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The oscillatory Kelvin–Helmholtz (K–H) instability of a planar liquid sheet was
experimentally investigated in the presence of an axial oscillating gas flow. An
experimental system was initiated to study the oscillatory K–H instability. The surface
wave growth rates were measured and compared with theoretical results obtained using
the authors’ early linear method. Furthermore, in a larger parameter range experimentally
studied, it is interesting that there are four different unstable modes: first disordered
mode (FDM), second disordered mode (SDM), K–H harmonic unstable mode (KHH)
and K–H subharmonic unstable mode (KHS). These unstable modes are determined by
the oscillating amplitude, oscillating frequency and liquid inertia force. The frequencies
of KHH are equal to the oscillating frequency; the frequency of KHS equals half
the oscillating frequency, while the frequencies of FDM and SDM are irregular. By
considering the mechanism of instability, the instability regime maps on the relative Weber
number versus liquid Weber number (Werel–Wel) and the Weber number ratio versus the
oscillating frequency (Werel/Wel–Ωs2) were plotted. Among these four modes, KHS is the
most unexpected: the frequency of this mode is not equal to the oscillating frequency, but
the surface wave can also couple with the oscillating gas flow. Linear instability theory was
applied to divide the parameter range between the different unstable modes. According
to linear instability theory, K–H and parametric unstable regions both exist. However,
note that all four modes (KHH, KHS, FDM and SDM) corresponded primarily to the
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K–H unstable region obtained from the theoretical analysis. Nevertheless, the parametric
unstable mode was also observed when the oscillating frequency and amplitude were
relatively low, and the liquid inertia force was relatively high. The surface wave amplitude
was small but regular, and the evolution of this wave was similar to that of Faraday waves.
The wave oscillating frequency was half that of the surface wave.

Key words: parametric instability, thin films, wave breaking

1. Introduction

Atomization of planar liquid sheets in a gas medium is the most fundamental process of
many liquid atomization techniques. Destabilization of the surface wave is the initial stage
of the atomization of liquid sheets, significantly affecting atomization quality, so sound
knowledge of the instability of planar liquid sheets is not only scientifically valuable but
also necessary for the design and application of practical systems.

Kelvin–Helmholtz (K–H) instability is induced by the difference in velocity between
two fluid layers (Kelvin 1871). This difference can amplify the pressure difference between
a wave crest and a trough, which also plays a dominant role in the atomization of liquid
sheets (Lin 2003). For this reason, researchers have investigated the mechanism of the
instability of liquid sheets in a steady gas medium both theoretically and experimentally.
Using a linear method, Squire (1953) analysed the K–H instability of a planar inviscid
liquid sheet in an inviscid gas medium. The most unstable wavelength and growth rates
were obtained, and his theoretical results qualitatively agreed with experimental results
obtained from a swirling liquid sheet, indicating that the K–H instability was the dominant
mechanism of the destabilization of the liquid sheet. Dombrowski & Johns (1963)
considered viscosity and thinning of a liquid sheet, obtaining a drop-size relationship
that compared favourably with their experimental data. Crapper, Dombrowski & Pyott
(1975) conducted an experimental study on large-amplitude waves; however, the linear
theory could not predict the growth rate well. Li & Tankin (1991) studied the temporal
instability of a viscous liquid sheet in the presence of an inviscid gas medium using linear
theory. In addition to aerodynamic instability, they found that the viscosity enhanced the
instability region, influenced by variation in the liquid viscosity. More recently, Ye, Yang &
Fu (2016) investigated the spatial instability of a double-layer viscous liquid sheet moving
in a stationary viscous gas medium. The gas velocity profile was non-uniform, and the
stability problem was solved by a spectral collocation method. The accuracy of this method
was verified to some extent by Dighe & Gadgil (2021). Moreover, Qin, Yi & Yang (2018)
established a theoretical breakup model of an air-assisted planar liquid sheet based on
linear stability analysis and the full-wave integral. They divided the unstable stages into
K–H and Rayleigh–Taylor stages. Using this theory, the Sauter mean diameter (SMD)
was successfully predicted, indicating the effectiveness of the linear stability theory in
estimating atomization.

All of the research mentioned above focused on the condition of a liquid sheet breakup
without outer excitations, but combustion instability may lead to acoustic oscillations in
rocket engines and aircraft engines that affect the instability of liquid sheets (Christou,
Stelzner & Zarzalis 2021). For this reason, it is necessary to consider outer excitations.
Using liquid propellant rocket engines as an example, axial, radial and tangential unstable
modes may exist (Yang & Anderson 1995). In these engines, the acoustic dimension of
the acoustic wave is much larger than that of the liquid jet, so the radial and tangential
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Oscillatory Kelvin–Helmholtz instability of a liquid sheet

acoustic modes can both be regarded as acoustic waves that are perpendicular to the
liquid stream. Miesse (1955) conducted an experimental study on the instability of a
liquid jet in an acoustic field; his results showed that the perpendicular acoustic field
dispersed the droplets in a diverging sinusoidal configuration, while the parallel acoustic
field coalesced the droplets as a result of the velocity variation of successive fluid
particles. From this work, many researchers have focused on the effect of different acoustic
modes.

For the acoustic field perpendicular to the jet stream, Baillot et al. (2009) investigated
the behaviour of an air-assisted jet submitted to a transverse high-frequency acoustic
field in a standing wave; acoustic levels were produced up to 165 dB. When the liquid
jet was placed at the pressure antinode, its breakup was only affected by acoustics if
it was assisted by the coaxial gas flow. Nevertheless, when the liquid jet was placed at
the pressure node, it was flattened by the acoustic radiation pressure, and the acoustic
oscillation caused Faraday waves to rise. Similar results were reported by Carpentier et al.
(2009) and Ficuciello et al. (2016). Ficuciello et al. (2017) investigated droplet clustering
in this atomizing condition. Mulmule, Tirumkudulu & Ramamurthi (2010) studied the
instability of a moving liquid sheet in the presence of acoustic forcing both experimentally
and theoretically. They analysed the surface instability using Floquet theory and found
that the instability was due to the coupling effect of K–H and parametric instabilities,
which agreed with the most unstable wavelength obtained in the experiment. However, the
model was not able to predict the observed variation in sound pressure level with forcing
frequency or reproduce the pronounced response at discrete frequencies. More recently,
Dighe & Gadgil (2018, 2019a,b, 2021) conducted systematic experimental studies on the
instability of a liquid sheet formed by the oblique impingement of two liquid jets. The
sound pressure levels were set below 120 dB, much lower than those set by Baillot et al.
(2009); thus, the acoustic field did not excite the parametric instability of the surface wave,
and the acoustic excitations could be regarded as a small disturbance while the basic flows
of the liquid and gas phases were still steady. They found that the regions were dominated
by the aerodynamic forces and the thinning effect of the liquid sheet. The two different
unstable modes were divided theoretically according to the theories of Squire (1953),
Ye et al. (2016), Tirumkudulu & Paramati (2013) and Paramati, Tirumkudulu & Schmid
(2015). Dighe & Gadgil (2021) clearly explained the different mechanisms of instability in
their research when the liquid sheet was in the presence of a weak acoustic field. However,
when the acoustic field was much stronger, the basic flow was unsteady. More study may
be required to solve this problem.

In the acoustic field parallel to the jet stream, Sivadas, Fernandes & Heitor (2003) and
Sivadas et al. (2016) experimentally investigated the breakup length of the liquid jet and the
sheet corresponding to the sound intensity; they established empirical formulas between
the breakup length and the acoustic number. More recently, Chaussonnet et al. (2017)
conducted an experimental study on prefilming airblast atomization in an oscillating air
flow field and obtained a SMD prediction model based on linear stability theory in a steady
basic flow. A quasi-steady theory was adopted to simulate the gas velocity oscillations. The
theoretical model predicted the periodic variation of the SMD well, and the results showed
that the time variation of the SMD was accompanied by a low-pass behaviour. The SMD
exhibited almost no fluctuations at high frequencies. Using a similar experimental system,
Christou et al. (2021) investigated frequency and phase differences between gas velocity
and the SMD; they also analysed the temporal instability of viscous and non-Newtonian
planar liquid sheets in the presence of gas velocity oscillations based on the Floquet theory
(Yang et al. 2018; Jia et al. 2019) and revealed the mechanism of the K–H and parametric
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unstable modes using an energy budget theory. Experimental studies are required to verify
their theoretical results.

It can be concluded from previous studies that in air-assisted atomization, acoustic
oscillations can give rise to gas velocity oscillations, modulating the instability of the
surface wave. This modulating effect may trigger unstable combustion. Nevertheless,
few experimental studies have investigated the detailed evolution of the surface wave
of a planar liquid sheet in the presence of axial gas velocity oscillations. Therefore,
an experimental study was conducted on the oscillatory K–H instability of a planar
liquid sheet in the presence of oscillating axial gas flow. In § 2, the experimental system
is introduced, including the system set-up, the linear stability analysis of the spatial
instability of the liquid sheet and the measurement methods. In § 3, the experimentally
obtained growth rates are discussed and compared with the theoretical results. Moreover,
different unstable modes are discovered, and linear stability theory is used to divide the
regimes of these modes. Finally, in § 4, conclusions are presented.

2. Experimental system set-up

2.1. Experimental system and equipment
A systematic experimental study was conducted in this work to investigate the
characteristics of the surface wave. The experimental system is shown in figure 1, which
displays the spray system and the measuring system. A sinusoidal signal was generated
by a function signal generator (UTG2062A, 60 MHz sine wave output, and resolution of
1 μHz and 14 bit) and amplified by a power amplifier (BNB A-1800, frequency range
20 Hz–20 kHz and power 1800 W), driving a loudspeaker (MB15, size 15 inches,
frequency range 35–2500 Hz, power 1000 W, sensitivity 97 dB and resistance 8 Ω) to
produce an intense acoustic oscillation. This acoustic oscillation generated an oscillating
gas flow at the exit of the nozzle. The liquid was supplied by a booster pump (maximum
flow rate 18 L min−1 and maximum head of delivery 20 m). Gas velocity was measured
by a microphone (BSWA TECH MA401 and MPA421) after standardization by a hot wire
(Dantec Dynamics Mini CTA 54T42). The liquid flow rate was measured by a turbine
flowmeter (LWGB-4ZX, measuring range 0–0.25 m3 h−1 and precision ±5 %). HIVISION
Cube 7 (minimum exposure time 2 μs, maximum fps 28 500 and maximum resolution
1696 × 1710 pixels) and Photron SA-Z (minimum exposure time 159 ns, maximum fps
21 000 and maximum resolution 1024 × 1024 pixels) high-speed cameras were used to
determine the morphology of the surface wave on the side and front views, respectively.

Because of the effect of surface tension, the edges of the liquid sheet contracted (as
shown in figure 2a); for this reason, two cotton threads were used to direct the liquid sheet,
as shown in figure 2(b).

The gas and liquid phases were ejected from the slits, as shown in figure 3. The sizes
of the liquid and gas nozzles were 40 mm × 0.4 mm and 40 mm × 2 mm, respectively.
Liquid viscosity was measured by a rheometer (Anton Paar MCR92). Surface tension was
measured using a surface tension meter (JYW-200C, measuring range 0–200 mN m−1,
resolution 0.01 mN m−1, error range ±5 %). The liquid density was measured with a
densimeter (Qingxian Yanhe Instrument Co. Ltd, resolution 1 kg m−3).

According to Tammisola et al. (2011) and Asare, Takahashi & Hoffman (1981), the
thickness of the liquid sheet is close to the thickness of the nozzle, so the thickness of the
liquid sheet in the present study is regarded as the thickness of the nozzle. To prevent the
wetting effect, a hydrophobic coating was applied at the nozzle exit to guarantee the liquid
sheet thickness and a relatively uniform liquid velocity profile.
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Oscillatory Kelvin–Helmholtz instability of a liquid sheet

1

2 3 4

5 6 7 8 9 10

Figure 1. Experimental system. 1, Data acquisition system; 2, HSVISION Cube 7 high-speed camera;
3, Photron SA-Z high-speed camera; 4, gas-liquid coaxial atomizer; 5, loudspeaker; 6, microphones; 7, turbine
flowmeter; 8, booster pump; 9, power amplifier; 10, function signal generator.

(b)(a)

Figure 2. Directing effect of cotton threads. (a) Without directing. (b) With directing.

2.2. Stability analysis
To explain the growth rates and the waveforms of the surface wave, a stability analysis
should be conducted. A two-dimensional viscous liquid sheet moving through an
oscillating inviscid gas medium was considered in this work. As shown in figure 4,
the x and y axes were parallel and perpendicular to the liquid stream, respectively. The
disturbance oscillated temporally and grew spatially. For the basic flow, the liquid velocity
was Ul, and the gas velocity Ug oscillated in the following form:

Ug = Ug,0 + �U cos(ωst), (2.1)

where Ug,0 is the mean gas velocity, �U is the gas velocity oscillation amplitude, ωs is
the oscillation frequency and t is time.

The linear instability of a viscoelastic planar liquid sheet in the presence of gas velocity
oscillations was investigated in previous studies by the authors (Jia et al. 2019). Therefore,
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Figure 3. Gas-liquid coaxial atomizer.
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Figure 4. Spatial instability of planar liquid sheet in (a) sinuous and (b) varicose modes.

in the present study, the dispersion relation was obtained from these results instead of
being derived from the governing equations again. Appendix A shows the detailed process
of obtaining the dispersion relationship of the temporal stability of viscous planar liquid
sheets in the presence of gas oscillations.

However, the present study focused on the spatial instability of a surface wave, and
the reference system influenced the spatial growth rate. Hence, the basic flow of the liquid
sheet could not be regarded as static but rather as moving with an axial velocity Ul (parallel
to the x axis). In Appendix A, the coordinate system moved with the liquid sheet, but the
spatial disturbance occurred near the nozzle exit. An alteration of the reference system was
conducted. According to (A29), the phase velocity of the surface is

upn = −[Im(β) + nωs]/kr, (2.2)

where β is the characteristic exponent of the Floquet solution, n is the order number of the
Fourier series and kr = 2π/λ is the real part of the wavenumber, where λ is the wavelength
of the surface wave. This phase velocity upn was relative to the basic flow of the liquid
sheet. Relative to the nozzle exit, the phase velocity should be

upn2 = −[Im(β) + nωs]/kr + Ul = −[Im(β − ikrUl) + nωs]/kr. (2.3)
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According to the phase velocity, after altering the reference system, the frequency of the
surface wave was

β2 = β − ikrUl. (2.4)

Meanwhile, in the spatially unstable mode, the real part of β was zero (without temporal
growth), and the imaginary part of wavenumber ki represented the opposite number of the
spatial growth rate. As a result, (2.4) can be expressed as

β2 = β − ikUl. (2.5)

According to the above transformation, the dispersion relation of the spatial instability
can also be expressed in the form of (A30)–(A33), with the expression of ωen:

ωen = β2 + inωs + ikUl, (2.6)

and the expression of U0 is
U0 = Ug,0 − Ul. (2.7)

Moreover, the dispersion relation can also be expressed in non-dimensional form:

Āη̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
... . . .

· · · D−2 G−1 F 0 0 · · ·
· · · E−2 D−1 G0 F 0 · · ·
· · · F E−1 D0 G1 F · · ·
· · · 0 F E0 D1 G2 · · ·
· · · 0 0 F E1 D2 · · ·
. . .

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

η−2
η−1
η0
η1
η2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (2.8)

Dn = Oh(K2 + L2
n)(Ωen + 2OhK2) tanh(K) − 4Oh2K3Ln tanh(Ln) + K3

+ρΩ2
en + 2iρKΩen

√
We − ρK2We − ρK2ε2We

2
,

En = iρKΩenε
√

We − ρK2εWe − ρKΩsε
√

We
2 ,

Gn = iρKΩenε
√

We − ρK2εWe + ρKΩsε
√

We
2 ,

F̄ = −ρK2ε2We
4 ,

Ωen = B2 + iK
√

Wel + inΩs

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.9)

for sinuous mode and

A2η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
... . . .

· · · D−22 G−1 F 0 0 · · ·
· · · E−2 D−12 G0 F 0 · · ·
· · · F E−1 D02 G1 F · · ·
· · · 0 F E0 D12 G2 · · ·
· · · 0 0 F E1 D22 · · ·
. . .

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

η−2
η−1
η0
η1
η2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (2.10)

Dn2 = Oh(K2 + L2
n)(Ωen + 2OhK2) coth(K) − 4Oh2K3Ln coth(Ln) + K3

+ρΩ2
en + 2iρKΩen

√
We − ρK2We − ρk2ε2We

2
(2.11)

for varicose mode.
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Li (1993)

The present results

Re = inf

Re = 1000
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Re = 10

Re = inf

Re = 1000

Re = 100

Re = 10

2.0

Non-dimensional wavenumber Kr

Figure 5. Current results compared with those of Li (1993). (We = 1000, Oho = √
We/Re, ρ = 0.0013,

Ug,0 = 0, �U = 0.)

In (2.9) and (2.11), Ωen = ωen/(σ/ρla3)1/2 is the frequency, K = ka is the wavenumber,
Ln =

√
K2 + Ωen/Ohn and B2 = β2/(σ/ρla3)1/2. The Ohnesorge number is defined as

Oh = μ/(ρlaσ)1/2, denoting the ratio of viscous forces to surface tension forces. The gas,
liquid and relative Weber numbers are defined as Weg = ρgU2

g,0a/σ , Wel = ρlU2
l a/σ and

We = ρlU2
0a/σ , respectively. Here ρ = ρg/ρl is the density ratio between the gas and

liquid phases, ε = �U/U0 is the oscillation amplitude and Ωs = ωs/(σ/ρla3)1/2 is the
oscillation frequency.

The spatial growth rate was obtained by solving the dispersion equations. The present
theoretical model was simplified to agree with that established by Li (1993), who used
the Reynolds number Re to study the effect of viscosity. The liquid sheet moved and the
gas was static. In the present study, the Ohnesorge, Weber and Reynolds numbers satisfied
Oh = √

Wel/Re. The results obtained by the present study were compared with those of
Li (1993). As shown in figure 5, these results were in accord with those of Li (1993); the
alteration of the reference system in the present study was rational. Meanwhile, according
to Li (1993), the results obtained by the spatial mode were close to those obtained by
the temporal mode; therefore, the effect of physical parameters on the instability is not
discussed here.

Moreover, the schematics of surface wave induced by classical K–H instability (when
�U = 0), oscillatory K–H instability (K–H unstable region of Jia et al. (2019)) and
parametric instability (parametric unstable region of Jia et al. (2019)) are given in
supplementary movies 1, 2 and 3, respectively, available at https://doi.org/10.1017/jfm.
2023.19.

2.3. Methods of measuring oscillations
Figure 6 shows the two microphones used to measure acoustic oscillations at two different
points in the gas tube; the acoustic field in the tubes could then be calculated using the
method of Poinsot et al. (1986). In figure 6, l1, l2, l3 and l4 represent the distances between
microphone 1 and the loudspeaker, microphone 2 and microphone 1, the entrance of the
gas nozzle and microphone 2 and the length of the gas nozzle, respectively. The resonant
frequency changes with the pipe length. At resonant frequencies, the oscillating amplitudes
at the gas nozzle exit are large, which benefits the atomization experiment, so the resonant
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Microphone 2 Hot wire

xx2x1

l1 l2 l3 l4

Figure 6. Schematic of measuring oscillations.

Acoustic frequency fs (Hz) l1 (mm) l2 (mm) l3 (mm) l4 (mm)

100 225 550 725 120
121 225 550 425
142 225 550 225
161 225 450 225
177 225 350 225

Table 1. Lengths of pipe at different frequencies.

conditions are chosen in the present study. The pipe lengths and their resonant frequencies
are shown in table 1.

A hot wire was used to measure gas velocity oscillations at the nozzle exit. The velocity
measured by the hot wire corresponded to the acoustic field measured by the microphones,
so the gas velocity at the nozzle exit could be calculated by the acoustic field during the
atomization experiments.

First, the form of the sound field can be set as

p(x, t) = A+ eiks+x+iωst + A− e−iks−x+iωst, (2.12)

where A+, A−, ks+, ks− and ωs are the amplitudes of the acoustic wave in the positive and
negative directions, the wavenumbers of the acoustic wave in the positive and negative
directions and the acoustic frequency, respectively. The wavenumbers were obtained as
follows:

ks+ = ks/(1 + M), ks− = ks/(1 − M), (2.13a,b)

where ks = ωs/c and M is the Mach number of the mean gas velocity. In the present study,
the mean gas velocity was lower than 10 m s−1. Mach number M � 1, so

ks+ = ks− = ks. (2.14)

Therefore, the sound pressure at the microphone measuring position can be expressed as

p(xi, t) = Re(ai eiϕi+iωst), (2.15)

where
ai eiϕi = A+ eikxi + A− e−ikxi . (2.16)

Using the equation set
Fz = b, (2.17)

where

z =
[

A+
A−

]
, b =

[
a1 eiϕ1

a2 eiϕ2

]
, F =

[
eikx1 e−ikx1

eikx2 e−ikx2

]
, (2.18a–c)

the amplitudes of the acoustic wave were obtained, and then the acoustic field could be
obtained. The velocity and pressure oscillations at the nozzle exit could be calculated.
This velocity oscillation matched the results obtained with the hot wire.
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Figure 7. Ratio of microphone sensitivities.

This method was also used to find the relative sensitivity of the two microphones at
different frequencies. The sensitivities of microphone 1 and microphone 2 were G1 and
G2, respectively. The signals found the first and the second time are expressed by prime
and double prime, respectively. First, microphones 1 and 2 were used to measure the
voltage signals at points a and b, respectively. The second time, the two microphones
were switched at the same frequency. The sound pressure amplitude can be expressed as

p′
a = V ′

1/G1, p′
b = V ′

2/G2, (2.19a,b)

p′′
a = V ′′

2 /G2, p′′
b = V ′′

1 /G1, (2.20a,b)

where V is the voltage measured by the microphone and p is the sound pressure. Because
the form of the acoustic field was certain, the sound pressures satisfied

p′
a

p′′
a

= p′
b

p′′
b
. (2.21)

By substituting equations (2.19) and (2.20) into (2.21), the sensitivities of the microphones
can be obtained:

G1

G2
=
√

V ′1V ′′1
V ′2V ′′2

. (2.22)

The sensitivity of microphone 1 was 0.65 mV Pa−1; the sensitivity of microphone 2 was
obtained according to (2.22). In this study, the frequency range used for the experiment was
100–177 Hz, so a frequency range of 90–180 Hz was selected to calculate the sensitivity,
as shown in figure 7. The fitting formula can be obtained as follows:

Ĝ = −3.82 × 10−12f 5
s + 2.87 × 10−9f 4

s − 8.54 × 10−7f 3
s

+ 1.28 × 10−4f 2
s − 0.0098fs + 0.853, (2.23)

where Ĝ = G2/G1 is the sensitivity ratio between microphone 2 and microphone 1.
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Figure 8. (a) Primary data and (b) pressures and velocities of dominant modes obtained from microphones
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Figure 9. Relationship between gas velocity measured by hot wire and gas velocity oscillation amplitude
calculated using (2.24).

To conduct the experimental work in the present study, acoustic oscillations at
frequencies of 100, 121, 142, 161 and 177 Hz were adopted. For example, signals obtained
at 100 Hz are shown in figure 8. The primary data are shown in figure 8(a). By substituting
the sensitivities, the pressures and velocities can be obtained. Extracting the dominant
mode using fast Fourier transform (FFT), the pressures and velocities of the dominant
mode were obtained, as shown in figure 8(b).

Considering (2.12), the gas velocity at the nozzle exit can be obtained from the acoustic
field calculated from the signals obtained by the microphones as follows:

u(x, t) = − 1
ρc

(A+ eiksx+iωst − A− e−iksx+iωst). (2.24)

The velocity obtained from (2.24) was compared with the velocity obtained by the hot
wire (figure 8b). The gas velocity at the nozzle exit was

Ug = Ug,0 + �U cos(ωst), (2.25)

959 A18-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

19
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.19


B.-Q. Jia and others

3 4 5 6 7 8

4

5

6

7

8

9
Measured value 

Linear fitted curve

R
o
o
t 

m
ea

n
 s

q
u
ar

e 
o
f 

ra
w

 d
at

a 
U

rm
s/

m
 s

–
1

Root mean square after FFT U2rms/m s–1

Figure 10. Relationship between root mean squares before and after FFT ( fs = 100 Hz).

and the gas velocity obtained by the hot wire could be fitted with the gas velocity
oscillation calculated from (2.24) as follows:

Ug,0 = −0.00422U2
gt + 0.44103Ugt + 0.35837, (2.26)

�U = −0.01663U2
gt + 0.99309Ugt − 2.89915. (2.27)

As shown in figure 9, the fitting formulas shown in (2.26) and (2.27) accord well with
the measured gas velocity. Adopting this method, the gas velocity at the nozzle exit could
be calculated from the microphone signal. The relationship between the root mean squares
before and after FFT is displayed in figure 10. The root mean squares represent the effective
value of the gas velocity, including the effect of the mean and oscillating velocity. The
relationship can be fitted as

Urms = 1.149U2rms − 0.303. (2.28)

The fitting expression corresponded well with the measured results, verifying the
consistency of the method used at different oscillating amplitudes.

2.4. Analytical methods of image sequence

2.4.1. Proper orthogonal decomposition
Proper orthogonal decomposition (POD) is an effective method to extract the wavelength,
amplitude and wave frequency of a liquid film (Arienti & Soteriou 2009; Kang, Li & Mao
2018). The POD theory is described briefly below.

A high-speed camera obtained 8-bit images, the matrix consisting of the grey level of
each pixel. An image presents the transient information at time t, so the image T(t) can be
expressed as

T(t) = a0(t)ϕ0(x) + a1(t)ϕ1(x) + · · · , (2.29)

where a0, a1, a2, . . . are time coefficients at time t and ϕ0, ϕ1, ϕ2, . . . are proper
orthogonal modes (POMs). For a sequence of images, N is the quantity of the images and
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Oscillatory Kelvin–Helmholtz instability of a liquid sheet

R × C is the resolution of the images. Each image can be described by a matrix xr with
dimension RC × 1, so the image sequence can be expressed as a matrix with dimension
RC × N, where xr represents the matrix of the rth image. The matrix can be expressed as

X = [x1 · · · xN] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
1,1 · · · xN

1,1
...

...
...

x1
R,1 · · · xN

R,1
x1

1,2 · · · xN
1,2

...
...

...

x1
R,2 · · · xN

R,2
...

...
...

x1
R,C · · · xN

R,C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.30)

Therefore, the average image is

x̄ = 1
N

N∑
r=1

xr, (2.31)

and the matrix of pulsating quantity is

X̂ = X − X̄ . (2.32)

Building up the matrix,

D = X̂ T X̂ . (2.33)

The eigenvectors Ai and eigenvalues λi can be obtained:

DAi = λiAi. (2.34)

The eigenvalues λi are sorted in descending order:

λ1 ≥ λ2 ≥ · · · ≥ λN, (2.35)

so that the energy ratio of each POM is

Ei = λi

N∑
j=1
λ j

. (2.36)

Then, the ith POM can be obtained:

ϕi =

N∑
n=1

Ai
nxn

∥∥∥∥ N∑
n=1

Ai
nxn

∥∥∥∥
. (2.37)
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Figure 11. (a–h) Surface wave development in oscillation period (1988 fps; fs = 142 Hz; concentration of
glycerin–water solution, 60 wt%; microphone 1, V1 = 3040.64 mV; microphone 2, V2 = 1585.01 mV; liquid
flow rate, 0.1103 m3 h−1).

2.4.2. Growth rate measurement method
(a) For steady gas flow

A typical waveform in the experimental study is shown in figure 11. When the surface
wave grew in this form, the surface wave was a travelling wave, and the linear theory was
an effective measure of the growth rate. When the gas velocity oscillation amplitude was
zero, the displacement of each point on the surface could be expressed as

y1 = a + η0 exp(ikx + βt), upper surface, (2.38)

y1 = −a + η0 exp(ikx + βt), lower surface, (2.39)

where k = kr + iki, kr is the wavenumber, ki is the opposite number of the spatial growth
rate and β = iβi is the frequency of the surface wave. The envelopes of the surface wave
are

y1e = a + η0 exp(−kix), the upper envelope, (2.40)

y2e = −a − η0 exp(−kix), the lower envelope (2.41)

and

�y = 2a + 2η0 exp(−kix). (2.42)

Therefore, the spatial growth rate can be obtained from

(−ki)x = ln(�y − 2a) − ln(2η0). (2.43)

To verify the effectiveness of this method, a standard, spatially growing wave was
plotted, and the envelopes obtained are shown in figure 12(a). The measured growth
rate is shown in figure 12(b). The standard wave is given as k = (500 − 120i) m−1 and
2a = 10−3 m, and the measured growth rate is (122.78 ± 0.52) m−1. The error between
the measured and given growth rates was smaller than 3 %, confirming the effectiveness
of this method.
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Figure 12. (a) Upper and lower envelopes of standard wave and (b) fitted curve of growth rate for oscillating
gas flow.

(b) For oscillating gas flow
The spatial variation of the surface displacement could not be expressed as (2.38) and

(2.39) but with the form of (A29). The simplest form was adopted, as follows:

y1 = a + η0 exp(ikx + βt) + η1 exp(ikx + βt + ωst), the upper surface, (2.44)

y2 = −a + η0 exp(ikx + βt) + η1 exp(ikx + βt + ωst), the lower surface. (2.45)

According to the experimental phenomenon, β = −ωs; thus, (2.44) and (2.45) can be
simplified as

y1 = a + η0 exp(ikx + βt) + η1 exp(ikx), the upper surface, (2.46)

y2 = −a + η0 exp(ikx + βt) + η1 exp(ikx), the lower surface. (2.47)

Therefore, the envelopes are

y1 = a + η0 exp(−kix) + η1 exp(ikx), the upper envelope, (2.48)

y2 = −a − η0 exp(−kix) + η1 exp(ikx), the lower envelope (2.49)

and
�y = 2a + 2η0 exp(−kix). (2.50)

It was found that (2.50) has the same form as (2.42); therefore, (2.43) could also be used
to obtain the growth rate. (Envelopes are shown in figure 13; the measured growth rate
was 123.17 ± 0.84 m−1.) The error between this growth rate and the given growth rate of
120 m−1 was less than 4 %, confirming the effectiveness of this method for measuring the
spatial growth rate.

3. Results and discussion

3.1. Growth rate
This section examines the measured growth rate of the surface wave and the effects
of oscillation, flow and physical property parameters on the instability. First, the
destabilization of the liquid sheet in steady gas flow was studied for comparison. The
effective range of the growth rate measurement method could also be obtained. In this
range, the growth rate of the liquid sheet in an oscillating gas flow was studied in detail.
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Figure 13. Envelopes when gas velocity oscillation exists.
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Figure 14. (a–j) Surface wave of liquid sheet in the presence of steady gas flow. (Liquid was deionized water;
gas was air; Ul = 1.16 m s−1, Ug,0 = 7.83 m s−1, ρl = 998 kg m−3, ρg = 1.2 kg m−3, a = 0.0002 m, μ =
0.96 mPa s, σ = 0.0689 N m−1, Wel = 3.898, Weg = 0.199, Rel = 241, ρ = 0.0012.)

3.1.1. Instability phenomenon in steady and oscillating gas flow
According to § 2.2, the gas velocity was

Ug = Ug,0 + �U cos(ωst) = Ul + U0 + �U cos(ωst). (3.1)

For steady gas flow, �U = 0, i.e. Ug = Ug,0 = Ul + U0. The liquid and gas Weber
numbers were defined as Wel = ρlU2

l a/σ and Weg = ρgU2
ga/σ , respectively. Figure 14

displays an image sequence of the liquid sheet in the presence of steady gas flow frame by
frame at 1693 fps; the periodicity of the surface wave was apparent. Although there was no
forcing oscillation, a dominant wavelength could also be observed. The disturbance with
this wavelength led to the breakup of the liquid sheet. Therefore, the theory postulated in
§ 2.2 was suitable for analysing the growth of the surface wave for conditions such as those
in figure 14.

The method POD is also useful for analysing an image sequence with periodicity, so it
was applied to investigate the surface wave in figure 14. A total of 401 sequential images
were used for POD, and the results are shown in figure 15. Modes 1 and 2 were the
dominant modes (figure 15b) with the same dominant frequency (figure 15e, f ) of 186.2.
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Figure 15. (a) Envelopes of surface wave, and results of POD with steady gas flow: (b) POD energy
distribution, (c) mode 1, (d) mode 2, (e) frequency spectrum of mode 1 and ( f ) frequency spectrum of mode 1.
(Working conditions same as figure 14.)

In figure 14, a period includes approximately nine images, indicating that the frequency
is approximately 188 Hz. These two very close values verify the validity of POD in
obtaining the dominant modes. In addition, the surface wave grew exponentially in the
axial direction, which was close to the ideal model in § 2.4.2. However, the disturbance
amplitude nearly reached a maximum when the liquid sheet was relatively far from
the nozzle. Thus, the growth rate measurement was conducted in the range where the
disturbance amplitude was not too great.
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Figure 16. (a–i) Destabilization of liquid sheet in the presence of oscillating gas flow. (Liquid is deionized
water; gas is oscillating gas flow produced by gas flow; Ul = 1.84 m s−1, Ug,0 = 6.614 m s−1, �U =
8.639 m s−1, ρl = 998 kg m−3, ρg = 1.2 kg m−3, a = 0.0002 m, μ = 0.96 mPa s, σ = 0.0689 N m−1,
Wel = 9.81, Weg = 0.143, Rel = 383, ρ = 0.0012, Ωs2 = 0.0154, ε2 = 1.3062.)

When gas velocity oscillation was present, non-dimensional frequency Ωs2 = ωsa/Ul
and amplitude ε2 = �U/Ug,0 were defined to describe the gas flow oscillations. As shown
in figure 16, the surface wave was more regular (the dominant wavelength and frequency
were more apparent than in figure 14). The dominant frequency was the same as the gas
oscillating frequency (142 Hz), obtained from the POD results in figure 17. Moreover,
the POD results also showed that the energy ratio in the first two modes was the highest,
exceeding 35 %. This result meant that the first two modes dominated the surface wave
destabilization. The leading role of the first two modes in this condition was stronger than
that in the conditions of figure 15, coinciding with the intuitive results obtained from
figure 16.

Note that the gas oscillation not only made the wavelength and frequency of the surface
wave more regular but also dramatically influenced the form of spatially growing surface
waves. In figure 17(a), in addition to exponential growth, oscillatory growth was also
found, which was significantly different from figure 15(a). Moreover, this oscillatory
growth resulted in oscillating spatial envelopes. Physically, when the gas flow was steady,
the aerodynamic force on the liquid sheet was also steady, according to linear theory.
However, when the gas flow was oscillatory, the aerodynamic force was also oscillatory.
When the aerodynamic force was larger in the positive cycle, the growth of the disturbance
accelerated; when the aerodynamic force was lower in the negative cycle, the growth of the
disturbance slowed down. Therefore, the growth of the surface wave was oscillatory during
several gas flow oscillating periods. Furthermore, due to the gas oscillation, the growth rate
might not be constant but a function of time, which is characteristic of the oscillatory K–H
instability. However, because the dominant frequencies of the surface wave and the gas
oscillation were the same, the growth rate could be obtained using the method in § 2.4.2
(equation (2.50)), i.e. the growth rate was constant. The envelopes in figure 17(a) were
qualitatively in accord with those in figure 13, which to some extent verified the theoretical
basis presented in § 2.2 and Appendix A. Note that when the working conditions changed,
the form and characteristics of the surface wave could also change. A detailed discussion
of the waveform is presented in § 3.2.

3.1.2. Growth rate in steady gas flow
The method used in § 2.4.2(a) was utilized when the gas flow was steady. The envelopes of
the liquid sheets in the images were abstracted to measure the growth rate, and the results
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Figure 17. (a) Envelopes of surface wave, and results of POD with oscillating gas flow: (b) energy distribution,
(c) mode 1, (d) mode 2, (e) frequency spectrum of mode 1 and ( f ) frequency spectrum of mode 2. (Working
conditions same as figure 16.)

are depicted in figure 18. The theoretical curve was obtained from (2.8). Because there
was an apparent dominant wavelength of the surface wave, the growth rate corresponding
to the theoretically dominant wavenumber (i.e. maximum growth rate) was regarded as
the theoretical growth rate. The experimental and theoretical results agreed well when
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Figure 18. Theoretical and measured growth rates in steady gas flow. (Liquid is deionized water; gas is air;
full line is theoretical prediction; error bars are experimental results; Wel = 3.898, Rel = 241, ρ = 0.0012.)

Weg < 0.3. Parameter Weg represents the ratio between the aerodynamic force and the
surface tension. Here, the surface tension was constant, so Weg represents the aerodynamic
force. Aerodynamic force was the driving power of K–H instability, so with increased
Weg, the theoretical growth rate presented an approximately linear growth. However, the
measured growth rate reached a maximum when Weg > 0.32.

The change rule of the growth rate can be explained qualitatively. As shown in figure 19,
the wavelength and the breakup length decreased with increasing Weg, indicating an
enhancement of the instability. However, as shown in figure 19(a,b,e, f ), the surface
wave was regular when Weg < 0.3, and the surface wave was in the axial direction
rather than spanwise (i.e. the surface wave was approximately two-dimensional), so the
two-dimensional model adopted in § 2.2 was also tenable. However, when Weg > 0.3,
as shown in figure 19(c,d,g,h), the surface wave was disordered. There were spanwise
surface waves on the liquid sheet, so the growth rate obtained from the two-dimensional
theoretical model inevitably resulted in some error. Additionally, due to the nonlinear
effect, the disturbance could not increase infinitely, and a shorter wavelength corresponded
to a lower saturated displacement. As a result, although the destabilizing and atomization
phenomenon in figure 19(d) is more intense than that in figure 19(c), the difference in the
disturbance displacement was not distinct due to the small wavelength. The measuring
method for the growth rate was based on the disturbance displacement, and this method
loses efficacy when the atomization is relatively intense. In conclusion, it was atomization
intensity that determined whether the growth rate measuring method could be used. The
method was critical when the surface wave was regular, but the growth rate can reflect the
atomization intensity. According to figure 18, this method was able to measure the growth
rate when −Ki < 0.06. Hereafter, for the condition of oscillating gas flow, −Ki < 0.06
was satisfactory to guarantee the correctness of the measuring results.

3.1.3. Growth rate in oscillating gas flow
In this section, experimental and theoretical growth rates are compared in the presence of
oscillating gas flow. The theoretical results were obtained according to (2.8). Experiments
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Figure 19. Destabilization of liquid sheet for different gas Weber numbers: (a) Weg = 0.0927; (b) Weg =
0.199; (c) Weg = 0.453; (d) Weg = 0.637. Other parameters are same as figure 18. (e–h) Front views of (a–d),
respectively: (e) Weg = 0.0927; ( f ) Weg = 0.199; (g) Weg = 0.453; (h) Weg = 0.637.

Glycerol mass fraction (wt%) Density (kg m−3) Viscosity (mPa s) Surface tension (mN m−1)

60 1155.3 11.94 ± 0.15 65.1 ± 0.2
40 1103.1 4.01 ± 0.10 67.3 ± 0.1
20 1053.5 1.77 ± 0.03 68.7 ± 0.4
0 998 0.96 ± 0.003 68.9 ± 0.3

Table 2. Physical parameters of water and glycerol aqueous solutions at different concentrations.

were conducted using deionized water and glycerol aqueous solutions at different
concentrations, and the corresponding physical parameters are listed in table 2. The
viscosity differences versus various concentrations were the most obvious; the differences
in density and surface tension were also non-negligible. Hence, the effect of a single
physical factor was difficult to study. In the present work, the liquid velocity was adjusted
to guarantee a constant liquid Weber number Wel.

959 A18-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

19
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.19


B.-Q. Jia and others

Due to the amplitude–frequency characteristics of the loudspeaker and the different
acoustic field distributions at various frequencies in the tube, the relationship between the
gas mean velocity and oscillation velocity also varied with oscillation frequency. Fitting
the oscillating and mean velocity, the relationship was as follows:

�U = 1.809Ug,0 − 2.500, 100 Hz,
�U = 2.000Ug,0 − 4.445, 121 Hz,
�U = 1.903Ug,0 − 3.944, 142 Hz,

�U = −0.1978U2
g,0 + 4.31765Ug,0 − 11.44, 161 Hz,

�U = −0.3654U2
g,0 + 6.6875Ug,0 − 19.99, 177 Hz.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.2)

The curves of the non-dimensional growth rate −Ki versus increasing gas Weber number
Weg were theoretically computed and compared with the experimentally measured values,
as plotted in figure 20. It is important to remember that the frequency of the surface wave
was equal to the gas oscillating frequency. Then, the growth rate corresponding to the
oscillation frequency should be chosen as the theoretical growth rate. This is different
from the condition of steady gas flow (figure 18), i.e. the theoretical growth rate may not
be the maximum. This phenomenon can be explained physically: gas velocity oscillation
inevitably modulates the surface wave in addition to providing an oscillating basic flow, so
the disturbance with a frequency equal to the gas velocity oscillation frequency is much
larger than other disturbances in the initial unstable stage. Therefore, this disturbance was
observed in the image sequence.

The effective gas Weber number Weg2 = ρg(U2
g,0 + �U2/2)a/σ is defined to represent

the aerodynamic force. This Weber number reflects the effect of the mean and oscillating
gas velocity and has two advantages:

(1) In the K–H unstable region, destabilization of the surface wave was determined by
the effective aerodynamic force, as stated in early work by the authors (Jia et al.
2019, 2020). This Weber number is considered the effective aerodynamic force.

(2) According to (3.2), the relationship between the mean and oscillating velocity
changed with the frequency, so this Weber number could unify the mean and
oscillating velocity, making comparison possible among the results of different
frequencies.

The experimental and theoretical values in figure 20 coincide well, but the error bands
were larger than those in figure 18. This is because the envelopes of the surface wave were
spatially oscillatory, rather than a simple exponential growth, which may have introduced
larger error bars. Although this reason affected the exact value, the measured growth rates
were also important indicators to evaluate the instability. The experimental results showed
that the growth rate increased with increasing concentrations of the solutions. In fact, the
increasing concentration led to an increase in liquid density and viscosity, suppressing the
instability; meanwhile, the increasing concentration induced a decrease in surface tension,
enhancing the instability. In addition, Wel was chosen as a constant, so the liquid velocity
had to be reduced to guarantee the unchanged Wel. As a result, the gas-to-liquid velocity
increased, enhancing the instability. When the destabilizing factors predominated over the
stabilizing factors, the growth rate increased. However, theoretical results showed that the
growth rate barely changed with the concentration of the solutions. This may be because
the present theory overestimated the stabilizing effect of liquid viscosity and liquid density.

Figure 21 displays the effect of Wel. The liquid velocity was changed to change
Wel, but the liquid Reynolds number and the non-dimensional frequency also changed.
Therefore, the Ohnesorge number and the non-dimensional frequency were defined as
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Figure 20. Growth rate of solutions at different concentrations. (a) Deionized water: Ul = 1.820 m s−1,
Rel = 378.4, ρ = 0.0012, Ωs2 = 0.0980; (b) 20 % glycerol aqueous solution: Ul = 1.779 m s−1, Rel = 211.8,
ρ = 0.00114, Ωs2 = 0.1005; (c) 40 % glycerol aqueous solution: Ul = 1.704 m s−1, Rel = 93.7, ρ = 0.00109,
Ωs2 = 0.1049; (d) 60 % glycerol aqueous solution: Ul = 1.635 m s−1, Rel = 31.6, ρ = 0.00104, Ωs2 =
0.1093. (Full line is theoretical curves; error bars are measured results; gas is air; ρg = 1.2 kg m−3, a =
0.0002 m, fs = 142 Hz).

Ohl = √
Wel/Rel and Ωs = ωs/

√
σ/ρla3, respectively, which were independent of the

liquid and gas velocities.
When the gas Weber number was relatively large, the growth rate decreased with

increasing liquid Weber number. Theoretically, increasing the liquid Weber number should
increase the liquid velocity (i.e. decreasing the gas-to-liquid velocity) and thus inhibit
instability. According to Gaster (1962), for a given temporal growth rate, the increase in
group velocity leads to a decrease in the spatial growth rate, and the group velocity is
almost directly proportional to the liquid velocity, i.e.

− iki ∼ βtr

Ul
. (3.3)

Therefore, the spatial growth rate decreased with increasing Wel. From another
perspective, the increase in Wel indicated an increase in the liquid inertia force, which
represents the ability of the liquid sheet to maintain its initial state. The higher inertia force
made it more difficult to destabilize the liquid sheet. However, when Weg2 was relatively
small, the results were the opposite. A surface wave with a shorter wavelength is more
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Figure 21. Effect of liquid Weber number on instability: (a) Wel = 9.59, (b) Wel = 10.63, (c) Wel = 12.64,
(d) Wel = 14.98 and (e) Wel = 17.29. (Full lines are theoretical curves; error bars are measured results; liquid
is deionized water; air is gas; ρg = 1.2 kg m−3, a = 0.0002 m, fs = 142 Hz, Ohl = 0.00819, ρ = 0.0012,
Ωs = 0.3037.)

difficult to motivate, and

λ ∼ Ul

βi
. (3.4)

Obviously, the increase in liquid velocity led to an increase in the surface wavelength
because the disturbance frequency was constant (equal to the oscillation frequency).
Hence, the increase in Wel led to an increased growth rate at small Weg2.
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Moreover, when Weg2 was relatively small, the measured growth rate was larger than
the theoretical growth rate because the theoretical growth rate is a temporally mean growth
rate in several periods. In fact, the liquid sheet was motivated by the gas pulse, inducing
instantaneous growth, which was larger than the theoretically predicted mean growth rate.
However, the experimental and theoretical results coincided well. Basically, the growth
rate decreased with increasing Wel in the range studied.

The oscillating frequency of the gas velocity is also an important factor, as shown
in figure 22. The liquid velocity was fixed in each panel to maintain Wel. The
amplitude–frequency characteristic and the power of the loudspeaker were limited, and
the form of the surface wave at a particular frequency was affected by the liquid velocity.
The growth rates at oscillation frequencies of 100 and 121 Hz are shown in figure 22(a,c)
and the growth rates at oscillation frequencies of 142, 161 and 177 Hz are shown in
figure 22(b,d). Because the disturbance frequency and the liquid velocity significantly
influenced the instability, the non-dimensional frequency Ωs2 = ωsa/Ul, used in figure 16,
is also used here. When Weg2 was relatively small (i.e. the aerodynamic force was
relatively low), the low-frequency oscillation could induce larger wavelengths, and
instability was more likely to be motivated; therefore, the growth rate of the low-frequency
condition was higher than that of the high-frequency condition. However, with an increase
in the aerodynamic force, the surface wave could also be motivated under high-frequency
conditions. The growth rate increased quickly with increasing Weg2, even tending to
exceed the low-frequency condition. This was determined by the dispersion relation of
the instability. When Weg2 was larger, the high-frequency surface wave could be closer to
the dominant frequency (the frequency corresponding to the maximum growth rate), so
the growth rate could be faster.

Furthermore, the gas-to-liquid relative velocity was an important parameter to evaluate
the driving force of instability, so the relative Weber number was defined as Werel =
ρg[(Ul − Ug,0)

2 + �U2/2]a/σ , which can reflect the driving force of instability more
accurately than Weg2. Relative Weber number Werel was set as the x coordinate, as shown
in figure 22. The general rule of the growth rates in figure 22(c,d) is the same as in
figure 22(a,b): a larger Werel was needed to motivate the instability of a high-frequency
disturbance.

3.2. Patterns of surface wave
Section 3.1 discusses the growth rate of the surface wave. In fact, the conditions discussed
in § 3.1 involved only one form of surface wave: the surface wave with a frequency equal
to the gas velocity oscillation. In this section, a larger parameter range is considered,
four unstable modes of the surface wave are found according to the experimental study
and linear instability theory discussed in § 2.2 is used to divide the distribution of these
different wave patterns.

3.2.1. Distribution of different patterns of surface waves
Figure 23 shows the distribution of the patterns of the surface wave in the parameter range
considered in the present study. The frequency of the surface wave was obtained using
POD, and the frequency of the first two dominant modes was regarded as the dominant
frequency of the surface wave. When the oscillating frequency was moderate and Werel
was large (i.e. region 1 marked in figure 23), the frequency of the surface wave was half
the oscillating frequency. In this region, the non-dimensional oscillating frequency Ωs2
was relatively high, corresponding to a short disturbance wavelength, but the aerodynamic
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Figure 22. Effects of oscillation frequency on growth rate: (a,c) Ul = 1.56 m s−1, Wel = 7.01; (b,d) Ul =
2.07 m s−1, Wel = 12.41. (Full lines are theoretical curves; error bars are measured results; liquid is deionized
water; air is gas; ρg = 1.2 kg m−3, a = 0.0002 m, Ohl = 0.00819, ρ = 0.0012.)

force was not high enough to motivate the disturbance. As a result, a longer wave pattern
was selected by the unstable system, and due to the forcing effect of gas oscillation, half the
frequency of gas oscillation was selected. This surface wave pattern was defined as the
K–H subharmonic mode (KHS), shown in figure 24(a).

When Werel was proportionately large and the non-dimensional oscillating frequency
was low (i.e. region 2 marked in figure 23), the frequency of the surface wave equalled the
oscillating frequency. The wave pattern is shown in figure 24(b). This wave pattern was of
a regular form, which is used in § 3.1 to investigate the growth rate. Hereafter, this pattern
is referred to as the K–H harmonic mode (KHH).

When Werel was relatively small (i.e. region 3 marked in figure 23), the frequency of
the surface wave was independent of the oscillating frequency because the aerodynamic
force was too small to motivate the surface wave of the KHS and KHH. As shown in
figure 24(c), the wave was disordered, referred to as the first disordered mode (FDM).

When Werel and the non-dimensional oscillating frequency were both relatively
large (region 4 in figure 23), the non-dimensional oscillating frequency was inversely
proportional to the liquid velocity, and Werel represented the aerodynamic force. Thus, due
to the increased ratio of momentum between gas and liquid, in this condition, the breakup
time of the liquid sheet was shorter than one period. The oscillating growth of the surface
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Figure 23. Distribution of different forms of surface waves in parameter space. 1, KHS; 2, KHH; 3, FDM;
4, SDM. (Liquid is deionized water; air is gas; Ωw = ωa/Ul is non-dimensional frequency of surface wave;
ρg = 1.2 kg m−3, a = 0.0002 m, fs = 177 Hz, Ohl = 0.00819, ρ = 0.0012.)
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Figure 24. Various patterns of surface wave. (a) KHS: Ul = 1.94 m s−1, Ug,0 = 7.25 m s−1, �U =
9.28 m s−1, Werel = 0.248, Ωs2 = 0.1144; (b) KHH: Ul = 2.26 m s−1, Ug,0 = 7.22 m s−1, �U = 9.25 m s−1,
Werel = 0.235, Ωs2 = 0.0986; (c) FDM: Ul = 1.65 m s−1, Ug,0 = 5.39 m s−1, �U = 5.47 m s−1, Werel =
0.101, Ωs2 = 0.1351; (d) SDM: Ul = 1.58 m s−1, Ug,0 = 6.38 m s−1, �U = 7.80 m s−1, Werel = 0.186,
Ωs2 = 0.1407. (Liquid is deionized water; air is gas; ρg = 1.2 kg m−3, a = 0.0002 m, fs = 177 Hz, Ohl =
0.00819, ρ = 0.0012.)

wave did not occur in this condition, as shown in figure 24(d). This pattern exceeded the
scope of the theoretical results in § 2.2; this pattern is referred to as the second disordered
mode (SDM).
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The four different unstable modes discovered in the experimental study are shown in
supplementary movies 4–7.

Figure 23 also shows an apparent boundary between the KHH and KHS. These
two patterns were sensitive to the non-dimensional oscillating frequency. Due to the
competition between the two modes, the surface wave was not regular near the boundary.
In addition, the boundary between KHH and FDM and the boundary between KHS and
SDM were not apparent. There were some KHH and KHS in the SDM region, indicating
that the wave pattern was not sensitive to Werel and that the range of Werel near the
boundary was relatively large. Moreover, the boundary between KHS and FDM was
not monotonic. With an increase in non-dimensional frequency, Werel near the boundary
decreased and then increased. With an increase in non-dimensional frequency, the liquid
velocity decreased, and the range of unstable disturbance frequency narrowed, so the
surface wave with a certain frequency was more difficult to motivate. With an increase
in the non-dimensional oscillating frequency (namely a decrease in the liquid velocity),
the ratio of momentum between gas and liquid decreased, restraining the instability.
The effects of these two factors were opposite, and competition made the boundary
non-monotonic. There was also a distinct boundary between the KHS and SDM. The
increase in non-dimensional frequency indicated an increased ratio of momentum between
gas and liquid; thus, a lower Werel could motivate a surface wave of SDMs. Therefore,
the critical Werel corresponding to the boundary was a monotonic decreasing function of
oscillating frequency.

To theoretically explain the patterns of surface waves shown in figure 23, Wel was
adopted as the x coordinate to map the distribution again in figure 25. The surface tension
was constant, so Wel represents the inertia force of the liquid sheet; Werel represents the
coupling effect of the aerodynamic and oscillating forces (i.e. the effective aerodynamic
force) and, therefore, the relative scale of these two forces can be obtained visually. As
previously noted, SDM was caused by the breakup of the liquid sheet within a time
frame smaller than an oscillating period; the instability was strong. Hence, the growth
rate at the boundary between SDM and KHS must reach a critical value. This boundary
is defined as 1–4, as shown in figure 25. The upper left region of this line is the SDM
region. In terms of frequency, most points in the SDM region are subharmonic rather than
irregular. However, this does not prove that the pattern of the surface wave was also regular.
As shown in figure 27(a), there was not an entire wavelength, although the disturbance
frequency was half the oscillating frequency of the gas flow. The atomization was so strong
that the ruptured liquid sheet obstructed the gas nozzle exit, influencing the amplitude of
gas oscillation. At small Wel, Werel could not be greatly improved in the SDM region,
although the power of the loudspeaker was turned up. This was also the reason why the
points were so dense in the SDM region. Generally, patterns such as those in figure 27(a)
are regarded as SDM.

Figure 26 is plotted to explain the locations of boundaries 1–3-a and 2–3. The dispersion
curves of a, b and c and d, e and f shown in figure 25 are plotted in figures 26(a) and 26(b),
respectively. Boundaries 1–3-a and 1–3-b are the lower boundaries of the KHS, which
separates the KHS from the FDM and KHH. The evaluation criterion of 1–3-a is

− Ki,sub = −A1Ki,max, (3.5)

where −Ki,sub and −Ki,max are the growth rates corresponding to half the frequency of gas
oscillation and the maximum growth rate, respectively, as shown in figure 26(a). Factor
A1 is a correction factor, set as 0.96 in figure 25. In the KHS region, the aerodynamic
effect was relatively high, satisfying −Ki,sub > −A1Ki,max, so the surface wave pattern
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Figure 25. Theoretical boundary between different patterns. 1, KHS; 2, KHH; 3, FDM; 4, SDM. (Liquid
is deionized water; air is gas; ρg = 1.2 kg m−3, a = 0.0002 m, fs = 177 Hz, Ohl = 0.00819, ρ = 0.0012,
Ωs = 0.3786.)
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Figure 26. Graphical representation of method to obtain boundaries: (a) 1–3-a and (b) 2–3. Dispersion curves
in (a) are for points a, b and c in figure 25 and dispersion curves in (b) are for points d, e and f in figure 25.

was subharmonic. According to the theoretical results in § 2.2, a longer surface wave
corresponded to a lower critical aerodynamic force, and the improvement of Wel led to
the increased wavelength at a specific frequency. Hence, Werel corresponding to 1–3-a
decreased with increasing Wel. However, with increased liquid velocity, the liquid inertia
force increased; as a result, the growth rate decreased with a given aerodynamic force – the
liquid sheet was more difficult to disturb. Consequently, a larger aerodynamic force was
needed to motivate the instability. Here, the relationship is Werel = A2Wel = 0.018Wel,
and 1–3-b can then be obtained, which divides the KHS and KHH regions well. Note that
there were some KHH conditions in the KHS region around point Werel = 0.24, Wel =
12; these are explained in figure 28.

959 A18-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

19
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.19


B.-Q. Jia and others

  

 

(b)(a)

Figure 27. Two typical conditions in figure 25. (a) Typical atomization phenomenon in SDM region, where
frequency of surface wave is half the oscillating frequency (Wel = 4.898, Werel = 0.231). (b) Typical
atomization phenomenon in FDM region where frequency of surface wave equals the oscillating frequency
(Wel = 14.128, Werel = 0.089).
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Figure 28. Pattern distribution of surface waves at different frequencies. 1, KHS; 2, KHH; 3, FDM: (a) A2 =
0.0202, A3 = 0.0001, Wel,cr = 4.95, Ug,2 = 1.14Ug, fs = 100 Hz, Ωs = 0.2139; (b) A2 = 0.018, A3 = 0.0001,
Wel,cr = 6.35, fs = 121 Hz, Ωs = 0.2558; (c) A2 = 0.016, A3 = 0.5, A4 = 0.96, Wel,cr = 8.75, fs = 142 Hz,
Ωs = 0.3037; (d) A2 = 0.018, A3 = 0.93, A4 = 0.98, Wel,cr = 8.9, fs = 161 Hz, Ωs = 0.3444. (Liquid is
deionized water; air is gas; other parameters are the same as figure 25.)
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Using a method similar to that for 1–3-a, the evaluation criterion of 2–3 is

− Ki,h = −A3Ki,max, (3.6)

where −Ki,h and −Ki,max are the growth rates corresponding to the frequency of gas
oscillation and the maximum growth rate, respectively, as shown in figure 26(b). Factor A3
is a correction factor, set as 0.82 in figure 25. The regions above and below this boundary
are the KHH and FDM regions, respectively. Several points in the FDM region can be
found with a harmonic frequency. However, a typical image of these points shown in
figure 27(b) proved that the disturbance displacement was small, and there was no regular
wavelength, so these points were also regarded as FDM.

3.2.2. Influence of oscillation frequency
Figure 28 displays the pattern distribution at different gas velocity oscillations. With an
increase in oscillation frequency, Wel corresponding to the boundary between the KHS
and KHH regions increased. When Werel was given, a larger liquid velocity was needed
to involve the oscillation frequency into the unstable frequency region with a larger
oscillation frequency, so the corresponding Wel increased. Note that this boundary was
more complex than that in figure 25. For example, in figure 28(d), 1–3-b still agrees
with the relation Werel = 0.018Wel. However, 1–3-b cannot divide the KHH and KHS
regions completely, so another mechanism was considered to divide these two regions.
According to the criterion of 2–3, the occurrence of KHH requires the growth rate to
reach a critical value, i.e. −Ki,h > −A3Ki,max. Likewise, boundary 1–2-b can be obtained
according to a similar criterion −Ki,h = −A4Ki,max, where A4 = 0.98 in figure 28(d).
Moreover, with an increase in Werel, the boundary between KHH and KHS corresponds
to a critical liquid Weber number Wel,cr, which is boundary 1–2-a. Furthermore, with an
increase in the oscillation frequency, boundary 1–2-b became more important, as shown
in figure 28(c,d), whereas boundary 1–2-b could not be observed when the oscillation
frequency was relatively low, as shown in figure 28(a,b).

In figure 29, the non-dimensional frequency Ωs2 is set as the x coordinate to further
study the effect of frequency. The ratio between Werel and Wel is set as the y coordinate.
The boundaries in figures 25 and 28 are marked in figure 29. The relationship between
the boundaries and frequency is more specific in figure 29. According to the pattern
distribution, the critical frequencies Ωscr1 and Ωscr2 between the KHH and KHS regions
are shown in table 3. For a relatively large Werel/Wel, when Ωs2 < Ωscr1, the pattern
was KHH; when Ωs2 > Ωscr2, the pattern was KHS; and Ωscr1 < Ωs2 < Ωscr2 was a
competitive range between the two modes. As shown in table 3, the critical frequencies
were located in the range 0.0962–0.1193 with a relative change range of 24 %. The range
of the oscillating frequency was 100–177 Hz with a relative change range of 77 %. Recall
that the non-dimensional frequency was Ωs2 = ωsa/Ul, which can be regarded as the
ratio between the gas oscillating frequency and the physically inherent frequency. The
physical process of the instability can be explained qualitatively: when the dimensional
frequency ωs increased, the wavelength was approximately inversely proportional to the
gas oscillating frequency λ ∼ Ul/ωs. Instability was more difficult to motivate for a shorter
wavelength; therefore, when the oscillating frequency ωs increased and the aerodynamic
force remained unchanged, motivation of the KHH and KHS required an increase in the
wavelength (i.e. an increase in Ul). As a result, the numerator and denominator both
increased in the expression of non-dimensional frequency Ωs2 = ωsa/Ul. Therefore, the
range of critical frequencies did not change notably, especially for Ωscr1, the range of
change was 0.0962–0.1051 and the relative change range was smaller than 10 %. To
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Panel in figure 29 Ωs Ωscr1 (KHH) Ωscr2 (KHS)

(a) 0.2139 0.0962 0.0962
(b) 0.2558 0.1026 0.1031
(c) 0.3037 0.0981 0.1047
(d) 0.3444 0.1056 0.1156
(e) 0.3786 0.1051 0.1193

Table 3. Critical frequencies between KHH and KHS regions.

summarize, if the KHH or KHS must be maintained, then the liquid velocity should be
adjusted to maintain Ωs2 when the gas oscillating frequency changes.

Moreover, it can be seen that no boundary 1–2-b existed when the oscillating frequency
was low, possibly because when the oscillating frequency was small – and if a frequency
of surface wave had to be restricted within a small range – the liquid velocity range
requiring adjustment was small, which exceeds the accuracy limitations of the equipment.
Generally, when Werel/Wel was small, the pattern was FDM; when Werel/Wel was
moderate and the non-dimensional frequency was relatively high, the pattern was KHS;
and when Werel/Wel was moderate and the non-dimensional frequency was relatively
small, the pattern was KHH. When both Werel/Wel and the non-dimensional frequency
were relatively large, the pattern was SDM.

Considering figures 25 and 29 together, at boundary 1–3-b, Werel/Wel is approximately
0.018, and the relative error is smaller than 12 %. However, at low frequencies, Wel
was relatively small, and the spatial damping was also small. Hence, in figure 28(a,b),
boundary 2–3 corresponds to the condition when the growth rate was slightly larger
than one. In addition, a correction was conducted for the condition of figure 28(a). In
the process of dealing with the gas velocity, the aerodynamic force was underestimated.
As shown in figure 10, the FFT process reduced the effective value of the aerodynamic
force. Therefore, Ug,2 = 1.14Ug was adopted to correct the gas velocity, and boundary
2–3 could be obtained. With increasing frequency, Wel corresponding to 2–3 increases,
leading to an increase in the corresponding Werel. As a result, A3 increased. In other words,
motivation for the KHH requires a higher liquid velocity at a higher frequency, so a greater
aerodynamic force is needed to overcome the liquid inertia force.

Comparing figures 28(c) and 28(d), with increasing frequency, the minimum Werel
on boundary 1–2-b also increases, consistent with the rule that A2 changes little with
frequency. In figure 28(d), the minimum Werel on 1–2-b was approximately 0.21.
Therefore, at a higher oscillating frequency (shown in figure 25), the power of the
loudspeaker was not high enough to observe 1–2-b. However, in the description of
figure 25, there are some KHH conditions in the KHS region around point Werel =
0.24, Wel = 12. According to 1–2-b in figures 28(c) and 28(d), these points were not
accidental errors but part of the KHH region above 1–2-b.

The frequency of the surface wave in the FDM region was investigated. As shown in
figure 30, the theoretical frequencies corresponding to the maximum growth rate were
obtained, and the experimental frequencies of the dominant modes of POD are also
displayed. With an increase in Werel, the experimental and theoretical frequencies both
increased with an increase in Werel. The reason is that the increase in Werel indicates an
increasing aerodynamic force, broadening the unstable frequency range and promoting the
dominant unstable frequency.
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Figure 29. Pattern distribution when non-dimensional frequency is set as x coordinate. 1, KHS; 2, KHH; 3,
FDM; 4, SDM: (a) fs = 100 Hz, Ωs = 0.2139; (b) fs = 121 Hz, Ωs = 0.2558; (c) fs = 142 Hz, Ωs = 0.3037;
(d) fs = 161 Hz, Ωs = 0.3444; (e) fs = 177 Hz, Ωs = 0.3786. (Liquid is deionized water; air is gas; other
parameters are the same as figure 25.)
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Figure 30. Frequencies corresponding to maximum growth rates of surface waves in FDM region shown in
figure 28(c).

Furthermore, in the low-frequency condition in figure 28(a,b), the surface waves with
irregular frequencies were fewer than in the high-frequency condition. Although these
points were separated into the FDM region, the frequency of the surface wave equalled
the gas oscillating frequency. This phenomenon is worthy of further study. Figure 31
displays the surface wave frame by frame to investigate the waveform. Here POD was
also conducted to analyse the waveform.

The frame rate of figure 31 is 2000 fps, and the gas oscillating frequency is
100 Hz. Twenty images constitute an oscillating period; therefore, 21 continuous images
are displayed. The phase and forms of the wave in figure 31(u) were nearly the same
as those in figure 31(a); the periodicity of the surface wave was good, and the wave
frequency was equal to the gas oscillating frequency. However, this cannot demonstrate
that the wavelength is equal to the ratio between the wave velocity and frequency. Instead,
by selecting a wave crest as a reference point and following this point frame by frame,
an interesting phenomenon is revealed: after a period, the crest transforms into a trough,
which is not a typical travelling wave but – like a standing wave – spreads spatially, i.e. a
travelling Faraday wave. According to figure 31, the travelling distance of the surface wave
in one period was just 1.5 times that of the wavelength.

This pattern was not observed in the high-frequency condition, possibly because under
those conditions, there was more spatial dissipation of oscillating amplitude, which was
not intense enough to motivate the Faraday wave.

The qualitative description of this pattern can be expressed as

η = η0 cos(ωt + kx) cos(ωst/2), (3.7)

where ωs is the oscillating frequency. Here ωs/2 was chosen because the oscillating
frequency of the surface wave was half the gas oscillating frequency. (The crest became a
trough, indicating half the period of the oscillation of the surface wave.) Frequency ω is
the travelling frequency. In a gas oscillating period, the surface wave travelled 3/2 times
that of the wavelength, so ω = 3ωs/2. Therefore, (3.7) becomes

η = η0 cos(3ωst/2 + kx) cos(ωst/2)

= η02 cos(2ωst + kx) + η02 cos(ωst + kx), η02 = η0/2.
(3.8)
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Figure 31. (a–u) Typical waveform in FDM region shown in figure 28(a) (Wel = 5.421, Werel = 0.0673).

According to (3.8), the surface wave can be decomposed into two sets of modes with
frequencies of ωs and 2ωs. The wavelengths of these two modes were the same; therefore,
wavelength is a reliable criterion. Double-frequency modes rising in a standard travelling
wave are often induced by the nonlinear effect, and their wavelength is half – rather than
equal to – that of the linear modes.

Figure 32 is the POD result of the surface wave in figure 31. Modes 1–4 were all
antisymmetric, dominating the waveform. The energy ratio of modes 1–4 exceeded 50 %,
indicating that the waveform was fairly regular. Modes 1 and 2 constituted a set with
a frequency of 100 Hz, while modes 3 and 4 constituted a set with a frequency of
200 Hz. These results coincided well with the prediction in (3.8). There was not a
significant difference between the wavelengths of modes 1 and 2 and the wavelengths of
modes 3 and 4, indicating that modes 3 and 4 were not nonlinear harmonic waves but were
induced by η02 cos(2ωst + kx) in (3.8). Therefore, the POD results also proved that the
surface wave in figure 31 was a standing wave, spreading spatially, namely a travelling
Faraday wave. These results confirmed that when the oscillating frequency and Werel
were relatively low and Wel was relatively high, parametric instability could be motivated.
Under this condition, the waveform cannot be regarded as a disordered wave, i.e. boundary
2–3 in figure 28 can guarantee that the points above it are K–H harmonic waves but cannot
guarantee that the points below it are all disordered waves. A Faraday wave may also
be motivated in the FDM region. However, note that the conditions for the motivation
of Faraday waves are rigorous, requiring a low spatial dissipation of gas oscillations.
Meanwhile, it was difficult for the growth rate in the parametric unstable region to surpass
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Figure 32. The POD results shown in figure 31. (a) Energy distribution, (b) frequency of modes 1–4,
(c) mode 1, (d) mode 2, (e) mode 3 and ( f ) mode 4.

the K–H unstable region if the mean relative velocity between the gas and liquid was
relatively high. Therefore, only a few Faraday wave points were observed. Although the
repeatability of these points was good, the points were not sufficient to separate into a
specific region.

Moreover, the schematics of this mode are presented in supplementary movies 8 and 9.
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Figure 33. Effects of solution concentration on pattern distribution. 1, KHS; 2, KHH; 3, FDM. Liquid:
(a) deionized water; A2 = 0.016, A3 = 0.5, A4 = 0.96, Welcr = 8.75, Ohl = 0.00819, ρ = 0.0012; (b) 20 %
glycerol aqueous solution; A2 = 0.0175, A3 = 0.8, A4 = 0.95, Welcr = 8.45, Ohl = 0.0147, ρ = 0.00114;
(c) 20 % glycerol aqueous solution; A2 = 0.0195, A3 = 0.8, A4 = 0.965, Welcr = 8.5, Ohl = 0.0329, ρ =
0.00109; (d) 60 % glycerol aqueous solution; A2 = 0.0235, A3 = 0.85, Welcr = 9.2, Ohl = 0.0974, ρ =
0.00104. Gas: air ( fs = 142 Hz, Ωs2 = 0.3037).

3.2.3. Influence of solution concentration
Figure 33 displays the pattern distribution using a liquid solution with a different
concentration. An increase in the mass fraction of glycerol led to increased density and
viscosity, which restrained the instability. At the same time, an increase in the mass
fraction of glycerol led to a decrease in the surface tension, enhancing the instability.
As shown in figure 33, with increasing concentration, the coefficients A2 and A3 tended
to increase. Coefficients A2 and A3 corresponded to the criteria of 1–3-b and 2–3,
respectively. Hence, an increase in these two coefficients indicated that KHH and KHS
motivation required greater aerodynamic force.

Note that the x coordinate was set as Wel, which included the effect of liquid density
and surface tension, so liquid viscosity was the main parameter affecting the instability.
However, in earlier studies by the authors (Yang et al. 2018; Jia et al. 2019), the viscosity
did not dramatically affect the growth rate. This may be because these studies – including
the present theoretical study – did not consider the velocity distribution in the basic liquid
flow. When the aerodynamic force was relatively low, the liquid velocity distribution could
increase the dissipation effect, restraining instability. However, when the aerodynamic
force was relatively high (as shown in figure 20), the restraining effect of viscosity
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was not distinct. In general, viscosity mainly promoted the aerodynamic force required
for motivating KHS and KHH, but it had little effect on instability at a relatively high
aerodynamic force.

4. Conclusion

An experimental study of the oscillatory K–H instability of a planar liquid sheet in the
presence of axial oscillating gas flow was conducted. The growth rates of the surface
waves were measured for both steady and oscillatory gas flow cases and compared with
theoretical predictions using linear instability theory. The experimentally measured growth
rates were compared with those obtained using linear instability theory. Moreover, in a
larger parameter range, four typical wave modes were found through experimental study.
The mechanism of the occurrence of these modes was analysed physically. Based on a
physical interpretation of these modes, linear instability theory was used to divide the
boundaries between the regimes of these modes, and the theoretical boundaries can divide
these regimes well with appropriate correction factors.

Examination of the growth rate demonstrated two effects of gas oscillation: modulating
the surface wave and providing an oscillating aerodynamic force. An increase in the gas
oscillating frequency suppressed instability when the aerodynamic force was low, but it
had little influence on the growth rate when the aerodynamic force was high. Increasing
the liquid inertia force mainly restrained instability. Liquid viscosity had little influence
on the instability when the aerodynamic force was relatively high. However, an increase
in liquid viscosity had a dramatic stabilizing effect. The experimental results agreed well
with the theoretical results.

In a larger parameter range, an interesting experimental discovery was finding four
different unstable wave patterns: FDM, SDM, KHH and KHS. The frequencies of KHH
and KHS equalled the gas oscillating frequency and half the gas oscillating frequency,
respectively; the frequencies of FDM and SDM were disordered. All of these modes
primarily corresponded to the K–H instability rather than the parametric instability. The
KHS was an unexpected but surprising phenomenon. It did not belong to the parametric
unstable region, but its frequency was half the forcing frequency. According to linear
theory, a disturbance with a longer wavelength is more likely to be motivated. For a
certain liquid Weber number, the wavelength of KHS was longer than that of KHH, and
the subharmonic oscillations of KHS could also couple with the oscillating gas flow. As
a result, KHS occurred in the present study. The FDM was located in the region where
the relative Weber number was small. If the liquid Weber number was relatively small,
then with an increase in aerodynamic force, the dominant frequency in FDM increased
until it reached the frequency of KHS. However, if the liquid Weber number was relatively
large, then an increase in aerodynamic force made the unstable mode transform from FDM
to KHH. From the KHS region, if the aerodynamic force increased until the liquid sheet
broke up within one period, then the unstable mode transformed from KHS to SDM. If
the gas oscillating frequency increased, then a larger aerodynamic and liquid inertia force
was required to maintain KHH, while the boundary between KHS and FDM remained
almost unchanged. With an increase in viscosity, the minimum aerodynamic force for the
motivation of KHH and KHS increased, indicating that the viscous dissipation effect is
more significant at lower gas Weber numbers.

Another interesting phenomenon was the discovery of the travelling Faraday wave when
the liquid inertia force was high and the aerodynamic force was low. The oscillating
and travelling frequencies were half the gas oscillating frequency and 3/2 times the gas
oscillating frequency, respectively.
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Figure 34. Temporal instability of planar liquid sheet under (a) sinuous and (b) varicose disturbance.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.19.
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Appendix A

According to Jia et al. (2019), the temporal stability of viscoelastic planar liquid sheets
in the presence of gas oscillations can be solved using Floquet theory. In the present
study, the liquid sheet was viscous; therefore, the dispersion relation of temporal stability
could be obtained by simplifying the constitutive equation of the liquid sheet. As shown in
figure 34, the liquid sheet was two-dimensional with a thickness of 2a. The basic flows of
the gas medium and liquid phase were oscillating and static, respectively. The disturbance
amplitude of the surface wave was η. The x and y axes were parallel and perpendicular to
the stream of the gas flow.

Actually, in the reference system where the nozzle is static, the liquid sheet is oscillatory
because of the oscillation of the gas velocity. The liquid and gas velocities can be expressed
as

Ul = Ul,0 + �Ulf (t), (A1)

Ug1 = Ug,0 + �Ug cos(ωst). (A2)

For the basic flow, the liquid velocity is independent of spatial coordinate, so the liquid
viscous stress is zero. So according to Kelly (1965), the liquid and gas velocity satisfies

dUl/dt
dUg1/dt

= ρg

ρl
. (A3)

Therefore, the liquid velocity is

Ul = Ul,0 + ρg

ρl
�Ug cos(ωst). (A4)

However, it should be noted that �Ul is much smaller than the gas velocity oscillation.
Therefore, in the stability analysis in § 2.2, the liquid velocity oscillation is ignored, which
has little effect on the growth rate of the surface wave.
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In the present study, the reference system is selected such that the liquid sheet is static.
Therefore, the governing equations of the liquid phase are the conservation laws of mass
and momentum, as follows:

∇ · vl = 0, (A5)

ρl

(
∂

∂t
+ vl · ∇

)
vl = ρlg − ∇pl + μ∇2vl, (A6)

where ρl is the liquid density, t is time, vl is the liquid velocity vector (expressed as
(ul, vl)), pl is liquid pressure and μ is viscosity of the liquid phase. It should be noted
that the reference system is a non-inertial system, so there exists an inertia body force ρlg
in (A6), where g = (g, 0) and g = −dUl/dt = (ρg/ρl)ωs�Ug sin(ωst).

The governing equations of the incompressible inviscid medium can be expressed as

∇ · vg = 0, (A7)

ρg

(
∂

∂t
+ vg · ∇

)
vg = ρgg − ∇pg, (A8)

where ρg is the gas density, vg is the gas velocity vector, which can be expressed as (ug,vg),
and pg is the gas pressure.

When the disturbance began, the upper and lower interfaces were displaced and regarded
as one of the following forms:

Yj = (−1) ja + η(x, t), for sinuous mode,
Yj = (−1) j[a + η(x, t)], for varicose mode,

}
(A9)

where j = 0 and j = 1 represent the upper and lower surfaces, respectively, and Yj is the
location of the disturbed surface.

The boundary conditions can be expressed as follows:

vl|y=±Yj =
(

∂

∂t
+ ul

∂

∂x

)
Yj, (A10)

vg|y=±Yj =
(

∂

∂t
+ ug

∂

∂x

)
Yj, (A11)

ug|y→±∞ = finite, (A12)

(πl − πg) × n = 0, (A13)

(πl − πg) · n + σ∇ · n = 0, y = Yj, (A14)

where πl is the liquid phase stress tensor, which can be expressed as πl = plδ − τ , and
πg = pgδ is the gas phase stress tensor. Here σ is the surface tension, n is the unit vector
normal to the liquid-gas interface, pointing to the gas phase, and ∇ · n is the local surface
curvature.

The velocity of the gas medium can be expressed as

Ug = U0 + �U cos(ωst), (A15)

where Ug, U0 and �U are the gas velocity, gas mean velocity and gas velocity oscillation
amplitude, respectively, and ωs is the gas velocity oscillating frequency.

To conduct a linear stability analysis, this condition was disturbed by small
perturbations. The dependent variables for pressures, velocities and gas-liquid interfaces
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are each presented as the sum of the values of the basic state (with an overbar) and
disturbed state (with a prime):

vl = v̄l + v′
l = (0, 0) + (u′

l, v
′
l),

vg = v̄g + v′
g = (Ug, 0) + (u′

g, v
′
g) =

(
∂φg

∂x
, 0

)
+
(

∂φ′
g

∂x
,
∂φ′

g

∂y

)
,

⎫⎪⎬
⎪⎭ (A16)

pl = pl + p′
l, pg = pg + p′

g, (A17a,b)

where φg is the potential function of the gas phase.
The linearized equations for the sinuous disturbance mode can be obtained after

neglecting the nonlinear terms:

∇ · v′
l = 0, (A18)

ρl
∂v′

l

∂t
= −∇p′

l + μ∇2v′
l, (A19)

∇2φ′
g = 0, (A20)

ρg

(
∂

∂t
+ Ug

∂

∂x

)
φ′

g = −p′
g, (A21)

v′
l|y=±a = ∂η

∂t
, (A22)

∂φ′
g

∂y

∣∣∣∣
y=±a

= ∂η

∂t
+ Ug

∂η

∂x
, (A23)

∂u′
l

∂y
+ ∂v′

l

∂x
= 0, (A24)

φg|y→±∞ = finite, (A25)

p′
l − 2μ

∂v′
l

∂y
− p′

g + σ
∂2η

∂x2

∣∣∣∣
y=±a

= 0. (A26)

The perturbed parameters should be expressed in the Floquet form with a period 2π/ωs,
i.e.

(u′
l, v

′
l, p′

l, φ
′
g, p′

g) = exp(βt)(ûl, v̂l, p̂l, φ̂g, p̂g)( y, t mod 2π/ωs) exp(ikx), (A27)

where β = βr + iβi is the Floquet exponent. Here k = 2π/λ is the wavenumber of the
surface wave, with λ being the wavelength. The parameters in (A27) are periodic in time
with period 2π/ωs and may therefore be expanded in a Fourier series:

(ûl, v̂l, p̂l, φ̂g, p̂g)( y, t) =
+∞∑

n=−∞
[ûln( y), v̂ln( y), p̂ln( y), φ̂gn( y), p̂gn( y)] einωst. (A28)

The surface deformation of the sinuous mode can be expanded in the same manner:

η = exp(βt)η̃(mod2π/ωs) exp(ikx) = exp(βt)
+∞∑

n=−∞
ηn einωst exp(ikx). (A29)
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Substituting equations (A27)–(A29) into (A18)–(A26), the dispersion relation can be
obtained:

Aη =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
... . . .

· · · D−2 G−1 F 0 0 · · ·
· · · E−2 D−1 G0 F 0 · · ·
· · · F E−1 D0 G1 F · · ·
· · · 0 F E0 D1 G2 · · ·
· · · 0 0 F E1 D2 · · ·
. . .

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

η−2

η−1

η0

η1

η2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 (A30)

for sinuous mode, where

Dn = μ

ρl
(k2 + l2n)(ρlωen + 2μk2) tanh(ka) − 4

μ2

ρl
k3ln tanh(lna)

+σk3 + ρgω
2
en + 2iρgkωenU0 − ρgk2U2

0 − ρgk2�U2
g

2
,

En = iρgkωen�U − ρgk2U0�U − ρgkωs�U
2 ,

Gn = iρgkωen�U − ρgk2U0�U + ρgkωs�U
2 ,

F = −ρgk2�U2

4 ,

ωen = inωs + β, l2n = k2 + ρl
μ

ωen,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A31)

and

A2η =

⎛
⎜⎜⎜⎜⎜⎝

. . .
...

...
... . . .

· · · D−12 G0 F · · ·
. . . E−1 D02 G1 · · ·
· · · F E0 D12 · · ·
. . .

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

...

η−1
η0
η1
...

⎞
⎟⎟⎟⎟⎟⎠ = 0 (A32)

for varicose mode, where

Dn2 = μ

ρl
(k2 + l2n)(ρlωen + 2μk2) coth(ka) − 4

μ2

ρl
k3ln coth(lna)

+σk3 + ρgω
2
en + 2iρgkωenU0 − ρgk2U2

0 − ρgk2�U2

2
.

(A33)
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