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Let R be a commutative ring, with an identity element. It is the purpose of this note to
establish conditions for an arbitrary but fixed ideal a of R to satisfy the distributive law

an(b + c) = anb + anc

for all ideals b and c of R. In particular, in the Noetherian case, this will be related to the
decomposition of o into prime ideals. We start with

PROPOSITION 1. For a fixed ideal a in a commutative ring R with an identity element, the
following conditions are equivalent.

(i) an(b + c) = ar\b + anc for any two ideals b and c of R.

(ii) a + bnc = (a + b)n(a + c)/or any two ideals b and c of R.

(iii) For any maximal ideal m of R, the ideals of the local (generalized) quotient ring Rm are
separated by aRm, i.e., any ideal ofRm is either contained in aRm or contains aRnV

Proof. Since an ideal a of R is uniquely determined by its local components aRm and the
formation of sums and intersections is preserved by extension from R to Rm, it is readily seen
that (iii) implies (i) and (ii).

By extension of the ideals from R to Rin, the implication (i) => (iii) is proved by showing
that an ideal a of a local ring R for which (i) holds, will separate the ideals of R. To this end,
it suffices to prove that, for any element b e R, b $ a, the principal ideal bR generated by b will
contain a. In fact, let a be an arbitrary element in a and put b = bR, c = (a-b)R. Then
a e cin(b + c) and (i) implies the representation of a as

a = bx+(a — b)y, where x,yeR, bxsa, (a—b)ysa.

Now, by G a, b $ a; so y is a non-unit in R. Since R is local, 1 — y is a unit in R, and

a(l-y) = b(x-y)

thus implies that aebR. This holds for any element a e a; whence a £ bR.

The implication (ii) => (iii) may be proved similarly. For convenience we introduce the
following

DEFINITION. An ideal a in a commutative ring R is called a D-ideal if it satisfies one and
hence all of the conditions in Proposition 1.

For finitely generated ideals in an integral domain we can give some further characteriza-
tions of D-ideals.
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PROPOSITION 2. Let a be an arbitrary finitely generated ideal of an integral domain R.
Then a is a D-ideal if and only if one of the following equivalent conditions is fulfilled.

(iv) (a : b) + (b : a) = Rfor all finitely generated ideals b of R.

(v) (a + b)(anb) = abfor all ideals b of R.

REMARK. In particular, (iv) and (v) give characterizations of D-ideals in Noetherian
domains.

Proof. Since (a : b)Rm = (aRm : bi?m) for finitely-generated ideals, it is easily seen by
condition (iii) in Proposition 1 that any finitely-generated £>-ideal satisfies (iv) and (v).

Conversely, let a be a finitely generated ideal satisfying (iv). By extension of the ideals
from R to Rm (m maximal), we may without restriction assume that R is local. We then have
to prove that a^ bR for any be R, b £ a. Because of the relation

we have a decomposition of the identity element 1:

l=x+y, xe(a:bR), ye(bR:a).

Since b £ a, x must be a non-unit and hence y a unit, which implies that a £ bR. Thus a
separates the ideals of R, and a is a £>-ideal.

Finally let a satisfy (v). As before we may assume that R is local. Let b be an arbitrary
element in R, b $ a. Because of (v), we have

(a + bR)(anbR) = ba.

For any element a e a we get a representation of ab in the form

ab = bx+Y, fl,-.yi (flje a, y;6anbR, xeanbR). (1)
i

As elements of bR, x and yt may be written as

x = br, yi = br{ (reR, neR). (2)

Since y, e a and b £ a, the elements r, must be non-units and thus belong to the unique maximal
ideal of R, say m. From (1) and (2) we derive the relation

This means that aebR + am, because r , e m . This holds for any element aea, and thus
a £ bR+am. Since a is finitely generated, we conclude by a well-known argument (Naka-
yama's lemma, [3, Theorem 4.1]) that a + bR = bR or a £ bR. Consequently a separates the
ideals of R and a is a Z)-ideal. The proof of Proposition 2 is now complete.

Before stating the next theorem we shall prove

LEMMA 1. In a Noetherian local ring R with maximal ideal m, any non-zero D-ideal is a
power Tnv ofm.
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Proof. Let a # (0) be a D-ideal in R. In the Noetherian ring R we have

Fl mv = (0).
v = l

Consequently there exists a v such that a s mv, a $ m v + i . Since a is a D-ideal in the local ring
R, we see that a $ mv + 1 implies that mv + 1 c a . Suppose that a / mv and a # mv + 1. There
will then be elements aea, a4 mv + 1 and xemv, x$a. Since a separates the ideals of R, it
follows that x $ a implies that a £ xR; hence a = xr. Here r must be a non-unit, i.e. rEtn,
because x $ a. Hence a e mvm = mv + 1 , contradicting the assumption about a. Thus a is a
power of m.

THEOREM 1. Any non-zero D-ideal in a Noetherian integral domain R may be written
uniquely as a product of {finitely many) maximal ideals.

Proof. For any maximal ideal m containing the D-ideal a, the preceding lemma shows
that aRm has the form mv7?lTl for a suitable v. As an ideal of a Noetherian ring, a has a primary
decomposition in which the prime ideals belonging to the various primary components are
all different:

n

a = PI <\, •
1 = 1

Suppose that q, £ m for 1 g i g k ( g n) and that qf $ m for k < i; then

k

m"Rm = aRm= (] qiRm.
i = l

Identifying the radicals of the two sides, we get

k

mRm = fl (Rad q,)Rm,
f = i

and hence k = 1, Rad c\l = m. This implies that ql = mv. Consequently, since any qf is
contained in a maximal ideal, a is represented as an intersection of powers of different maximal
ideals. Since these are pairwise comaximal, the intersection is equal to the product of the
powers of the maximal ideals. The uniqueness follows in a well known way by extension to
the quotient rings Rm (a £ m).

REMARK. Theorem 1 implies in particular that a Noetherian domain in which any ideal
is a D-ideal (i.e., in which the lattice of all ideals is distributive) is a Dedekind domain (cf.
[1, Theorem 8]). If R, moreover, is assumed to be integrally closed in its quotient field, the
D-ideals can be determined more precisely.

PROPOSITION 3. Let R be an integrally closed Noetherian local domain with maximal ideal
m. If there exists a non-trivial D-ideal a (i.e. a ̂  (0), a ^ tn, a i= R), then R is regular of dimen-
sion 1, i.e., R is a principal ideal domain in which any proper ideal is a power ofm.
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Proof. It is sufficient to show that m is principal, since this implies that dim/j/OT (nt/m2) = 1.
Let xu •••, xs be a minimal base of m. According to Lemma 1, a has the form a = mr, where
r ^ 2. Now, as an element of a minimal base of m, xt cannot belong to a; consequently, since
a is a ZMdeal, we have a = mr £ XiR.

For an arbitrary element j>P-i e tnr~1, we have yr-vm s mr e xtR; hence 0>r-i/*i)m is
either R or an ideal contained in m. If (yr_1/xl)m = R, it is obvious that m is principal and
the proof is complete. If ( j r_ Jxjm s m, we conclude that A-i /^i 6 ^. sin c e m ' s finitely
generated and R is integrally closed in its quotient field. Thus we may assume that mr~1 £ xtR;
by repeating the above argument we see that m is either principal or tnr"2 s xtR. Continuing
in this way, we find that m is principal o r t n c xtR; but, since xt is an element in m, this also
implies that m is principal.

Before formulating the next theorem, we recall [2] that the fundamental theorem of ideal
theory is said to hold for an ideal a of R if a is a product of prime ideals

and if, further, a c b <= R implies that b = p',1 ••• p{.k with 0 ^ /, < k,.

THEOREM 2. Let R be an integrally closed Noetherian domain. For an arbitrary but fixed
non-zero ideal a of R, the following conditions are equivalent.

(i) a is a D-ideal.

(ii) a and any proper ideal b 3 a are products of maximal ideals.

(iii) The fundamental theorem of ideal theory holds for a.

Proof, (i) => (ii). a is a £)-ideal if and only if aRm is a Z)-ideal in Rm for any maximal
ideal m. Proposition 3 implies that all overideals of a non-zero £>-ideal in an integrally closed
Noetherian local domain are Z>-ideals, and hence that any ideal b in R, with b 2 a, is a £>-ideal.
(ii) is then a consequence of Theorem 1.

(ii) => (iii). Suppose that a is a product of maximal ideals:

a = nil1 •" mrr (mi ¥= i i ) for i

Any ideal b 2 a is a product of maximal ideals. Considering the extensions to Rm (m maxi-
mal), we see that the representation of b as a product of maximal ideals must have the form

Hence the fundamental theorem of ideal theory holds for a.

(iii) => (i). It is obvious for an ideal a satisfying (iii) that there are only finitely many
ideals b ^a. In particular, for any prime ideal p 3 a, we have that 7?/p contains only finitely
many ideals, i.e., p is maximal. Therefore a is a product of maximal ideals,

a = m*' ••• mk
r
r (ml i= m; for i

and any ideal b 2 a has the form b = m[l ••• m[r (0 ^ /, ^ k,).
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Since aRm = Rm for any m •£ mh it suffices to show that aRm separates the ideals of
Rm for i = 1, ..., r. If A:, = 1, then aRm = rntRm clearly is a D-ideal of Rm . If kt > 1, then
the powers m',1 (0 ^ lt ^ kt) are the only ideals containing mj1. This implies that there is no
ideal lying properly between miRaii and mfRmr Hence dim/jm|/mi/jnii(in,.Rm|/m?.Rin() = 1
and Rm is a regular local ring of dimension 1. In this case all proper ideals of Rm are powers
of in,/?m ; in particular aRm =mk

i'Rm separates the ideals of Rm .

We shall finish by considering commutative Noetherian rings, the prime ideals of which
are ZMdeals. For this purpose we need the following lemma.

LEMMA 2. A prime ideal p in a commutative Noetherian ring is a D-ideal if and only if
pRm = (0) or mRmfor any maximal ideal m of R.

Proof. The " if " part is clear. To prove the converse it is enough to show that a prime
£)-ideal p in a Noetherian local ring R is equal to (0) or the maximal ideal m of R. This, how-
ever, is an immediate consequence of Lemma 1, which implies that p has the form
p = mv for a suitable v. But, when p is prime, v must be 1.

We are now able to prove

THEOREM 3. Let Rbea commutative Noetherian ring with an identity element. The prime
ideals of R are all of them D-ideals if and only if R is a direct sum of integral domains of Krull-
dimension ^ 1 and of primary rings (local rings of dimension zero). Equivalently, the prime
ideals ofR are D-ideals if and only ifR is a direct sum of rings with restricted minimum condition
(i.e. rings for which any proper residue class ring satisfies the descending chain condition).

Proof. Any prime ideal in a ring with restricted minimum condition is either (0) or
maximal, hence a D-ideal. Moreover, it is readily checked that the direct sum of rings for
which any prime ideal is a D-ideal has this property itself. This makes the " if " part in both
formulations obvious. It is sufficient to prove the " only if" part in the first formulation,
since integral domains of Krull-dimension ^ 1 and primary rings always satisfy the restricted
minimum condition (cf. [l]).

Now, let R be a commutative Noetherian ring, the prime ideals of which are £>-ideals.
Since R is Noetherian, the ideal (0) has an irredundant primary representation (0) = d q(.

i

Let p, = Rad q,. The prime ideals p,- must be pairwise comaximal, for if pf and p ; (i #./')
were not comaximal, pf and pj would be contained in a maximal ideal m. In Rm we would have
ptRm £ mRm and y>jRm £ mRm. The prime ideals in Rm are in 1-1 correspondence with the
prime ideals of R contained in m. This, together with Lemma 2, implies that, for example,
p,Rin = (0), pjRm = mRm, and hence that p( c p ; . Since (0) is the only p,i?m-primary ideal
in Rm, it follows that p, is the only p,-primary ideal of/?; i.e., that q, = pf. Similarly, since any
mJ?m-primary ideal contains (0) = p,/?m, any m-primary ideal of R contains pf; i.e., q̂  => p, = q,.
This contradicts the irredundance.

Thus the ideals p, are pairwise comaximal, and this implies that the ideals q, are also pair-
wise comaximal. Hence [4, Chapter III, Theorem 32] it is a direct sum of rings isomorphic to
the rings i?/qf. If Rad q, = p( is maximal, then i?/q, is a primary ring; if Rad q, = p( is not
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maximal, then the above argument shows that q( = pf and any prime ideal properly containing
p.- is maximal. Hence i?/q, = i?/pf is an integral domain of Krull-dimension ^ 1.
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