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AUTOMORPHISMS OF DIRECTED TRIPLE SYSTEMS

CHARLES J. COLBOURN

The obvious necessary conditions for a triple system of index two having a given
automorphism group to underly a directed triple system having the same group
are shown to be sufficient. An efficient algorithm for directing the triple system in
a way that preserves its group is given. Applications to the existence of directed
triple systems with various automorphisms are outlined.

1. BACKGROUND

A triple system of order v and index A, denoted TS(v, A), is a w-set V of elements,
together with a collection B of 3-element subsets of V, called triples; moreover, every
2-subset of V appears in precisely A triples. A partial TS(v, A), or PTS(v, A), relaxes
the requirement so that every 2-subset must appear in at most A triples. Triples systems
have been widely studied for over a century; see [10] for numerous references.

Hung and Medelsohn [13] considered triple systems in which the triples are ordered.
A transitive triple (z, y, z) is taken to contain the ordered pairs {(x, y), (z, z), (y, z)}.
A directed triple system of order v and index A, or DTS(y, A), is a v-set V of elements,
and a collection B of transitive triples, having the property that every ordered pair
(x, y) of distinct elements appears in precisely A of the transitive triples in B. A
partial DTS(v, A) has every ordered pair in at most A of the transitive triples.

Necessary and sufficient conditions for the existence of directed triple systems have
been established by Hung and Mendelsohn for A = 1 [13], and by Seberry and Skillicorn
for all A [14]; they found that the conditions for the existence of a DTS(v, A) are the
same as those for the existence of a TS(v, 2A). However, a much stronger relationship
holds, as we shall see.

Naturally, if one treats the transitive triples of a DTS(v, A) as unordered 3-subsets,
one obtains a TS(v, 2A); this is the underlying triple system of the DTS. The under-
lying triple system of a DTS is termed directable, and the operation of producing the
DTS from the TS is directing.
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258 C.J. Colbourn [2]

THEOREM A. [4, 5, 12]; Every TS(v, 2A) is directable.

The existence theorems for DTS are simple corollaries of Theorem A, together
with existence results for TS(v, A)'s (see, for example, [15]). Moreover, many natural
problems on directed triple systems can be solved by employing the solution for the
analogous problem on triple systems with even index, and directing the triple systems
using Theorem A. Any property preserved in directing a triple system can be studied
in this way; see [4, 5] for some examples.

The automorphism group of a DTS necessarily appears as a subgroup of the
automorphism group of its underlying triple system. However, the automorphisms of
the triple system need not be preserved by the directing operation; there is, for example,
a DTS{7, 1) having only the trivial automorphism but whose underlying TS(7, 2) has
168 automorphisms [6].

We consider the following question. Suppose that there exists a TS(v, 2A) hav-
ing F as an automorphism group, where V need not be the full automorphism group
of the TS. When can the TS{v, 2A) be directed as a DTS(v, A) having T as an
automorphism group?

The motivation for the question is perhaps obvious, but let us mention a few points
here. There has been much work on cyclic designs whose automorphism group contains
a v-cycle [9], and on k~rotational designs, whose automorphism group contains a per-
mutation fixing one element and mapping the remaining elements in k cycles of length
(w — l)/k. Existence for cyclic DTS(v, 1) has been settled by Colbourn and Colbourn
[8], and existence of cyclic DTS(v, A) for all A by Cho, Han and Kang [3]. Cho, Chae
and Hwang [2] settled existence for fc-rotational DTS(v, l) 's. In all of these cases, the
constructions are remarkably similar to analogous constructions for triple systems, and
hence one might expect that the existence of DTS with certain automorphism groups
is a simple consequence of the existence of underlying triple systems with the same
group. However, we shall see that a TS(v, 2A) can have automorphisms that cannot be
shared by any DTS(v, A) based on it. Nevertheless, a first indication that some general
correspondence exists is given by Harms [12]. She determines when it is possible to
direct a cyclic TS(v, 2) to obtain a cyclic DTS(v, 1). Our objective is to establish a
general correspondence that permits results about the structure of the automorphisms
of triple systems to be carried over to directed triple systems, and in this way to provide
simplified proofs of earlier results for automorphisms of directed triple systems, and to
carry over known results from triple systems to directed triple systems.

2. FULL ORBIT PRESENTATIONS

Let (V, B) be a partial triple system PTS(v, 2A), and let T be an automorphism

group of the PTS. For a triple t = {x, y, z} in B, let Tt be the set of automorphisms
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of F restricted to the elements {x, y, z}. Tt is a subgroup of 5s ; hence 7t = |F«| is 1,

2, 3 or 6. The triple t is said to be of type ft •

We first prove a simple necessary condition:

LEMMA 2 . 1 . If a TS{v, 2A) (V, B) with group T is directable as a DTS(v, A)
with group T, tAen for each triple t of the TS(v, 2A), l i e number of occurrences of

the triple t is a multiple of ft.

PROOF: It is easily verified that for any transitive triple t = (z, y, z), the action of
Tt on t yields 71 distinct transitive triples (but of course the same underlying unordered
triple). D

This lemma generalises the observation that a cyclic TS(y, 2) cannot underly
a cyclic DTS(y, 1) when v = 0 (mod 3), since in that case the (required) block
{0, v/3, 2v/3} = t has -yt = 0 (mod 3).

Another way to develop the necessary condition given in Lemma 2.1 is perhaps
more instructive. In the usual way, we define the orbit of a triple t = {x, y, z} under
T, Orb(t, F) , to be the set of all triples

{{TTX, Try, irz} : 7r G F}.

The orbit of a transitive triple t' — {x, y, z),

Orb(t\ Y) = {(TTX, Try, irz);rr £ T}.

For a triple t — {x, y, z}, we also define the full orbit of t under T, FOrb(t, T), to be
the multiset

{{a, b, c} : (a, 6, c) 6 Orb((x, y, z), T)}.

For example, if T = ((xyz)), Orb{{x, y, z},T) = {{x, y, z}}; however,
Orb((x, y, z), T) = {(x, y, z), (y, z, x), (z, y, x)} and hence FOrb({x, y, z}, T)
= {{*! 2/> *}{*> y> '}•> {*> J/> '}}• IQ general, FOrb(t, T) consists of 7* copies of
Orb(t,T).

Let (V, B) be a TS(v, 2A) having F as an automorphism group. For this TS
to be directable as a DTS(v, A) having F as an automorphism group, the Lemma
2.1 requires that there be a multiset of triples {<i, • • • , f,} C B , so that the multiset
union of FOrb{U, F) for t = 1, • • • , a gives the multiset of triples B. We call such a
collection {ti, • • • , tt} a full orbit presentation of (V, B) under F. Lemma 2.1 is an
easy consequence of the fact that every DTS(v, A) with group F has an underlying
TS(v, 2A) with a full orbit presentation under F.

A further necessary condition can be derived. Suppose that F contains an auto-
morphism w fixing two points, x and y, of a triple, but moves the third point 2 of the
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triple. For ir to be preserved, all triples in the orbit must contain the pair {x, y} in
the same direction. Now if n has order 2A (or any order greater than A), the auto-
morphism ir cannot be preserved in the DTS, since the pair (x, y) or the pair (y, x)
must then appear more than A times.

For A = 2, this requirement simplifies: there is no n £ F that fixes two points of
a triple and moves the third; when this condition is met, we say that F has a planar
action on the TS.

3. DIRECTING A FULL ORBIT PRESENTATION

We now show that the presence of a full orbit presentation is not only necessary
for direct ability, it is also sufficient in the case that F has a planar action.

THEOREM 3 . 1 . Let {ti, ••• , t.} be a full orbit presentation under automor-
phism group F of a TS(v, 2A) (V, B). Suppose that F has a planar action on {V, B).
Then (V, B) is the underlying triple system of a DTS(v, A) with automorphism group
F.

PROOF: Let pi, ••• , pr be representatives for the orbits under F of unordered
pairs of elements of V. Using the orbits of pairs and the full orbits of triples, we form
a graph G as follows.

1. For each pair pi — {a,-, bi} (representing an orbit under F), form a vertex
Vi\ arbitrarily choose an ordering, (o^, &,-), to be the default ordering of
the pair.

2. For each triple U = {xi, yj, z,-} in the full orbit presentation, form a
vertex «;,-; arbitrarily choose a cyclic ordering {(x<, y,), (yi, z,), (z{, x,-)}
to be the standard triple for U.

The standard triple is not a transitive triple, nor is its converse. Thus we require in
essence that the pairs not be directed so as to give a standard triple or its converse.
To guarantee this, we connect the {vi} and {WJ} as follows:

3. For each triple ti — {ZJ, yj, z,-}, let pn, p,-2> Pa be the orbit representa-
tives for the orbits containing the pairs {xi, y,-}, {yj, Zi} and {xi, z;} re-
spectively. (These pair orbits need not be distinct.) Now for ;' £ {1, 2, 3},
if the standard triple for tt- contains a pair in the orbit of the default pair
of pij, place an edge between the vertex Vij for pair ptj and the vertex
W{. Otherwise add a path of length two between v^ and W{, by adding
a new vertex rriij and edges {{«tj, TWJJ}, {rtiij, u>,-}}.

In G, every vertex Wi has degree 3 by construction; a vertex Vi has degree 2A if, for
the corresponding pair pt- = {OJ, 6,-}, the orbit of {a,-, bi} has the same size as the orbit
of (at, bi). In this case, {x, y} has a full orbit. Otherwise Vi has degree A, and the
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pair has a half orbit; this reflects the fact that the orbit of pi is accounted for twice
by each occurrence of a pair in a full orbit of triples in the full orbit presentation. Our
assumption that F has a planar action ensures that a half orbit of pairs only arises by
fixing one point of a triple and interchanging the other two.

We next colour the edges of G with two colours, so that

(i) for each vertex V{, no more than A of the edges incident at Vi receive the
same colour;

(ii) for each vertex Wi, the three edges incident at W{ do not all receive the

same colour; and
(iii) for each intermediate vertex m,-j- on a path of length two from a vertex

in {v{} to one in {WJ}, the two edges incident at m,ij receive different
colours.

To produce such a colouring, we proceed as follows. We use two colours, say black and
white. Initially all edges of G are uncoloured. As long as there is an uncoloured edge
incident at a vertex Wi, proceed as follows. Form a maximal trail ("path" with repeated
vertices allowed) of uncoloured edges starting at w,. This trail can terminate either at
Wj, j ^ i, or at a vertex u* of degree A. In either event, alternate colouring black and
white along the trail, starting with a colour that has not yet appeared at w< if possible.
Repeating this results in a colouring of all edges of G. For the resulting colouring,
conditions (i) and (iii) are immediate. We must check condition (ii). Consider a vertex
W{. If Wi appears as an interior vertex on any of the maximal trails chosen to colour,
the two consecutive edges on this trail incident at it;,- receive different colours. If instead
Wi appears as the first vertex of two or more of the chosen trails, in the second of these
the edge at Wi receives a different colour than does the edge at w, in the first. Finally,
Wi cannot be the last vertex in two or more trails, since trails are chosen to be maximal.

Given a 2-edge colouring of G satisfying (i), (ii) and (iii), we now describe how
to direct the system. For each triple U = {a;, y, z} in the full orbit presentation,
let {(x, y), (y, z), (z, x)} be the standard triple for ti. Let the three edges ei , e^, e%

incident at Wi correspond to the edge for the pairs {x, y}, {y, z}, and {x, z} in U,

respectively. Now form a transitive triple t' containing

(a;, y) if e\ is white, (y, x) if ei is black;

(y, z) if e2 is white, (z, y) if e^ is black; and

(z, x) if e3 is white, (x, z) if e3 is black.

We claim that t' is a transitive triple, since of the eight possible ways to order the pairs

of U, the only nontransitive triples occur when all of e\, e^-, es receive the same colour.

Replacing every triple ti in this way certainly yields a collection of orbits of tran-

sitive triples under T. We must also verify that every ordered pair appears in precisely
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A triples. Now consider an orbit of pairs represented by the vertex «<. If the orbit is
full, v,- has degree 2A. Moreover, A edges incident at t\ are white and A are black.
By construction, every white edge at t>< signifies that the corresponding triple has used
the default ordering of the pair, while each black edge signifies one use of the reverse of
the default ordering.

If V{ corresponds to a half orbit of pairs, each occurrence of the default ordered
pair in an orbit of transitive triples is matched by an occurrence of the reverse of the
default in the same orbit of triples. Thus every orbit of ordered pairs is accounted for
precisely A times as required. D

COROLLARY 3 . 2 . A TS(v, 2) with group F underlies a DTS(v, 1) with group

F only if F has a planar action on the TS, and the TS has a full orbit presentation

under F .

4. CONSEQUENCES

Theorem A, that every TS(v, 2A) is directable, is an easy consequence of Theorem
3.1, taking F to be the identity group. Moreover, in the proof of Theorem 3.1, the
2-edge-colouring of the graph G can easily be produced in time that is linear in the
size of G, and hence Theorem 3.1 leads to a linear time algorithm for directing triple
systems that appears quite different from the linear time algorithm of [12].

Taking F to be the cyclic group Zv for a TS(v, 2A) in Theorem 3.1 gives:

PROPOSITION 4 . 1 . A cyclic TS(v, 2A) with all orbits of sizes v and v/3 can

be directed to form a cyclic DTS(v, A) if and only if the number of triple orbits of size

v/3 is a multiple of 3.

Harms [11] proved Proposition 4.1 when A = 1, giving an 0(vs) algorithm for
directing in this case. The proof of Theorem 3.1 gives an 0(A«) time algorithm for all
A. Moreover, using the existence proofs for cyclic TS(v, 2A) in [7], we obtain the result
of Cho, Han and Kang [3]:

PROPOSITION 4 . 2 . A cyclic DTS(v, A) exists if and only if

(i) A = 1, 5 (mod 6) and v = 1, 4, 7 (mod 12) ;
(ii) A = 2, 4 (mod 6) and v = 1 (mod 3);

(iii) A = 3 (mod 6) and v = 0, 1, 3 (mod 4); or

(iv) A = 0 (mod 6) and v > 3.

A similar proposition for 1-rotational systems can be established. Cho [1] proves
that there is a 1-rotational TS(v, A) with even A whenever v = 0, 1 (mod 3) and
A = 2, 4 (mod 6), or v = 2 (mod 3) and A = 0 (mod 2). When v = 1 (mod 3) and
A = 2, 4 (mod 6), there must be a short orbit of triples that cannot be repeated a
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number of times that is a multiple of 3 . Hence in these cases, the TS cannot underly a

DTS having the 1-rotational automorphism. Using Cho's remaining constructions for

1-rotational TS(v, A)'s, together with Theorem 3.1, we obtain a new result:

LEMMA 4 . 3 . A 1-rotational DTS(v, A) exists if and only if

(i) A = 0 (mod 3) and v = 1, 2 (mod 3); or

(ii) v = 0 (mod 3).

Cho, Chae and Hwang [2] give a similar result for fc-rotational DTS(v, l ) ' s , that
can also be obtained by applying Theorem 3.1.

Finally, we remark that there are numerous constructions for TS(v, 2A)'s with
larger groups; Theorem 3.1 enables us to carry over the large automorphism groups in
whole or in part to directed triple systems.
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