a Coulomb potential with effective charge unity, that is, −κ/r. The closer this electron
approaches toward the nucleus, the more it experiences the unscreened nuclear potential
with charge Ze. The attraction between the electron and the nucleus recovers −Zκ/r for
sufficiently small r. Therefore the effective potential seen by the valance electron is no
longer proportional to 1/r, and hence, the enlarged SO(4) symmetry no longer exists. Con-
sequently, the eigenstates with the same n but different l are no longer degenerate, and the
energy level becomes

E = − m∗Z2κ2

2�2(n − δ(n, l))2
, (1.4)

where δ(n, l) is a function depending on n and l and is also called the “quantum defect”
[157]. The term-diagram with the screening effect is schematized in Figure 1.1(b). Nor-
mally, the energy level with larger l becomes higher. This energy splitting is also of the
order of electron volts, because it also originates from the Coulomb interaction.

Second, let us consider two electrons in two orbits, say, ψ1(r) and ψ2(r). Because the
total wave function of two electrons has to be antisymmetric, and if these two electrons
form a spin singlet, the wave function in the spin space is antisymmetric, and their spatial
wave function has to be symmetric, that is, ψ1(r1)ψ2(r2) + ψ1(r2)ψ2(r1). If these two
electrons form a spin triplet, the wave function in the spin space is symmetric, and their
spatial wave function should be antisymmetric, that is, ψ1(r1)ψ2(r2) − ψ1(r2)ψ2( r1). In
the latter case, the wave function vanishes when two electrons come close enough, which
reduces the repulsive interaction energy. Thus, the energies of the triplet states are lower
than the energy of the singlet state. In other words, the Coulomb repulsion favors the total
spin S of electrons to be maximized. This argument can be generalized to cases with more
than two electrons and to cases with more than two quantum states, which gives the early
day explanation of the first Hund’s rule.1 Also, for a given S, the short-range repulsion
is minimized when the total angular momentum L is maximized, which gives the second
Hund’s rule. The characteristic energy scale of the Hund’s rules is also of the order of
electron volts.

The Spin-Orbit and Hyperfine Couplings. The Hamiltonian for the spin-orbit coupling
is given by

Ĥso =
∑

i

αi
fŜi · L̂i, (1.5)

1 There are more advanced discussions of the origin of the first Hund’s rule in later quantum chemistry
calculations that we will not discuss in detail here.
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6 A Single Atom

and it describes the coupling between the electronic spin Ŝi and its orbital angular momen-
tum L̂i with strength αi

f
2, giving rise to the fine structure. The origin of the spin-orbit

coupling can be intuitively understood as follows. Sitting in the rest frame of an electron,
the nucleus moves around the electron. Because the nucleus is charged, the circulating
motion of the nucleus gives rise to an electric current, and the strength of the current is
proportional to the angular momentum of the relative motion between the electron and the
nucleus. The circulating current further induces a magnetic field, which acts on the spin of
electrons. This leads to the spin-orbit coupling given by Eq. 1.5.

As one can see from this picture, because this process involves the magnetic effect
induced by the electric current, it is naturally weaker than the Coulomb interaction, because
the latter is purely electronic. In fact, the characteristic energy scale of the spin-orbit cou-
pling is typically of the order of 10−3eV (∼ 1011Hz), and in many cases it is much weaker
than the Hund’s rule coupling originating from the Coulomb interaction. Originally, this
spin-orbit coupling is between the spin and orbital angular momentum of each individual
electron; however, because the Hund’s rule coupling locks the electron spins of all valance
electrons to an eigenstate of the total electron spin Ŝ, and locks the angular momentum of
all valance electrons to an eigenstate of the total angular momentum L̂, it is more conve-
nient to express the leading order effect of the spin-orbit coupling in terms of Ŝ and L̂ as
αfŜ · L̂ + · · · . Here the first term represents the coupling between Ŝ and L̂ with strength
αf, which is called the LS coupling. The residual terms represented by · · · denote the dif-
ference between the actual coupling (Eq. 1.5) and the LS coupling term. Because S and L
are not really good quantum numbers for Eq. 1.5, these residual terms compete with the
Hund’s rule and can change the quantum number S and L. Nevertheless, Ĵ = Ŝ+L̂ = ∑

i Ĵi

still commutes with this coupling.
The hyperfine interaction couples the electronic degrees of freedom Ŝ and L̂ to the

nucleus spin Î. In general, Ŝ and L̂ couple to Î differently. Nevertheless, the character-
istic energy scale for the hyperfine coupling is of the order of 10−6eV (∼ 108–109Hz),
which is much smaller compared with the spin-orbit coupling. This is because the nuclear
magneton is much smaller than the Bohr magneton. Since the LS coupling already locks Ŝ
and L̂ to an eigenstate of Ĵ, we express the leading order effect of the hyperfine coupling
in terms of Ĵ and Î as αhfĴ · Î + · · · , where αhf is the strength of this coupling. This gives
rise to the hyperfine structure. Only with the first term, J is still a good quantum number,
but the residual term represented by · · · can change the quantum number J, which is due
to Ŝ and L̂ coupled to Î differently.

Zoo of Ultracold Atoms. So far, three classes of atoms have been cooled to quantum
degeneracy in cold atom experiments. They are (1) alkali-metal atoms, including hydro-
gen (H), lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs); (2)
alkaline-earth-metal (-like) atoms, including strontium (Sr), calcium (Ca), and ytterbium
(Yb). In the periodic table, ytterbium does not belong to the alkaline-earth-metals, but
its outer electronic structure is the same as alkaline-earth-metal atoms; and (3) atoms with
large electronic magnetic moments, which are called “magnetic atoms” here. These include
chromium (Cr), dysprosium (Dy), and erbium (Er). We also anticipate that more atomic

2 In general, αi
f should also depend on spatial position. Here we ignore this dependence for simplicity.
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7 Electronic Structure

Table 1.1 The electronic structure and the nuclear spin of the alkali-metal atoms used
in current experiments

Atom Valance electron Label 2S+1LJ Nuclear spin I

Li 2s1 2S 1
2

7Li (I = 3/2, B); 6Li (I = 1, F)

Na 3s1 2S 1
2

23Na (I = 3/2, B)

K 4s1 2S 1
2

40K (I = 4, F);
39K (I = 3/2, B); 41K (I = 3/2, B)

Rb 5s1 2S 1
2

85Rb (I = 5/2, B); 87Rb (I = 3/2, B)

Cs 6s1 2S 1
2

133Cs (I = 7/2, B)

Note: F denotes fermion, and B denotes boson. Here the symbol 2S+1LJ labels the electronic
structure of each atom.

species can be cooled to quantum degeneracy in the future. Here we will discuss the elec-
tronic structure and the spin structure at zero magnetic field of these three classes based on
the aforementioned terms.

Alkali-Metal Atoms. So far, all atomic species in Table 1.1 have been cooled to quantum
degeneracy, among which 87Rb and 23Na are the most-studied ultracold bosonic isotopes
and 40K and 6Li are the most-studied fermionic isotopes. Following are a few key points
about this class of atoms:

• In the ground state, since there is only one electron in the s-orbital, S = 1/2, L = 0, and
J = 1/2. The ground state is always labeled by 2S1/2. There is no spin-orbit coupling in
the ground state, and the atomic spin structure is determined by the hyperfine coupling.
The hyperfine spin is defined as F̂ = Î + Ĵ, and F is a good quantum number for an
alkali-metal atom at the zero magnetic field. For instance, for 87Rb, I = 3/2, so the total
F can be either 1 or 2. At zero magnetic field, the energy splitting between F = 1 states
and F = 2 states is a few times 109Hz.

• For the first excited state, the valance electron is the p-orbital, and thus L = 1. Due
to the LS coupling, the total J can be either 1/2 or 3/2. Thus the excited states are
split into 2P 3

2
and 2P 1

2
, as shown in Figure 1.2(a). Historically, this splitting was dis-

covered in the absorption spectra of lights due to sodium atoms, and they are named
as D1 and D2 lines. Using sodium as an example, this fine splitting is 2.1 × 10−3eV
(� 5 × 1011Hz), and the splitting between the ground state 2S 1

2
and these two states is

about 2.1eV (� 5 × 1014Hz). Because the fine-structure splitting is much smaller com-
pared with the excitation energy, normally both 2P 3

2
and 2P 1

2
should participate in the

optical transition, which are key processes for trapping and manipulating alkali-metal
atoms, as we shall discuss in Section 1.3 in detail. In addition, 2P 3

2
and 2P 1

2
are further

split by the hyperfine coupling, and the hyperfine splitting is even smaller compared with
the fine-structure splitting.

Alkaline-Earth-Metal (-Like) Atoms. Table 1.2 contains the alkaline-earth-metal atoms
(Ca and Sr) and alkaline-earth-metal-like atom (Yb) that have been cooled to quantum
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8 A Single Atom

Table 1.2 The electronic structure and the nuclear spin of alkaline-earth-metal (-like) atoms
used in current experiments

Atom Valance electron Label 2S+1LJ Nuclear spin I

Yb 4f 146s2 1S0
174Yb (I = 0, B);
171Yb (I = 1/2, F); 173Yb (I = 5/2, F)

Ca 4s2 1S0
40Ca (I = 0, B)

Sr 5s2 1S0
84Sr (I = 0,B); 87Sr (I = 9/2, F)

Note: F denotes fermion, and B denotes boson.

�Figure 1.2 Schematic of the electronic structure: (a) an alkali-metal atom and (b) an alkaline-earth-metal atom. The dashed line
in (a) denotes the excitation energy, and the dashed lines in (b) denote that these states are coupled either by the
spin-orbit coupling (SO) or by the hyperfine coupling (HF) process. A color version of this figure can be found in the
resources tab for this book at cambridge.org/zhai.

degeneracy. Alkaline-earth-metal atoms have several unique properties compared with the
alkali-metal atoms:

• For the ground state, two electrons occupy the s-orbital, and therefore, the total electron
spin S = 0 and the angular momentum L = 0. All bosonic isotopes of alkaline-earth-
metal atoms have zero nuclear spin, and the fermionic isotopes have nonzero nuclear
spin I, which can be very large. However, because of J = 0, and consequently, the
absence of the hyperfine coupling, the nuclear spin is decoupled from the electronic spin
degree of freedom. Therefore, the nuclear spin nearly does not participate in two-body
interactions, and the interaction possesses an SU(N) symmetry with large-N [193]. We
will discuss this in Section 2.3.

• For the first excited states, one electron still occupies the s-orbital, but the other electron
is excited to the p-orbital. Thus, these states have L = 1. The electronic structure of
these excited states is shown in Figure 1.2(b). First of all, because of the Hund’s rule,
the Coulomb energies for the S = 1 states (3PJ) are lower than that for the S = 0 state
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9 Electronic Structure

(1P1). Second, due to the LS coupling, all states within the S = 1 manifold split into
J = 0, 1, and 2, denoted by 3P0, 3P1,3P2, respectively.

• As we will see in Section 1.3, because the optical transition is dominated by the dipole
transition, and the dipole transition does not change the electronic spin quantum number
S, the direct coupling between these excited states with S = 1 (3PJ) and the ground state
with S = 0 is forbidden because of different quantum number S. That is to say, at the
leading order, the dipole transition can only couple the ground state to the S = 0 excited
state (1P1) and cannot couple the ground state to the S = 1 manifold (3PJ).

• As we have mentioned above, the spin-orbit coupling term does not conserve the quan-
tum number S and L, and it can mix two states as long as they have the same J. Thus,
among the three states with S = 1, 3P1 states can be coupled to 1P1 states by the spin-
orbit coupling. Through this coupling, there exists a small but finite dipole transition
matrix element between the 3P1 states and the ground state. This gives rise to a lifetime
for 3P1 states of about a few hundred nanoseconds. And for 3P0 and 3P2, because their
quantum numbers J are different from that of 1P1, they cannot be coupled to 1P1 by the
spin-orbit coupling term.

• For fermionic isotopes, the coupling between 3P0 or 3P2 and 1P1 can be induced by the
hyperfine coupling. As we have discussed above, after including the hyperfine coupling,
J is also not a good quantum number. However, the coupling mediated by the hyperfine
coupling is much weaker, and hence, the lifetimes of 3P0 and 3P2 states are much longer
than for 3P1 states, and the lifetime can be many seconds. These long-lived electronic
excited states can be used as an important tool for precision measurement. On one hand,
the spontaneous emission rates of these states are so small, and on the other hand, the
coupling is not completely forbidden because of these residual couplings. Taking advan-
tage of these properties, the transition between 3P0 and 1S0 induced by laser coupling
can be used for the purpose of realizing the atomic optical clock. Therefore, these states
are also called the “clock state.” The atomic optical clock has reached an accuracy of
10−19s nowadays, and it is the most accurate clock we have now [25]. If one were to
start to run such a clock from the beginning of the universe until now, this clock would
be expected neither to gain nor to lose even one second. Such a clock can now be used
to test fundamental physics [92].

• For bosonic isotopes, due to the absence of the nuclear spin, there is absolutely no one-
photon dipole transition for 3P0 and 3P2. In this case, the coupling to ground state has
to be induced by higher-order processes. The lifetime of these two states can be many
years long, and for all practical purposes, these states can be viewed as not decayed.

Magnetic Atoms. Table 1.3 contains three atoms whose total angular momentum of elec-
tron J is very large. For chromium, five d-orbitals and one s-orbital are all half-filled, and
thus all six electrons are spin polarized because of the first Hund’s rule, which gives S = 3
and L = 0. Dysprosium and erbium are open-shell lanthanide atoms. For dysprosium, 7
f -orbitals are filled by 10 electrons, and thus there are 4 unpaired electrons. Because of
the first Hund’s rule, these four unpaired electrons are spin polarized, which gives rise to
a total electronic spin S = 2. And because of the second Hund’s rule, these four unpaired
electrons give maximized angular momentum L = 6. Similarly, for erbium, 7 f -orbitals
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10 A Single Atom

Table 1.3 The atomic structure of high-spin magnetic atoms like Cr and lanthanide Dy and Er

Atom Valance electron Label 2S+1LJ Nuclear spin I

Cr 3d54s1 7S3
52Cr (I = 0, B); 53Cr (I = 3/2, F)

Dy 4f 106s2 5I8
162Dy (I = 0, B); 163Dy (I = 5/2, F)

Er 4f 126s2 3H6
168Er (I = 0,B)

Note: F denotes fermion, and B denotes boson.

are filled by 12 electrons, and thus there are 2 unpaired electrons, which gives S = 1 and
a maximized angular momentum L = 5. Furthermore, it turns out that for both Dy and Er,
the spin-orbit coupling favors a maximum J, that is, J = 8 for dysprosium and J = 6 for
erbium. The atomic structures of these atoms also have strong effects on the interaction
between these atoms:

• In the presence of a finite magnetic field, J can be easily polarized, which results in a
magnetic moment d = 6μB for chromium, d = 10μB for dysprosium, and d = 7μB for
erbium. Therefore, the magnetic moment is about one order of magnitude larger than
that of the alkali-metal atoms, and hence the magnetic dipole interaction between two
atoms is two orders of magnitude larger.

• In the presence of a finite magnetic field, because the angular momentum L is nonzero
for dysprosium and erbium, the electron cloud is anisotropic, so that the short-range Van
der Waals potential is also anisotropic. This effect does not exist in chromium, whose
angular momentum is zero.

• In the limit of a vanishing magnetic field, J becomes depolarized, and the spin rotational
symmetry is restored. These atoms exhibit the aspects of high-spin particles, and their
interactions depend on spin, as we will discuss in Section 4.3.

1.2 Magnetic Structure

Now we consider the effect of a static magnetic field on the atomic structure. Because
electrons are charged, in principle, the electron motion inside an atom can also be affected
by the presence of magnetic field. However, this effect is too small compared with the
Coulomb interaction, such that we can safely ignore the change of electron orbital due
to the magnetic field. We only focus on the Zeeman effect acting on the electron spin S,
orbital angular momentum L, and nuclear spin I. The energy scale of the Zeeman splitting
is comparable with the hyperfine splitting for a typical magnetic field of hundreds of Gauss
in the laboratory.

Hence, here we consider an atom as a point neural particle carrying S, L, and I. Now
let us focus on the ground state of alkali-metal atoms. For example, for 87Rb atoms with
S = 1/2, L = 0, and I = 3/2, the ground state spin structure is determined by

Ĥs = B(μBgSŜz + μNgI Îz) + αhf Ĵ · Î, (1.6)
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F = 2

E

B

Fz = 2
Fz = 1

Fz = 0

Fz = –1

Low-Field Seeking

High-Field Seeking

Fz = –2

Fz = –1
Fz = 0

Fz = 1

F = 1

�Figure 1.3 Schematic of the Zeeman energy structure. Here we consider the electronic ground state of a 87Rb atomwith
J = 1/2 and I = 3/2.Fz labels the good quantum number of each state. A color version of this figure can be
found in the resources tab for this book at cambridge.org/zhai.

where μB and μN are the Bohr magneton and the nuclear magneton, respectively, and
μN � μB. gS and gI are the Landé g-factors. Here we first consider the situation that the
magnetic field is spatially uniform and its direction is chosen as the ẑ direction. For this
Hamiltonian, Fz is a good quantum number, and its spectrum can be solved exactly. Here
we analyze the behavior in the small B and large B regimes, respectively. By smoothly
connecting the small B and large B regimes, one naturally obtains the qualitative feature
for the energy diagram, as shown in Figure 1.3

• In the small B-field regime, when BμBgs � αhf, the hyperfine coupling dominates.
The hyperfine coupling splits the energy between states with F = 1 and the states with
F = 2. Within the three F = 1 states, or the five F = 2 states, the Zeeman field
simply creates a linear Zeeman energy and a quadratic Zeeman energy proportional to Fz

and F2
z , respectively. The reason that there exists a quadratic Zeeman effect is precisely

because the hyperfine spin contains both electronic spin and nuclear spin components,
and they couple to the external magnetic moment differently.

• In the large B-field regime, when BμBgS � αhf, the Zeeman energy of electron spin
dominates. The energies of four states with Sz ≈ −1/2 decrease as B increases, and the
energies of the other four states with Sz ≈ 1/2 increase as B increases.

Magnetic Trap. In the presence of a magnetic field, the energies of some spin states
increase with an increasing magnetic field strength. That is to say, if an atom is prepared
in such a state, it can be trapped in the regime where the magnetic field strength has a local
minimum. Atoms in these states are called the “low-field seeking” atoms. The energies of
some other states decrease with an increasing magnetic field strength. These states can be
trapped in the regime where the magnetic field strength has a local maximum. Atoms in
these states are called the “high-field seeking” atoms. This is the basic idea of the magnetic
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trapping. It is not difficult to show that, due to the constraint from the Maxwell equations,
the magnetic field cannot have a local maximum if there is no electronic current inside a
vacuum chamber. It can also be shown that the magnetic field cannot point to the same
direction in order to create a local minimum of magnetic field strength in space. Thus,
the natural idea is to trap the “low-field seeking” atoms by a minimum of the magnetic
field strength, using a spatially varying magnetic field texture. For instance, a so-called
quadrupole trap has a magnetic field configuration B = B0(x, y, −2z), where r = (x, y, z) is
the spatial coordinate and the magnetic field strength has a minimum at r = 0.

Emergent Synthetic Gauge Field. Above we have studied the Zeeman energy level of
an atom in a uniform magnetic field, which results in the idea of trapping atoms near a
minimum of the magnetic field strength. On the other hand, we have also noticed that the
magnetic field cannot point to the same direction in order to have a local minimum of its
strength. Thus, to fill the gap, we have to consider the motion of an atom in a spatially
varying magnetic field configuration B(r). Let us consider the Schrödinger equation for
the motion of an atom as

i�
∂ψ

∂t
=

(
− �

2

2m
∇2 + Ĥs(r)

)
ψ , (1.7)

where

Ĥs(r) = μBgSB(r) · Ŝ + μNgIB(r) · Î + αhfĴ · Î. (1.8)

We introduce a unitary matrix U(r) to diagonalize Ĥs(r) as 	(r) = U†(r)Ĥs(r)U (r) for
every r. For each r, we can always choose a local coordinate such that the magnetic field
direction is taken as local ẑ direction, therefore, 	(r) has the same energy level as shown
in Figure 1.3 for the Hamiltonian Eq. 1.6 that only depends on the strength |B(r)|.

Denoting ψ̃ = U†(r)ψ , the Schrd̈inger equation for ψ̃ can be written into the adiabatic
spin bases as

i�
∂ψ̃

∂t
=

(
1

2m
(−i�∇ − A)2 + 	( r)

)
ψ̃ , (1.9)

where A(r) = i�U†(r)(∇U(r)). Here we have used

U†(−i�∇)U = −i�∇ − i�U†(r)(∇U(r)). (1.10)

Notice that U†(r)U (r) = 1, which means

U†(r)(∇U(r)) + (∇U†(r))U(r) = 0, (1.11)

and U†(r)(∇U(r)) is purely imaginary. Thus A is a real field. Eq. 1.9 takes the same form
as the Schrödinger equation for the motion of a particle in an external gauge field [73]. In
cold atom literatures, this emergent gauge field A is called the “synthetic gauge field.”

Gauge fields are classified as abelian and non-abelian. For abelian ones, different com-
ponents of the gauge field commute with each other, for instance, when A is a number. For
non-abelian ones, different components of the gauge field do not commute with each other.
Here, in general, A is a matrix, and different spatial components of A do not commute
with each other, which represents a non-abelian gauge field. The off-diagonal component
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of A gives rise to the transition between different spin eigenstates in local coordinates. If
these off-diagonal components are too small compared with the difference between the
diagonal components of 	(r), the transition effect becomes negligible, and one can safely
assume that the atoms always stay in the same adiabatic spin eigenstate. It is usually the
case when the magnetic field strength is large and the spatial variation is small. Using the
adiabatic approximation, an atom in this adiabatic spin state can effectively be viewed as a
spinless particle, which experiences a potential only depending on the strength |B(r)|. This
manifests the magnetic trapping as discussed above. The only modification is the presence
of the diagonal component of the gauge field A, say, denoted by Aii, corresponding to the
adiabatic spin eigenstate labeled by i. This gives rise to an abelian gauge field. This abelian
gauge field has a physical effect when it leads to a nonzero synthetic magnetic field Bsyn,
given by Bsyn = ∇ × Aii(r).

The discussion above says that the motion of a neural atom with spin in a spatially vary-
ing magnetic field B(r) is equivalent to the motion of a spinless charged particle in a syn-
thetic magnetic field Bsyn. This synthetic magnetic field Bsyn should not be confused with
the real magnetic field B. The real magnetic field B only acts on the spin degree of freedom
of an atom and does not couple to its motion because atoms are neutral. However, the syn-
thetic gauge field only acts on the motion of the particle. This equivalence is emergent from
the Berry phase effect, and the basic idea is illustrated in Figure 1.4. Let us consider a neu-
tral atom with spin moving in a spatially varying magnetic field. Following the adiabatic
approximation, when an atom moves, its spin direction is always aligned with the local
magnetic field direction. Therefore, when the atom follows a closed trajectory in space, its
wave function acquires an extra phase that is proportional to the solid angle expanded by
the spin direction along the trajectory. On the other hand, for a charged particle moving in
a magnetic field, due to the Aharonov–Bohm effect, it also requires a phase for any closed
trajectory which is proportional to the total flux enclosed by the trajectory. If these two

(a) (b)

e

�Figure 1.4 Emergence of synthetic gauge field. (a) A neutral and spinful atom (represented by the filled circles) moves in a
magnetic field with spatially varying magnetic field directions (represented by longer arrows), and its spin direction
(represented by arrows attached to the filled circles) always follows the local magnetic field direction. (b) A charged
spinless particle moves in a magnetic field (represented by the vertical arrows). These two motions are equivalent
when (i) the adiabatic approximation for case (a) is valid and (ii) the phases accumulated along any trajectory are
always equal between cases (a) and (b). A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.
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14 A Single Atom

Box 1.1 Different Kinds of “Magnetic Fields”

It is really important to distinguish these three concepts of the realmagnetic field, the light-inducedmagnetic
field, and the synthetic magnetic field. Here we summarize the difference and the relations between these
three “magnetic fields.” First of all, the former two act on the spin degree of atoms, and the third one acts
on the spatial motion of atoms. Second, both the real and the light-induced magnetic fields can polarize
spin of atoms in a spatially dependent way, which leads to the synthetic magnetic field. Third, the synthetic
magnetic field generated by the light-induced magnetic field can be much stronger than that generated by
the real magnetic field. The synthetic gauge field is an active research topic in cold atom physics, and more
discussion can be found in Box 7.3.

phases are always equal for any trajectory, then the spatial motion of a neutral spinful atom
in a spatially varying magnetic field can be effectively described by a “charged” spinless
particle in a synthetic magnetic field. This also tells us that the synthetic magnetic flux
generated in this way depends on how fast the magnetic field direction varies in space.
However, it is hard for a real magnetic field to vary very rapidly in space. In Section 1.3 we
will introduce the vector light shift, which can generate a light-induced Zeeman field for
atoms that can vary in the scale of the order of interparticle spacing. By combining these
two effects, we can generate a strong synthetic magnetic field. To further clarify these
concepts, we summarize different terminology of “magnetic fields” in Table 1.1.

Finally, we should also mention that this adiabatic approximation can break down either
when the off-diagonal components of A become very large due to fast variation of the
magnetic field direction or when the energy differences of the diagonal components of
	(r) become quite small. For instance, the latter happens at r = 0 of the quadruple trap,
where a few spin states become degenerate. Around the r = 0 regime, the off-diagonal
components of A are always important, which drives transitions between different adiabatic
spin states. Therefore, there is significant probability that a “low-field seeking” state can
flip into a “high-field seeking” state, which is also known as the “Majorana transition.”
When the transition takes place, atoms cannot be trapped by the magnetic trap. This is one
of the major challenges in achieving a Bose–Einstein condensate in a magnetic trap before
1995. This is actually an effect of the non-abelian gauge field. It is interesting to note that
though the synthetic gauge field became a major research subject in cold atom physics after
around 2010, its effect already existed even prior to the birth of this field. The JILA group
and the MIT group came up with different methods to solve this problem. The JILA group
applies an oscillating offset magnetic field to deal with this problem [140]. Treating a time-
periodical system requires the Floquet theory, which will also be discussed in Section 7.4.

1.3 Light Shift

In the previous sections, we discussed the structure of a single atom. In this section, we
will discuss how a single atom interacts with a laser light.
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15 Light Shift

General Framework. Atoms experience an effective potential in the presence of the laser
field. Here we will discuss such potential using the ground state alkali-metal atoms as an
example. One can see that the first two leading order contributions to this light-induced
potential are the scalar potential and the vector potential, which are known as the scalar
light shift and the vector light shift, respectively.

As discussed in Section 1.1, let us consider all states in the ground state 2S 1
2

manifold
with the electron angular momentum L = 0, and all states in the electronic excited states
2P 1

2
and 2P 3

2
manifolds with L = 1. Here, by “manifold,” we mean that both electronic

and nuclear spin degrees of freedom are included, and each manifold contains multiple
spin states. The energy splitting Eex between the ground and the excited manifolds is of
the order of the electron volt, which usually lies in the energy window of a visible light
field, as shown in Figure 1.5. We denote the detuning 
e = Eex − �ω, where ω is the laser
frequency. Usually, 
e is comparable to or larger than the fine-structure splitting and is
much larger than the hyperfine splitting. 
e is also much smaller than the detuning of the
other electronic excited states, that is to say, all the other electronic excited states are far
detuned. With these energy scale considerations, our model is established as follows:

• The contributions from both 2P 1
2

and 2P 3
2

are important and should be treated on equal
footing.

• The hyperfine coupling and the Zeeman energy are safely ignored.

• Except for 2S 1
2
, 2P 1

2
and 2P 3

2
manifolds, all the other electronic states are not included.

Hence, we write down our model as follows [61]:

Ĥ = Ĥat + Ĥd. (1.12)

�Figure 1.5 Schematic of the level diagram for atom-light interaction. Here we use the alkali-metal atoms as an example. Three
relevant energy scales, the excitation energyEex, the detuning
e, and the fine structure splittingαf, are marked on
the diagram. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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16 A Single Atom

Ĥat denotes the Hamiltonian for the atom part and it is given by

Ĥat = EexPe + αfŜ · L̂. (1.13)

Here we define a projection operator Pg to the ground states manifold with L = 0 and a
projection operator Pe to the excited states manifold with L = 1. In our model, Pg +Pe =
1. We have also set the ground state energy as zero energy, and the Ŝ · L̂ vanishes when
acting on the ground state manifold. It is also important to note that Ĥat itself does not
provide any coupling between the ground and the excited states.

Here the atom–light interaction refers to the interaction between electrons inside the
atom and the electromagnetic field of the laser. Considering a time-dependent electric field
applied to electrons, the Hamiltonian can be written as

Ĥ =
Z∑

i=1

1

2m∗ (p̂i + eA(t))2 + . . . , (1.14)

where ri denotes the coordinate of a valance electron in the rest frame of the nucleus,
and . . . represents the Coulomb interactions and other terms discussed in Section 1.1.
Typically, the wave length of a laser is much longer than the size of an atom, therefore, on
the scale of electronic wave function inside an atom, we can ignore the spatial dependence
of A and only consider its temporal dependence. As we will see below, this leads to the
dipolar coupling.

Here, by performing a gauge transformation, we consider Û†ĤÛ → Ĥ, and U†ψ → ψ ,
and here

Û = e−∑
i ieA·ri/�. (1.15)

Under this gauge transformation, p̂i +eA changes back to p̂i and the kinetic energy returns
to the normal p̂2

i /(2m∗). However, because this gauge transformation is time dependent,
there will be an extra term i�(∂tÛ)†Û added into the Hamiltonian, which is given by

i�(∂tÛ†)Û = −eri · ∂A
∂t

= eri · E, (1.16)

where E is the electric field of the laser given by E = −∂A/∂t. Hence, it results in the
dipole coupling Ĥd = d · E, where d = ∑

i eri is the electron dipole operator, and it gives
rise to the transition between the ground and the excited states.

First, we consider a single laser field, and

Ĥd = d · E =
∑

j=x,y,z

djE
0
j cos(φj − ωt), (1.17)

where E0
j cos(φj − ωt) is the jth component of the electric field and j = x, y, z denotes

three spatial components of the laser field. For example, in this notation, for a light linearly
polarized along x̂, E0

x �= 0 and E0
y = E0

z = 0; for a light linearly polarized along the

(x̂ + ŷ)/
√

2 direction, E0
x = E0

y �= 0, φx = φy and E0
z = 0; and for a light circularly

polarized in the xy plane, E0
x = E0

y �= 0, φx = φy ± π/2 and E0
z = 0.
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17 Light Shift

Here we first simply the Hamiltonian by employing the rotating wave approximation.
We first define a unitary transformation as

Û(t) = e−iωtPe = (1 − Pe) + Pee−iωt = Pg + Pee−iωt. (1.18)

and apply this unitary transformation to the Hamiltonian. The rotating wave approxima-
tion ignores e±i2ωt terms because they are high-frequency oscillating terms. With this
approximation, it is straightforward to show that the Hamiltonian is reduced to

Ĥd = Û†(t)ĤdÛ(t) ≈ 1

2

∑
j=x,y,z

(
E∗

j PgdjPe + EjPedjPg

)
, (1.19)

where we have also used PgdjPg = PedjPe = 0 because of the rotational symmetry
of the electron wave functions. Here Ej is defined as E0

j eiφj . Unlike E, here E is time-
independent, which encodes the phase and amplitude information of the laser field. In this
notation, for a light linearly polarized along x̂, E = E0ex; for a light linearly polarized
along the (x̂ + ŷ)/

√
2 direction, E = E0√

2
(ex + ey); and for a light circularly polarized in the

xy plane, E = E0√
2
(ex + iey).

Moreover, a time-dependent term i�(∂tÛ†)Û can be absorbed in Ĥat so that Ĥat becomes

Ĥat = 
ePe + αfŜ · L̂, (1.20)

where 
e = Eex − �ω. 
e > 0 is called the red detuning and 
e < 0 is called the
blue detuning. In this way, we obtain the new Ĥat + Ĥd as a time-independent effective
Hamiltonian. We will revisit such a time periodical problem in Section 7.4 with a general
theoretical framework known as the Floquet theory.

This formalism can be straightforwardly generalized to the situations with multiple laser
beams. In this case, the electric field consists of contributions from all laser beams, and we
write the dipole coupling as

Ĥd = d · E =
∑
κ

∑
j=x,y,z

djE
0
j,κ cos(φj,κ − ωκ t), (1.21)

where κ labels different laser fields. Here different lasers can have different frequencies,
but their difference should be small. That is to say, suppose we denote the average of these
frequencies as ω; their difference should be much smaller than ω. Therefore, we can still
safely drop all terms with e±i(ωκ+ω)t and retain all terms with e±i(ωκ−ω)t. After the rotating
wave approximation, it is easy to show that Eq. 1.19 still holds, except that the definition
of Ej should be modified as

Ej =
∑
κ

E0
j,κeiφj,κ−i(ωκ−ω)t. (1.22)

Note that if all lasers share the same frequency, E is time-independent. If there are multiple
frequencies, E is also time-dependent.

The physical meaning of the rotating wave approximation can be understood more
clearly when we treat the laser as a quantum field labeled by photon number. Let us
now consider an atom in the ground state (denoted by |g〉) in a laser field with N pho-
tons (denoted by |N〉). In the second quantized form, the d · E coupling can either create
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18 A Single Atom

a photon or annihilate a photon when it couples an atom from the ground state to the
excited state. Thus, we shall consider following two different second-order perturbation
processes. Starting from the state |g〉|N〉, the atom can either be first excited to the excited
state (denoted by |e〉) by absorbing a photon, such that the intermediate state is |e〉|N − 1〉
with energy 
e, and then return to the ground state |g〉|N〉 by emitting a photon. The atom
can also be first excited to the excited state by emitting a photon, such that the interme-
diate state is |e〉|N + 1〉 with energy Eex + �ω, and then return to the ground state |g〉|N〉
by absorbing a photon. The second process has a much larger intermediate state energy,
and therefore, the probability is considerably smaller. The rotating wave approximation is
basically to ignore the second process. With the first process alone, by taking the energy of
photons into account, the energy detuning changes from Eex in Eq. 1.13 to 
e in Eq. 1.20.

Hereafter we will consider how this second-order process generates an effective potential
for atoms in the ground state manifold after eliminating the excited states |e〉|N − 1〉. Fol-
lowing the standard perturbation theory, the effective Hamiltonian for atoms in the ground
manifold is derived as

Ĥeff = −PgĤdPeĤ−1
at PeĤdPg = −1

4

∑
i, j=x,y,z

E∗
i D̂ijEj, (1.23)

where D̂ij is a rank-2 Cartesian tensor operator defined as

D̂ij = PgdiPeĤ−1
at PedjPg. (1.24)

D̂ij is purely a property of atoms. By using the fact that Pg + Pe = 1 and PgdiPg = 0,
Pe in Eq. 1.24 can be eliminated. Hereinafter we should focus on the properties of D̂ij in
different circumstances.

The Scalar Light Shift. We first consider a special case with αf = 0; then Ĥat is simplified
as 
ePe, and

D̂ij = 1


e
PgdidjPg. (1.25)

Since the ground state has L = 0, which has the spatial reflection symmetry and rotational
symmetry, it is easy to see that Dij = 0 if i �= j, and all three Djj ( j = x, y, z) are the same.
Therefore,

D̂ij = −4usδij, us = − e2

12
e
〈g|r2|g〉, (1.26)

which gives rise to an effective Hamiltonian

Ĥeff = usE2. (1.27)

This term acts identically on different spin states of the ground manifold and cannot flip
the spin, and this term also does not depend on the polarization of the lasers. This is
because the dipole coupling only acts on the orbital degree of freedom of the valance
electron, and therefore, in the absence of Ŝ · L̂ coupling, the orbital degree of freedom is
decoupled from the spin degree of freedom. Hence, this term is called the scalar light shift,
and us is called the atom’s scalar ac polarizability. Below we shall discuss some important
applications of the scalar light shift.
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Trapping Atoms with Laser. The scalar potential only depends on the intensity of the
laser. For the red detuning case, us < 0, atoms will be trapped in the place where the laser
intensity is a local maximum. Hence, one can trap atoms with a focused laser beam. This is
the basic mechanism of the laser trapping. In this optical trap, all spin states in the ground
state manifold will experience identical potentials, and one can fully utilize the spin degree
of freedom of atoms, as we will discuss in Section 4.3.

However, there is one complication we should notice. So far what we have considered is
the second-order process that the photon absorption is followed by the stimulated emission.
In fact, there is another process, that is, the photon absorption is followed by the sponta-
neous emission. The spontaneous emission is what causes the finite lifetime of the excited
state and can be described by adding an imaginary part  in the excited state energy, where
 is the line width of the excited states. Hence, this process can be described by adding
an imaginary part to the excited state energy in the expression of the ac polarizability.
Consequently, us acquires an imaginary part as

us ∝ 1


e − i
= 
e


2
e + 2

+ i



2
e + 2

. (1.28)

For the off-resonant case with 
e � , the real part behaves as 1/
e and the imaginary
part behaves as /
2

e . Since the real and imaginary parts have difference power depen-
dence on 
e, in the far-detuned regime with 
e � , the imaginary part can be strongly
suppressed compared with the real part. Since the real part provides the trapping effect, one
usually works in this far-detuned regime for laser trapping. The laser trapping was awarded
the Nobel Prize in 2018.

Optical Lattice. Now let us consider applying two counterpropagating laser beams, say,
along x̂. These two lasers have the same frequency and the same polarization; for instance,
both are linearly polarized along ŷ. Suppose both two lasers have the same strength E0;
according to Eq. 1.22, we have

Ey = E0eikx + E0e−ikx = 2E0 cos(kx). (1.29)

The electric field intensity has a spatial periodical modulation due to the interference
between two lasers. Hence, the scalar light shift gives rise to a periodic lattice potential
V(x) ∝ cos2(x), which is now well known as the optical lattice. Optical lattices will be the
main topic of the last part of this book.

Cooling Atoms with Laser. If 
e becomes small, the imaginary part of the scalar poten-
tial also becomes important, which means the process with spontaneous emission becomes
important. There is an important difference between the process with the stimulated emis-
sion and the process with the spontaneous emission. For the former, because it is the same
photon that is absorbed and emitted, the momentum transfer is canceled, and atoms do
not receive momentum transfer after the entire second-order process. But for the latter,
since the photon can go any direction in the spontaneous emission process, on average, the
momentum transfer during the emission process is canceled out, and therefore, atoms get
kicked by the photons of the laser field during absorbing the photon. Effectively, atoms
feel a force proportional to /
2

e and the momentum of the laser. Now considering two
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counterpropagating lasers with same frequency, if an atom is at rest, the force from the left
laser cancels with the force from the right laser, because the momentum transfers received
from the left and the right lasers are of equal strength and opposite sign. However, if an
atom moves toward the right, due to the Doppler effect, 
e for two lasers depends on the
velocities of the atoms, and they are different. Thus, the force cannot be canceled out, and
it can be shown that the net force is always opposite to the velocity of the atom [138].
Thus, this effect slows down the motion of atoms. That is the basic mechanism of the
laser cooling, which is one of the most important steps to cool atoms toward the quantum
degeneracy. Laser cooling was recognized with the Nobel Prize in 1997.

However, due to various limitations, it is very hard to reach quantum degeneracy of
atomic gases directly by laser cooling. Directly reaching quantum degeneracy by laser
cooling was first achieved more than 20 years after achieving Bose–Einstein condensation
in atomic gases [76, 160]. In most experiments, one needs to perform evaporative cooling
after laser cooling. The basic idea of evaporative cooling is quite straightforward. Consid-
ering that the trapping potential has a finite depth U0, atoms with kinetic energy larger than
U0 have a significant chance to escape from the trap. Now let us gradually decrease U0,
thus, more and more atoms with larger kinetic energy escape from the trap, and the average
kinetic energy of the remaining atoms decreases. Therefore, the temperature of the remain-
ing atomic gas decreases. However, we should notice that the evaporative cooling pays the
price of losing atoms in order to lower the temperature. When losing atoms, the degenerate
temperature also decreases. Therefore, the efficiency of the evaporative cooling becomes
crucial. That is to say, lowering the temperature has to be faster than lowering the degener-
ate temperature; otherwise, the system can never reach quantum degeneracy. The efficiency
of evaporative cooling certainly depends on how to lower the trap depth U0 as a function
of time t, and controlling this dynamical process is the key challenge to reaching quantum
degeneracy through evaporative cooling.

Vector Light Shift. Now let us consider the situation with finite Ŝ · L̂ coupling. As we
discussed above, fine structure splitting αf can be comparable to detuning 
e. Here, just
to simplify the calculation, we consider the situation αf/
e � 1, and the main conclusion
does not change if αf ∼ 
e. When αf/
e � 1, we can expand Ĥ−1

at to the leading order
of αf/
e, and we obtain

Ĥ−1
at =

(
1


e
− αf


2
e

Ŝ · L̂
)
Pe, (1.30)

and therefore,

D̂ij = Pgdi
1


e
djPg − αf


2
e
Pgdi(Ŝ · L̂)djPg. (1.31)

As shown above, the first term gives the scalar part. And for the second term, one has

Pgdi(Ŝ · L̂)djPg = Pg( Ŝ · L̂)didjPg − Pg[(Ŝ · L̂), di]djPg (1.32)

= −i�εlimSlPgdmdjPg, (1.33)
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where the first term vanishes because ground state has L̂Pg = 0, and for the second term,
we have used the commutative relation [L̂l, d̂i] = i�εlimd̂m, where εjim is the Levi–Civita
symbol. Thus we reach

D̂ij = −4usδij + i
�αf


e
εijlSl(−4us) � −4us

(
δij + i

�αf


e
εijlSl

)
, (1.34)

where the second term will give rise to a vector light shift. In this case, the effective
Hamiltonian is given by

Ĥeff = −1

4

∑
i,j=x,y,z

E∗
i D̂ijEj = us|E|2 + iuv(E∗ × E) · Ŝ, (1.35)

where uv = �αfus/
e is the vector polarizability. The physical meaning of the vector light
shift is a Zeeman field B = iuvE∗ × E acting on the electronic spin degree of freedom of
an alkali-metal atom.

Again, because the dipole coupling acts on the orbital degree of freedom, the vector light
shift has to reply on the Ŝ · L̂ coupling that hybridizes the orbital degree of freedom with
the electronic spin degree of freedom. In this case, the Ŝ · L̂ exists only in the excited states,
and therefore, the vector light shift is smaller than the scalar term by an order of �αF/
e.
Consequently, the vector light shift scales with 
e also as 1/
2

e . Thus, the vector light shift
has the same scaling as the spontaneous emission process. In the discussion of the scalar
light shift, we have noticed that, because the scalar light shift and the spontaneous emission
scale with 
e differently, one can suppress the effect of spontaneous emission compared
with the scalar potential by increasing the detuning. However, this no longer works for
the vector light shift. Because the vector light shift and the spontaneous emission scale
with 
e in the same way, one cannot suppress the spontaneous emission process without
reducing the strength of the vector light shift. This discussion of atom–light interaction
can also be generalized to lanthanide atoms like Dysprosium and Erbium [41]. There, the
f -orbital is not fully filled for the ground state, and electric spin and angular momentum are
not good quantum numbers for atoms in their ground state. Therefore, the dipole coupling
can always act on the electronic spin degree of freedom. Thus, for these lanthanide atoms,
the vector light shift scales in the same way as the scalar light shift, and they both scale as
1/
e [41, 24]. Indeed, the vector light shift has been realized in the lanthanide atoms with
suppressed spontaneous emission [41, 24].

Light-Induced Zeeman Energy. Below we will discuss a couple of examples as the appli-
cations of the vector light shift. If an atom is illuminated in a linearly polarized light, then
E∗ × E = 0, and the vector light shift vanishes. If the light is circularly polarized, for
instance, E = E0√

2
(ex + iey), then

E∗ × E = iE2
0ez, (1.36)

which gives rise to a light-induced Zeeman energy proportional to uvE2
0Sz. This difference

between a linear polarized light and a circular polarized light lies between their difference
in symmetry. The presence of a linear polarized light does not break the time reversal sym-
metry, but the presence of a circular polarized light does. Since the presence of a Zeeman
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field breaks the time-reversal symmetry, symmetry-wise, it is compatible with the presence
of a circular polarized light, but is not compatible with the presence of a linearly polarized
light.

Since uv depends on the fine-structure splitting and detuning, if two different atoms are
illuminated in the same circular polarized laser, they will experience different light-induced
Zeeman fields. In general, because the spin-orbit coupling is stronger for heavier atoms,
the vector light shift is also larger for heavier atoms for a given detuning. One experiment
that can demonstrate this effect is the spin exchanging scattering between 23Na and 87Rb
atoms [108]. The spin exchanging scattering will be discussed in detail in Section 2.3.
Here let us first mention it briefly. Considering the F = 1 spin states of both 23Na and
87Rb atoms, each of them has three magnetic states labeled by |Fz〉. For instance, one of
the spin-exchanging scattering processes can take place as

|0〉Na| − 1〉Rb ↔ | − 1〉Na|0〉Rb. (1.37)

This spin-exchanging scattering reaches a resonance at a certain magnetic field when the
Zeeman energy difference between the incoming and the outgoing states vanishes, that is,


E = (E|0〉Na + E|−1〉Rb) − (E|−1〉Na + E|0〉Rb) = 0, (1.38)

at which the period of the spin-exchanging oscillation reaches a maximum. The Zeeman
energy contains a contribution from both the static magnetic field and the light-induced
Zeeman field. In the common practical condition [108], given a typical value of the opti-
cal trapping laser, the light-induced Zeeman energy for 87Rb is equivalent to applying a
magnetic field of ∼mG, but the light-induced Zeeman energy for 23Na is only equivalent
to applying a magnetic field of ∼μG, which can be safely ignored. This difference is due
to the difference in their fine-structure splitting. Therefore, the magnetic field strength to
reach the spin-exchanging resonance is different for different laser intensities. This has
been experimentally observed, and the experimental results are shown in Figure 1.6.

Synthetic Spin-Orbit Coupling. Now we consider atoms in a real static magnetic field
along ẑ that gives rise to a Zeeman energy, assumed to be hFz for simplicity. In addition,
let us consider two counterpropagating Raman beams along x̂, with one polarized along ŷ
and the frequency ω1 and the other polarized along ẑ and the frequency ω2, as shown in
Figure 1.7. The electronic field is given by

E = E1eik0x+iω1tey + E2e−ik0x+iω2tez. (1.39)

This is the situation of two lasers with different frequencies. With the help of Eq. 1.22, one
can obtain

E∗ × E = E1E2(e−i2k0x−iδωt − ei2k0x+iδωt)ex, (1.40)

where δω = ω2 − ω1. Then, atoms in this laser field experience a light-induced Zeeman
field as

Ĥeff = iuvE1E2(e−i2k0x−iδωt − ei2k0x+iδωt)Ŝx. (1.41)

In the low-field regime, by using the Wigner–Eckart theorem, one can project the Hamil-
tonian Eq. 1.43 into the hyperfine eigenstate bases, where the Ŝx,y,z terms become F̂x,y,z
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23 Light Shift

�Figure 1.6 Physical effect of the light-induced Zeeman energy. (a) The energy difference between different spin states
E
defined in Eq. 1.38. (b) The observed spin exchanging oscillation periods as a function of the real magnetic field
strength, for different light-induced magnetic fields.Bac in the figure denotes the light-induced Zeeman field for
87Rb at different intensities of the circular polarized light. Reprinted from Figure [108]. A color version of this figure
can be found in the resources tab for this book at cambridge.org/zhai.

B

(a) (b)

ω1

z y
x h

ω1

ω2

ω2

�Figure 1.7 Schematic of the synthetic spin-orbit coupling for atoms. (a) The laser configuration of the Raman coupling scheme.
Two counterpropagating Raman beams with different polarization directions and different frequencies are applied
along x̂, and B is the real magnetic field applied along the ẑ direction. (b) Raman coupling couples two Zeeman levels
split by a Zeeman energy denoted by h. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.
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24 A Single Atom

terms, respectively.3 Thus, the total Hamiltonian for the spin part contains both the real
static Zeeman field and the light-induced Zeeman field as

Ĥs = hF̂z + i�(e−i2k0x−iδωt − ei2k0x+iδωt)F̂x, (1.42)

where � denotes the coupling constant proportional to E1E2. Let us consider the situa-
tion that δω is near-resonant with h. Following the discussion above, we apply a unitary
transformation Û = e−iδωtF̂z/� and implement the rotating-wave approximation to drop the
terms with 2δω frequency; the full Hamiltonian can be reduced to

Ĥs = (h − δω)F̂z + �(sin(2k0x)F̂x − cos(2k0x)F̂y). (1.43)

This Hamiltonian represents a spatially dependent Zeeman field that varies the spin
direction at the scale of the laser wavelength.

The discussion above mainly concerns the motion of electrons inside an atom. Now, we
consider an atom as a point particle moving in such a spatially dependent Zeeman field,
and the Hamiltonian is given by

Ĥ = �
2k̂

2

2m
+ Ĥs, (1.44)

where k now stands for the spatial motion of the atom. By applying a spatially dependent
spin rotation Û = e−i2k0xF̂z to the Hamiltonian, one can obtain that

Ĥ = �
2

2m
(k̂x − 2k0F̂z/�)2 + �

2 k̂
2
⊥

2m
+ (h − δω)F̂z − �F̂y. (1.45)

Below we will analyze several different situations of the model Eq. 1.45.

• When h − δω is much larger than �, we can only keep the lowest spin branch by imple-
menting the adiabatic approximation. Without loss of generality, we consider h−δω > 0.
Nearby the minimum of the dispersion, the dispersion can be well approximated by

1
2m∗ (kx − kmin)2 [112]. For small �, kmin ≈ 2k0 + o(�). This can be viewed as realizing
a constant gauge U(1) gauge field Ĥ = 1

2m∗ (kx − Ax)2 where Ax is a constant. A con-
stant U(1) gauge field has no physical effect because there is neither an electric nor a
magnetic field, and it can be gauged away by a gauge transformation eikminx.

• In the regime discussed above, if � depends on the y coordinate, then it means kmin,
or equivalently, to say, Ax, depends on y. This leads to a synthetic magnetic field
Bsyn = −∂Ax/∂y [113]. This emergent synthetic magnetic field can also be understood
in terms of spatial twisting of spins by the light-induced magnetic field, as discussed in
Section 1.2. If � depends on time, then Ax also depends on time. This realizes a syn-
thetic electric field given by Esyn = −∂Ax/∂t [115]. However, the spatial and temporal
dependences of these gauge fields are completely fixed by the external classical fields,
which are the profile of the laser intensity in this case. There is no quantum dynamics of
these gauge fields. We will summarize the timeline of simulating various kinds of U(1)

3 According to the Wigner–Eckart theorem, the projection from Ŝx,y,z terms to F̂x,y,z terms acquires a constant

coefficient given by F(F+1)−I(I+1)+J(J+1)
2F(F+1) . For 87Rb, I = 3/2, J = 1/2, and for the F = 1 manifold, this

constant is −1/4.
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25 Light Shift

gauge fields in Box 7.3, where we will discuss how to realize a U(1) gauge field with its
own dynamics.

• In the regime when h−δω is comparable to�, we need to keep all spin components. Here
we again consider � a constant independent of spatial and temporal coordinates, but we
need to keep both the vector gauge potential Ax = 2k0F̂z/� and the scalar potential
−�F̂y terms as matrices. These two terms do not commute with each other, and this
realizes a non-abelian gauge field. Unlike the abelian case, a non-abelian gauge field has
a physical effect even though they are constants. As one can see, if one wants to gauge
away the vector potential, one needs to make a gauge transformation e2ik0xF̂z , and this
gauge transformation does not commute with the scalar potential term.

In this case, the Hamiltonian can also be written as

Ĥ = �
2k̂

2

2m
+ hk · F̂, (1.46)

where

hk =
(

0, −�,

(
h − δω − �

2

m
k0kx

))
. (1.47)

In this way, this Hamiltonian can be viewed as a momentum-dependent Zeeman field.
For eigenstates, the spin direction of the atom is locked by its momentum, which gives
rise to the spin-orbit coupling effect. Here we should note that one should not confuse
this synthetic spin-orbit coupling with the real spin-orbit coupling discussed in atomic
structure. For the synthetic spin-orbit coupling, “orbit” refers to the spatial motion of
atoms, and “spin” refers to the total spin of an atom. In nature, neutral atoms do not
possess the spin-orbit coupling effect, and here it is a synthetic effect generated by the
atom–light interaction. The real spin-orbit coupling refers to the fine structure coupling
given by nature, where “orbit” means the motion of electrons around the nucleus inside
the atom and “spin” refers to the spin of electrons. Nevertheless, from the discussion
above, it is interesting to note that generating the synthetic spin-orbit coupling relies on
the real spin-orbit coupling.

• We have not included the quadratic Zeeman energy in the discussion above. Considering
atoms like 87Rb with F = 1, in the moderate magnetic field, there also exists sizable
quadratic Zeeman energy denoted by qF2

z , as discussed in Section 1.2. Especially, let us
consider the situation that h − δω ≈ q � �, such that

δ = h − δω − q � � (1.48)

h − δω + q ≈ 2q � �. (1.49)

In this case, two states with |F = 1, Fz = 0〉 and |F = 1, Fz = −1〉 are nearly
degenerate, and their energy separation with |F = 1, Fz = 1〉 is much larger than the
coupling. Hence, we introduce a pseudo-spin-1/2 to represent |F = 1, Fz = 0〉 and
|F = 1, Fz = −1〉 states, described by the Pauli matrices σ , and ignore |F = 1, Fz = 1〉.
In the spin-1/2 subspace described by the Pauli matrix, the Hamiltonian can be written as
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26 A Single Atom

Ĥ = �
2

2m
(k̂x − k0σz)

2 + �
2 k̂

2
⊥

2m
+ δ

2
σz − �σy, (1.50)

where δ denotes h − δω − q. Upon a spin rotation, the Hamiltonian can also be written
in the form used most often in literature:

Ĥ = �
2

2m
(k̂x − k0σz)

2 + �
2k̂

2
⊥

2m
+ δ

2
σz + �σx. (1.51)

This Hamiltonian has been realized in both Bose condensate [114] and degenerate Fermi
gas [181, 32]. The effects of this spin-orbit coupling in ultracold Bose and Fermi gases
have been extensively studied in cold atom physics [186]. We will discuss how this
synthetic spin-orbit coupling affects the properties of a Bose condensate in Section 4.5.

1.4 Stimulated Raman Adiabatic Passage

In Section 1.3 we have discussed that atoms in their ground state can experience an effec-
tive potential due to the two-photon process via intermediate excited states. In this section,
we will discuss a dynamical process that can transfer atoms from one low-energy state to
another low-energy state, also through a two-photon process via an intermediate state. This
is known as Stimulated Raman Adiabatic Passage (STIRAP).

Here we introduce the simplest version of the STIRAP [178]. As shown in Figure 1.8,
the two low-energy states are denoted by |1〉 and |2〉 with energy E1 and E2, and the excited
state is denoted by |e〉 with energy Eex. A laser called a “pump laser” couples |1〉 to |e〉 with
energy ωp and a time-dependent coupling strength �p(t), and another laser called a “stoke
laser” couples |2〉 to |e〉 with energy ωs and a time-dependent coupling strength �s(t). Here
it is important to note that the time dependence of �s(t) and �p(t) should be slow enough
compared to other time scales. Here we introduce two detunings 
p = Eex − E1 − �ωp

and 
s = Eex − E2 − �ωs, and STIRAP requires 
p = 
s, which will be denoted by 


below. Therefore, under the rotating wave approximation, the time-dependent Hamiltonian
is given by

Ĥ(t) = �|�〉H(t)〈�|T , (1.52)

where |�〉 denotes (|1〉, |2〉, |e〉) and 〈�|T denotes (〈1|, 〈2|, 〈e|)T , and H(t) is a 3×3 matrix
given by

H(t) =
⎛
⎝ 0 0 �p(t)

0 0 �s(t)
�p(t) �s(t) 


⎞
⎠ . (1.53)

This Hamiltonian can in fact be rewritten as

Ĥ(t) = A(t)

[(
�p(t)

A(t)
|1〉 + �s(t)

A(t)
|2〉

)
〈e| + h.c.

]
+ 
|e〉〈e|, (1.54)
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27 Stimulated Raman Adiabatic Passage

�Figure 1.8 Schematic of the STIRAP scheme. (a) How two lasers couple three different states at three different stages. The dashed
line and the solid line denote the stoke laser and the pump laser, respectively. (b) The temporal profiles of�s (dashed
line) and�p (solid line) as a function of time. (c) The population in the |1〉 state (solid line) and the population in the
|2〉 state (dashed line) as a function of time. A color version of this figure can be found in the resources tab for this
book at cambridge.org/zhai.

where A(t) =
√
�2

p(t) + �2
s (t). Now we define a “bright” state |B〉 as

|B〉 = �p(t)

A(t)
|1〉 + �s(t)

A(t)
|2〉 (1.55)

and another “dark state” |D〉 orthogonal to |B〉 as

|D〉 = −�s(t)

A(t)
|1〉 + �p(t)

A(t)
|2〉. (1.56)

In the Hilbert space spanned by {|1〉, |2〉}, only |B〉 couples to |e〉, and |D〉 state does not
couple to |e〉 at all. That is to say, for any given time t, H(t) can be diagonalized by a unitary
matrix U(t), and there will always be an instantaneous eigenstate |D(t)〉 whose eigenenergy
always remains as zero. The other two instantaneous eigenstates will be in superposition
of |B〉 and |e〉, and their energies will be ±√

A2(t) + 
2/4.
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28 A Single Atom

The key idea of STIRAP relies on this dark state |D(t)〉. If one solves the time-dependent
Schrödinger equation, there will be an extra i�(∂tU†(t))U(t) term when one rotates into the
instantaneous eigenstate bases, as we discussed in Section 1.3. The off-diagonal matrix
elements of this term can couple different instantaneous eigenstates. However, since the
three instantaneous eigenstates are always separated by a finite energy difference, if H(t)
changes sufficiently smoothly as a function of time, U(t) also varies sufficiently smoothly,
and therefore the off-diagonal matrix elements can be made sufficiently small compared
with the energy separation of the three instantaneous eigenstates. Therefore, in this adia-
batic regime, the system can nearly remain in one of the instantaneous eigenstates during
the time evolution. In this case of STIRAP, we would like to keep the system in the dark
state |D(t)〉.

The idea of the STIRAP is to utilize the dark state |D(t)〉 to transfer atoms from |1〉 to
|2〉 by properly designing the time dependence of �p(t) and �s(t). To fulfill this goal, at
initial time, �p/�s → 0 and therefore |D〉 → |1〉; and at the final time of the transfer,
�s/�p → 0 and therefore |D〉 → |2〉. The time sequence is very counterintuitive. It
basically constitutes three steps: (1) initially, atoms are populated in state |1〉, however,
one first opens up the coupling between |2〉 and |e〉, as shown in Figure 1.8(a1); (2) in the
intermediate stage, both lasers’ coupling is open, and atoms are transferred from |1〉 to |2〉,
as shown in Figure 1.8(a2); and (3) when atoms have been gradually transferred to the |2〉
state, the coupling between |e〉 and the less occupied |1〉 should remain open, as shown in
Figure 1.8(a3). We schematically show an example of the temporal profiles of �s(t) and
�p(t) in Figure 1.8(b). Correspondingly, the populations of the |1〉 state and |2〉 state are
given by �2

s (t)/A2(t) and �2
p/A2(t), respectively, and they are plotted in Figure 1.8(c).

The STIRAP scheme transfers atoms from one state to another in a coherent way, and
the energy difference between these two states is taken away by photons such that there is
no inelastic energy transfer. The STIRAP scheme has two major advantages that make the
STIRAP scheme very stable:

• Because this dark state does not involve the excited state component |e〉, it is stable
against the spontaneous emission of the |e〉 state.

• This scheme is not sensitive to the details of the temporal profile of �p(t) and �s(t), and
it works as long as the temporal profiles satisfy the aforementioned initial and long time
conditions.

STIRAP has been widely used in atomic and molecular physics, as well as chem-
istry [178]. In cold atom physics, STIRAP has been mostly used for producing ultracold
ground state molecules [127]. In this application, it transfers the two-body molecular state
instead of the single-particle atomic states, but the working principle is the same as dis-
cussed above. The experiment starts with an ultracold sample of the Feshbach molecules
whose energy is very close to scattering threshold, and the size is as large as the interparti-
cle spacing. The Feshbach molecule will be discussed in Section 2.4. The goal is to transfer
them into the ground state molecule, whose energy is more than 1014Hz below the thresh-
old, and the size of the molecule is a few times the Bohr radius. This process is shown in
Figure 1.9. In this case, the excited state is chosen as one of the excited molecular states
that has reasonably large coupling matrix elements with both the initial Feshbach molecule
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�Figure 1.9 STIRAP for producing ground-state molecules. Schematic of using the STIRAP method to transfer a molecule from a
Feshbach molecule to the ground state molecule through a molecular excited state. Reprinted from Ref. [127]. A color
version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

and the final ground state molecule. The transfer efficiency can be larger than 90%. As the
STIRAP process is coherent, the final sample of the ground state molecules remains at very
low temperature. Using this method, a degenerate gas of ground state molecules has been
produced [45].

Exercises

1.1 Considering an electron with Coulomb interaction between electron and nucleus, the
Hamiltonian is given by

Ĥ = −�
2∇2

i

2m∗ − Zκ

r
, (1.57)

and considering the Laplace–Runge–Lene vector defined as

Ĵ = 1

2m∗
(

p̂ × L̂ − L̂ × p̂
)

− Zκ
r
r

. (1.58)

Show that [Ĵ, Ĥ] = 0. This operator Ĵ and the angular momentum operator L̂ together
form the SO(4) algebra. This only works for the Coulomb potential.
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1.2 Considering the excited state of the alkali-metal atom with L = 1 and S = 1/2, write
down the eigenstates for a Hamiltonian with spin-orbit coupling

H = αfŜ · L̂, (1.59)

where αf is a constant.
1.3 Considering a 87Rb or 6Li atom in magnetic field Bẑ, the Hamiltonian can be written

as Eq. 1.6.

(1) Solve the full energy spectrum E as a function of B.
(2) Analyze how E depends on B for small B, and find both the linear and the

quadratic Zeeman shifts. For the linear Zeeman field, one can also use the
Wiger–Eckart theorem to determine the coefficient gF.

(3) Analyze the spin structure at large B.

1.4 Show that in a regime without electric current, the magnetic field strength can not
have a local maximum.

1.5 Estimate the regime where the Majorana transition becomes significant for 87Rb
atoms in a pure quadrupole trap with B = B0(x, y, −2z).

1.6 Derive Eq. 1.19 following the rotating wave approximation.
1.7 Considering the Hamiltonian Eq. 1.42,

(1) show, by using the rotating wave approximation with Û = e−iδωtF̂z/�, that the
Hamiltonian can be reduced to the form of Eq. 1.43.

(2) show, by using a unitary transformation Û = e−i2k0xF̂z , that the Hamiltonian Eq.
1.43 can be mapped to Eq. 1.51.

1.8 Considering a time-dependent Hamiltonian

Ĥ = ωF̂z + B0 cos(ω0t)F̂x, (1.60)

show that when ω0 is close to ω, by rotating wave approximation, the Hamiltonian
can become a time-independent one as

Ĥ = 
F̂z + B0

2
F̂x, (1.61)

where 
 = ω − ω0.
1.9 Considering a Hamiltonian with four coupled states |0〉, |1〉, |2〉, and |3〉,

(1) construct a Hamiltonian that exhibits two dark states. Write down the wave
function of these two dark states.

(2) discuss the condition when this Hamiltonian has one dark state.

https://doi.org/10.1017/9781108595216.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108595216.002



