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Introduction

Convex polytopes, or simply polytopes, are geometric objects in some space
RY; in fact, they are bounded intersections of finitely many closed halfspaces
in R¢. The space R can be regarded as a linear space or an affine space, and
its linear or affine subspaces can be described by linear or affine equations.
We introduce the basic concepts and results from linear algebra that allow
the description and analysis of these subspaces. In particular, we describe the
embedding of an affine space into a larger linear space, which often results in
a clearer perspective of the initial space. In Chapter 2, we will embed an affine
space into a projective space and so projective spaces are introduced in prepa-
ration for that embedding. Spaces are fundamental concepts in linear algebra,
as are the maps that preserve their inherent structure; Section 1.4 revisits these
maps. The principle of duality will surface often in this book, starting with an
overview of dual spaces in Section 1.5 and dual sets in Section 1.11.

A polytope can alternatively be described as the convex hull of a finite set
of points in R and so it is a convex set. Convex sets are therefore introduced,
as well as the basic theorems of Carathéodory and Radon. Section 1.7 revisits
topological properties of convex sets, with an emphasis on relative notions as
these are based on a more natural setting, the affine hull of the set. We then
review the separation and support of convex sets by hyperplanes. A convex
set is formed by fitting together other polytopes of smaller dimensions, its
faces; Section 1.9 discusses them. Finally, the chapter studies convex cones
and lineality spaces of convex sets in R?; these sets are closely connected to
the structure of unbounded convex sets.

1.1 Subspaces

From the outset, we want to make clear that all the spaces considered in this
book are of finite dimension and ‘concrete’; their underlying fields of scalars

1

https://doi.org/10.1017/9781009257794.002 Published online by Cambridge University Press


https://doi.org/10.1017/9781009257794.002

2 Introduction

are ‘concrete’: they are either the set Q of rational numbers, the set R of real
numbers, or in rare occasions the set C of complex numbers.

The set of all d-tuples (xiy,...,xg) with entries in R defines the d-
dimensional real linear space R? when endowed with vector addition and
scalar multiplication. The elements of R?, called vectors, are always repre-
sented as column vectors, written in bold as x,y,z. When the vector coor-
dinates are required, we will then write x = (x1,...,x4)" for typographical
reasons, where X’ denotes the transpose of a matrix X. The all-one vector and
the all-zero vector in R are denoted by 1, and 0, respectively; when there is
no opportunity for confusion we write simply 0 and 1.

A linear subspace L of R? is a nonempty subset that contains the linear
combination of any two of its vectors; that is, a set of the form

L:={ail| +azls| 01,00 e Rand 11,1, € L}; (1.1.1)

here x := y and y =: x define x as an object equal to y. The expression o1/ +
aply is the linear combination of the vectors [ and [5.

A point x in R lies in a line £ through distinct points a1, a; € R¥ if x can be
expressed as a1a| + aray for some scalars oy, € R satisfying oy + oy = 1.
The line ¢ can be defined as

L= {alal +a2a2| a,ap ER, 01 +ap = 1}.

In the particular case that the line £ passes through the origin, £ can be defined
asf:={aa| aeR,act}

Example 1.1.2 (Linear subspaces) The following are examples of linear
spaces.

(i) A line in R¢ through the origin is a linear subspace of R¢.
(i) The set R? is a linear subspace of R4,
(iii) The smallest linear space is {0}.
(iv) The set of solutions of a system of homogeneous linear equations in d
unknowns is a linear subspace of R¢:

Il
o

X1\ | o1x1 + -+ o1,axd

Xd) | op X1+ +apaxg = 0

A subset L < R? is a linear subspace of R if and only if it is the
solution set of a system of homogeneous linear equations in d unknowns
(Problem 1.12.2).

(v) The set R?*" of d x n matrices with entries in R is a linear space with the
usual matrix addition and scalar multiplication.
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If we want to emphasise the affine properties of R, we refer to it as the d-
dimensional real affine space A? and call its elements points. As with vectors,
our points are always column vectors, written in bold.

A subset A of RY is an affine subspace if it contains the line between any
two of its elements:

A= {a1a1 +oz2a2| a,ap €ER, 01 +ap =1,and aj,ar € A}. (1.1.3)

The expression a1a| + araz, where @, 00 € R, a1 +ap = l,and aj,a; € A
is called the affine combination of the points a| and a>.

Example 1.1.4 (Affine subspaces) The following are examples of affine
spaces.

(i) A line in R? is an affine subspace of R4,
(i) The set R? is an affine subspace of R4,
(iii) The smallest affine space is .
(iv) A set of solutions of a system of nonhomogeneous linear equations in d
unknowns is an affine subspace of R?:

X1\ | a1, 1x1 + - - +a1gxq b

Xa) | op1X1 + -+ opaxa = by

A subset A € R? is an affine subspace of R? if and only if it is the solution
set of a system of nonhomogeneous linear equations in d unknowns
(Problem 1.12.3).

Expressions (1.1.1) and (1.1.3) suggest a close relation between linear
subspaces and nonempty affine subpaces. A nonempty affine subspace A is
a translate ag + L of a linear subspace L by a point ag € A. Fixing any
point ag of A and translating any point of A by —aq gives the linear space
L :={l|ao+1 € A}. In this setting, the point a¢ plays the role of the origin
of the subspace. We call the subspace L the direction of A and denote it by A.
Two nonempty affine subspaces are parallel if they have the same direction.
Often we present a nonempty affine subspace A as the pair (A, X) to keep
track of its direction.

Theorem 1.1.5' The nonempty affine spaces in R¢ are precisely the translates
of linear subspaces of R%. Furthermore, the direction of each nonempty affine
subspace is unique.

LA proof is available in Webster (1994, thm. 1.2.1).
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Figure 1.1.1 Affine and linear hulls in R3. (a) The linear hull of the points a; and
ay, which is a plane in R3. (b) The affine hull of the points @ and a;, which is a
line in R3. (¢) The affine hull of the points a1, a», and a3, which is a plane in R3.

It is obvious that any linear subspace admits an affine structure where the
linear space itself acts as its direction. In view of this, it may not always be
possible to make a clear distinction between points and vectors of a linear
subspace.

Given a subset X of R, it is often convenient to describe the smallest linear
or affine subspace containing it. These new sets are the linear hull and affine
hull of the set X, respectively. The linear hull is also called the linear span
and, similarly, the affine hull is also called the affine span. The hulls of a set
X can be described as the set of combinations of finitely many elements of X.
Notationally,

linX :={oja; + -+ aya,| a; € X,and o; € R} .
n
aff X :=< aja1+---+ogay|n=1,a; € X, «a; eR,andZai =1
i=1

Note that lin & = {0} = aff( U {0}), while aff & = . Figure 1.1.1 depicts
examples of affine and linear hulls.

Dependence, Bases, and Dimension
Let x, y be vectors or points of R?. We say that
(X1, eexd) =x <y =1, 0a)

if x; < y; forevery 1 < i < d. Similarly, we define the relations x > y,
x > y,x < y,and x = y. In contrast, the relation x # y means that x; # y;,
forsome 1 <i <d.

https://doi.org/10.1017/9781009257794.002 Published online by Cambridge University Press


https://doi.org/10.1017/9781009257794.002

1.1 Subspaces 5

Aset L = {ly,...,1,} of vectors in R? is said to be linearly dependent if
and only if there exist distinct scalars «q, . . . ,®,, not all zero, such that

arli + -+ aul, =04

If this equation is satisfied only when a1 = --- = «, = 0, the set is said to
be linearly independent. A set A = {ay, ...,a,} of points in R? is said to be
affinely dependent if and only if there exist distinct scalars «j, . .. ,®,, not all

zero, such that
aja1 +---+opa, =0and oy +-- -+ o, =0.

If these equations are simultaneously satisfied only when o) = --- = o, = 0,
the set is said to be affinely independent.

A linear basis of a linear subspace L is a linearly independent set whose
linear span is L, while an affine basis of an affine subspace A is an affinely
independent set whose affine span is A. If an affine space A is written as ag +
X, with ag € A, and the set {l1,...,I,} is a linear basis of X, then the set
{ap,ap +11, ...,a0+1,} is an affine basis of A. Each point of a subspace can
be expressed uniquely as an affine or linear combination of the elements of a
basis of the subspace.

The dimension of a linear space L, denoted dim L, is defined as the number
of elements of any of its bases, while the dimension of a nonempty affine
subspace is defined as the dimension of its direction. This definition ensures
that when an affine space is a linear subspace, its affine dimension coincides
with its linear dimension. The dimension of the empty affine subspace is —1.

The dot product - of two vectors x = (x1,...,xg) andy = (y1,...,yq)" is
defined as

X-y:=x1y1+-+Xqyd-

If the linear space RY is equipped with a dot product, then it becomes a
Euclidean space, the d-dimensional Euclidean space.
Example 1.1.6 recalls the definitions of five important subspaces.

Example 1.1.6 (Five important linear subspaces) Let M be an n x d matrix.
The following subspaces can be defined from M.

(i) The (right) nullspace null M of M is the set of solutions of the homoge-
neous system Mx = 0. Notationally,

null M = {xeRd’Mx=0}. (1.1.6.1)

(i1) The left nullspace of M is the nullspace of the transpose of M.
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(iii) The column space col M of M is the subspace of R" spanned by the
columns of M, seen as vectors in R”. Notationally,

col M := {b € R"| The system Mx = b is solvable} . (1.1.6.2)

(iv) The row space row M of M is the subspace of R? spanned by the rows of
M, seen as vectors in RY, Notationally,

row M := {b € Rd‘ The system M'x = b is solvable} . (1.1.63)

The dimension of row M equals the dimension of col M, and either is called
the rank of M.

(v) We say that two vectors x and y are orthogonal if x - y = 0. Define
the orthogonal complement of any linear subspace L as the set of vectors
orthogonal to every vector in L. Notationally,

Lt = {xeRd‘xJ:OforeveryleL}. (1.1.6.4)

The nullspace of M coincides with the orthogonal complement of its row
space, whereas the left nullspace of M coincides with the orthogonal com-
plement of its column space. These five subspaces are closely related, as
Problems 1.12.4 and 1.12.5 attest.

Two linear subspaces L and L’ of RY are orthogonal if every vector of L is
orthogonal to every vector of L. A linear space and its orthogonal complement
are clearly orthogonal. Two affine spaces are orthogonal if their corresponding
directions are orthogonal.

We revisit the link between linear and affine spaces, and solutions to linear
equations.

Example 1.1.7 (Subspaces and linear equations) In this example, given a
linear subspace L and an affine subspace A of R9, we describe them as
solutions of linear equations.

(i) (Linear case) Let {l,...,l,} be a set of vectors in R that form a basis
of Lt Letting M be the n x d matrix with the vectors I, ...,I, as rows,
we find that L is the set of solutions of the homogeneous system Mx = 0.
Notationally,

M:=1": andL::{xeRd‘Mx=0}.
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(ii) (Affine case) Pick any point ag € A and write A = a0+X as the translation
of its direction by ag. Represent A as the set of solutions of a homogeneous
system Mx = 0 for some n x d matrix M, with n < d. Then

A:{xeRd‘szbwithszao}.

Examples 1.1.4, 1.1.6, and 1.1.7 contain all the ingredients to derive
expressions for the dimensions of affine and linear spaces when given as
solutions of systems of linear equations.

Proposition 1.1.8 Ler L and A be a linear subspace and an affine subspace of
R4, respectively, given as solutions of systems of linear equations

L:{xeRd‘sz()} andA:{xeRd)szb},

for some M € R"*? and b € R". Then L is the direction of A and dim L =
dim A = d —rank M.

Interval Notation
The interval
[x,y]={zeR|x <z<y}

is the set of real numbers between x and y. Similarly, we define the open
interval (x, y) and the halfopen intervals (x, y] and [x, y) of real numbers from
x to y. We will often consider intervals on the set Z of integers. The interval

[x.yl={z€eZ|x <z<y}

is the set of integers between x and y. Similarly, we define the open interval
(x...y) and the halfopen intervals (x...y] and [x... y) of integers from x to y.

Sets in General Position

Another demand that will be imposed regularly on a subset of R? is that of
being in ‘general position’. The precise meaning will depend on the nature of
the underlying space, but the guiding principle is that the number of elements
from the set in any hyperplane does not exceed the number of elements in any
basis of the hyperplane. We say that a set of at least d + 1 points in R? is
in general position if and only if no d + 1 points of the set lie in an (affine)
hyperplane; in other words, if and only if every subset of at most d + 1 points is
affinely independent. Similarly, we say that a set of at least d vectors in R? is in
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general position if and only if no d vectors of the set lie in a linear hyperplane:
if and only if every subset of at most d vectors is linearly independent.

An affine subspace in R¢ of dimension d — 1 is an affine hyperplane or just
a hyperplane; this is geometrically defined as

Hy(a,a) := {xeRd)a-xza,aeR,aeRd},

where a is a nonzero vector called the normal of the hyperplane. If « = 0,
the hyperplane is a linear subspace of dimension d — 1 that we call a linear
hyperplane.

1.2 Embedding Affine Spaces into Linear Spaces

In Section 1.1 we defined a nonempty r-dimensional affine subspace A of A?
as a set of the form ag + A for some arbitrary element of ag € A and a unique
r-dimensional linear subspace A. Here, we present A in another way, as a
subspace of RI*1.

Every nonlinear hyperplane of R?*! can be thought of as A?. Consider the
concrete nonlinear hyperplane

Hy = {(XL s Xxqp)' € Rd“‘ Xd+1 = 1}

and an arbitrary point ap = (xi,...,x4,1)" in H4. The selection of ag
identifies the hyperplane H,4 with its direction

Hyp = {(XL s xap)' € Rd“‘ Xd+1 = 0}‘

To every point @ € Hy there corresponds the vector ag + I in R4*! for some
vector I € H 4; that is, for an arbitrary ag € Hy there is a bijection o from Hy
to the set of vectors in R4+ with Xg+1 = 1, which is defined as

o(a)=ag+1.

This embedding of A4 and its direction into R**! is called a homogenisation
of A4, We may also say that R?*! is a homogenisation of A“. See Fig. 1.2.1.
An isomorphism between linear spaces is a bijection that preserves vector
addition and scalar multiplication; isomorphic spaces can be regarded as the
same space, with the difference residing only in the nature or labelling of the
vectors. Every d-dimensional linear or affine space over R is isomorphic to R?.
Starting from an affine subspace A and its direction X, we can construct a
linear subspace A that contains both A and A and is unique up to isomorphism.
As a consequence, we talk about the homogenisation A of A. For one
construction of the linear subspace A , check, for instance, Gallier (2011, ch. 4).
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Figure 1.2.1 Homogenisation of the affine space R. (a) The affine space R2. (b)
The affine space R? and its direction R2 as subspaces of R3.

In the homogenisation of A%, a k-dimensional affine subspace A of A?
corresponds to a (k 4+ 1)-dimensional linear subspace A of RIF! spanned
by an arbitrary point ao | in A and k llnearly 1ndependent vectors Iy, ...,1k
spanmng the direction A of A in HA, that is, A = Hy n A and A =
H AN A Equivalently, we can see that A is spanned by the k + 1 linearly
independent vectors ag,ag + I, ...,ap + Iy and A is spanned by the k + 1
affinely independent points o ~!(ag),o " (ag +11), ...,0  (ag + I}). Affine
properties of H4 then reduce to linear properties of R¢+!. For instance, a
set {a@1,...,ar4+1} of points in Hy is an affine basis of A if and only if the
corresponding set {o(ay), ...,o(ar+1)} of vectors in R4+ is a linear basis
of A. Example 1.2.1 uses this embedding to give a concrete test for affine
independence.

Example 1.2.1 (Criterion for checking affine independence) Let a set of affine
points ay, . ..,a, in A be given, with n < d + 1. Form the n vectors

a) a,
)
and test their linear independence.

Concretely, verify that the points a1 = (1,0,0), a; = (2,1,0)!, and a3 =
(1,1,0)" are linearly independent. Form the matrix

1 2 1

0 1 1
M =

0 0 O

1 1 1
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and compute the values of all possible determinants of order three, if necessary.

1 2 1 1 2 1 1 2 1 0 1 1
01 1j=0,10 1 1}=1,]0 0 0/[=0,{0 0 0/=0
0 0 O 1 1 1 1 11 1 11

Since there is a nonzero determinant, we conclude that the vectors

(‘111),<alz), (af> are linearly independent and, thus, that the points ai,

a», and a3 are affinely independent.

1.3 Projective Spaces

Our discussion of projective spaces is mostly utilitarian and not an aim in
itself; in this book the objects live in affine spaces and the proofs mostly begin
and end there. Our treatment will be analytic, based on linear algebra. For a
synthetic treatment consult Hodge and Pedoe (1994, ch. VI).

The definition of a d-dimensional projective space P(R?*1) over the linear
space R4*1 is simple: it is the set of lines in R?*! that pass through the origin.
Each such line is a projective point. Projective points are our zero-dimensional
projective subspaces. We prefer the notation P4 to P(R4*+!) when there is no
risk of ambiguity. See Fig. 1.3.1(a) for a depiction of P (R3).

Since a line through the origin has the form ax for some nonzero vector
x € R4 and every scalar o € R, we can define an equivalence relation ~ on
the nonzero vectors in R4*! by relating two vectors x and y if they lie in the

p(x1, 9, 1)

H :Az /(xlax%l)

H,, = P?

(Y1, Y2, 0) (Y1, Y2, 0)
(a) (b)

Figure 1.3.1 The projective space ]P’(R3). (a) The affine space R?. (b) The
projective space P’ (R3) as H U Hy, = A2 U P (R?).
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same line through the origin; that is, if there exists a scalar « such that x = «y.
In this way, we get a map p that assigns to each nonzero vector x € R?*! its
equivalence class, or equivalently, the line ¢, = ax that it spans. Notationally,

p(x) = £y (1.3.1)

This equivalence relation on the vectors in R?*! also implies that uniqueness
in projective spaces must be understood as uniqueness up to a scalar multipli-
cation.

Constructing projective subspaces from subspaces of RY*! requires little
effort. To every k-dimensional linear subspace L of R4*! there corresponds a
(k — 1)-dimensional projective space P(L) defined as the set of lines through
the origin that are spanned by the nonzero vectors in L. In other words,

p(L\{0}) = P(L).

If L = {0}, then P(L) = & and dimP(L) = —1. A one-dimensional
projective subspace is a projective line, a two-dimensional projective subspace
is a projective plane, and a (d — 1)-dimensional projective subspace is a
projective hyperplane.

An initial advantage of having the underlying linear space R?*! in P(R4+1)
is that all its projective properties can be verified by linear properties of R4+,
We mention a couple of examples.

(P1) Every two projective lines intersect at a projective point. Every two linear
planes (think of the ones defining the projective lines) intersect at a unique
line through the origin.

(P2) Every two projective points determine a unique projective line. Every two
lines through the origin (think of the ones defining the projective points)
determine a unique linear plane.

Homogeneous Coordinates

Another advantage of the underlying linear space R4*! in P(R4+!) is the
access to its linear bases. Consider the standard basis of R4t!, namely

er = (1,0,...,0)", ... eqr1 = (0,...,0,1).

Via the standard basis, we have a bijection that maps the projective point p(x)
onto the set of coordinates of nonzero vectors of the form ax where « is a
scalar. This defines an equivalence class on all the nonzero vectors in R4+
The equivalence class containing the coordinates («1, . ..,x4+1) of the vector
x is denoted by (o] : - - - : ag+1) and defines the homogeneous coordinates of
p(x). That is,
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(B, Bat1) € (o1 2 -+t dta41)
if and only if
(@1, ...,0q+1)" = A(B1, ..., Ba+1)", for some nonzero A € R.
1.4 Maps

Now we revisit the maps that preserve the inherent character of affine, linear,
or projective spaces.

A linear map is a function ¢ between two linear subspaces X and Y of RY
that satisfies

ol + axly) = arp(y) + a2p(l2),

for all @j,ap € R and I1,l; € X. Similarly, an affine map is a function o
between two affine spaces A and B of R that preserves affine combinations.
In other words, it is a function p: A — B that satisfies

o(aray + azaz) = ajo(ay) + azo(az),

for all 1,090 € R with @1 + a2 = 1 and for all a1,a; € A. As a consequence,
every linear map is an affine map.

From the definitions it follows that an affine map o is linear if and only
if 0(0) = 0. It also follows that linear maps send linear subspaces into
linear subspaces and that affine maps do the same for affine subspaces. In the
same vein, injective linear maps send linear subspaces of dimension  into
linear subspaces of dimension r, and so do injective affine maps with affine
subspaces. See Problem 1.12.6.

Bijective maps between two spaces that respect the structure of the spaces
are called isomorphisms. Maps from a space to itself are called transforma-
tions, and bijective transformations are called automorphisms.

Projections

Orthogonal projections surface with some regularity in this book; we discuss
them henceforth. Let L be a linear subspace of RY. Then every vector of
R¢ can be written uniquely as the sum of a vector in L and a vector in L+
(Problem 1.12.4). Notationally, R = L + L+, The orthogonal projection mp,
of any vector x of R onto L is the unique vector I € L with the property that
x —1 e Lt See Fig. 1.4.1(a).
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Figure 1.4.1 Orthogonal projections. (a) An orthogonal projection of a vector x
onto a linear subspace L of R?. (b) An orthogonal projection of a vector x onto
an affine subspace A of R?.

The projection 77 (x) is the point in L closest to x. We provide three
expressions for 7y, depending on the presentation of L.

Suppose that {1, ...,I,} is a basis of L and write M := (I; - - -1,). Then M
is ad xr matrix whose columns are these basis vectors. The projection 7 (x) is
a point in L and so it can be written as M y for some vector y € R". The vector
x —mp(x)isin Li, which yields that x — 77 (x) € (col M)l or, equivalently,
that x — 77 (x) € null M?, as (col M)l = null M! (Problem 1.12.5). Putting
these elements together we get that

M'(x —mp(x) =0
M(x—My)=0.

In addition, it can be shown that M’'M is nonsingular — it has an inverse;
see Problem 1.12.9. Hence, an expression for mr;, is given by Equation (1.4.1)
(Problem 1.12.9).

) = (MM M)~ M) x. (14.1)

We provide another expression for 777, now in terms of orthogonal vectors. A
set X :={ly,...,1,} of vectors of RY is orthogonal if l; -1; = 0 whenever i #
j. It follows that X is linearly independent. The set X is an orthogonal basis
of L if it is both a linear basis of L and an orthogonal set. It is an orthonormal
basis if it is an orthogonal basis consisting of unit vectors. A unit vector is a
vector with norm one. Suppose {Iy, ...,I,} is an orthogonal basis of L. Then
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r

x -1l
TL(x) =Y =1 (1.4.2)
=il
Define the norm ||-|| of a vector x in R? as 1/x - x.

Every linear basis {li,...,l,} of a linear subspace L can be transformed
into an orthogonal basis or an orthonormal basis of L if we wish. To obtain an
orthogonal basis {m, ...,m,}, let

my =1,
. li-m li-m;_, .
m; =1; — SMy — = ———— M|, foreachi € [2...r].
l[m]] lmi—1|l

This is the Gram—Schmidt orthogonalisation process. If we are after an
orthonormal basis, we divide each vector in {mj, ...,m,} by its norm. Thus

||”ll || . ||”17 ”

is an orthonormal basis of L.
The final expression for 7 is obtained when a linear subspace L is given as
a set of solutions of a homogeneous system:

L:= {xeRd’Nx=0}.
In this case, we get that
LX) = x — (N’ (NN’)*I) (Nx). (1.4.3)
In particular, if L is a linear hyperplane defined as {x € R?| a - x = 0} then

T (x) =x — L);a. (1.4.4)
llall
Once we have defined projections onto linear spaces it is not difficult to
extend the process to affine spaces via their directions. Let (A, X) be an affine
space and let ag be a fixed point of A. Then the orthogonal projection w4 of
any vector x € R? onto A is defined as

wa(x) == ag + 773 (x — ao). (1.4.5)

See Fig. 1.4.1(b).

In analogy to the linear case, we obtain expressions for 74 depending on
the presentation of A. If an affine subspace A is given as the set spanned by
an affine basis {ag,ay, . ..,a,} then its direction is spanned by the linear basis
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{a; —ay, ...,a, —ap}. Writing M := (a; —ayp - - - @, — ap), an application of
(1.4.1) gives that

7y () = (M (M'M)" M) x,
wherefrom it follows that
7a () = ao+ (M (M'M) ™" M) (x — ao), (14.6)

If, instead, an affine subspace A is given as a set of solutions of a
nonhomogeneous system

A= {xeRd‘Nszao,aoeA},

then
Ta(x) = x — (N’ (NN’)_l) (Nx — Na). (1.4.7)

In particular, if A = {x e R? | a-x =a -ap, ap € A} then
a-x—a-ag

e (1.4.8)

TA(X) =x —

Projective Maps

We define maps between projective spaces through linear maps between the
underlying linear spaces. Recall that the map p assigns to each nonzero vector
x in R?*! the line arx (see (1.3.1)). Let ¢ be a linear map between linear spaces
X and Y. Since ¢(ax) = a@(x) for every nonzero vector x and scalar «, the
map ¢ assigns lines through the origin to lines through the origin, provided
x ¢ ker ¢. Here, ker ¢ denotes the kernel of ¢, the subspace of X consisting of
the vectors x for which ¢(x) = 0. It then follows that if ¢ is injective, namely
ker ¢ = {0}, then it defines a projective map p(¢): P(X) — P(Y) given by

p(x) — p(p(x)).

If ¢ is not injective, it defines a projective map from P(X)\P(ker ¢) to P(Y).
Hence we hereafter restrict ourselves to injective linear maps. If a linear ¢
induces the map p(¢), so does the map a¢ for any nonzero «, and thus the
linear map ¢ is determined up to multiplication by a nonzero scalar.

If there is a bijective projective map, a projective isomorphism, between two
projective spaces, we say the spaces are (projectively) isomorphic. As before,
projective maps from a space to itself are called projective transformations and
bijective transformations are called projective automorphisms.

We next define a projective basis. We feel that a projective basis in P(R4+!)
is best defined as a set of points {p(x}),...,p(x,)} for which, given any
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projective basis {p(y{),...,p(y,)} of P(RYtY), there is a unique projective
automorphism that takes p(x;) to p(y;) forall i € [1...n]. This follows the
general scheme that a basis in a linear or affine space Z ought to be a set By of
elements for which, given any basis B; in Z, there is a unique automorphism
mapping B; onto B;. This definition, while unusual, could have been equally
used for linear and affine bases.

We say that a set of projective points p(xp).,...,p(x,) is projectively
dependent in P4 if the vectors X1,...,x, are linearly dependent in RA+L
otherwise we say that the projective points are projectively independent in P,
In the same vein, we say that a set of projective points p(x1), ..., p(x,) isin
general position in P4 if the vectors X1, ...,X, are in general position in RA+L
that is, if every subset of at most d + 1 vectors is linearly independent.

Given the close connection between the notions of linear independence in
R4*+1 and projective independence in P(R+!), we may be tempted to say that
a set p(X) := {p(x1),...,p(x,)} of points in P(R4t1) is a basis if the set
X = {x1,...,x,} is a basis in R?*1 But that would not satisfy our running
definition, since no d + 1 projective points determine a basis of R¢*!, not even
up to scalar multiplication; for this uniqueness, we need d 42 projective points.

Proposition 1.4.92 Let (x1, ..., x44+1) and (yy, ..., y441) be bases of RI+!
such that p(x;) = p(y;) fori € [1...d + 1] and p(x1 + - + x441) =
p(y1 + -+ yai1). Then there is a nonzero scalar a such that x; = ay;, for
eachie[l...d+1].

In view of Proposition 1.4.9, we say that a projective basis in P(R?*1)
is any set {p(xy),...,p(x4+1),p(x442)} of d + 2 projective points in
general position. This definition is compatible with our initial definition as
the following theorem attests.

Theorem 1.4.10 (Fundamental theorem of projective maps)> Let P(R")
and P(R®) be projective spaces with corresponding projective bases
(P1s---sPry1) and (qq, ....q5y1).- Then there exists a unique projective
map that sends p; to q;, for eachi € [1...r 4 1]. In the case r = s, the map
is an isomorphism.

Given an ordered linear basis (x1,...,x44+1) of Rd+1, it is customary to
take x4y12 = x1 + -+ + x441 to form the corresponding projective basis

ZA proof is available in Berger (2009, lem. 4.4.2).
3 A proof is available in Berger (2009, lem. 4.5.10).
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{p(x1), ..., p(xas1), p(xg42)} of P(RYH1). The projective basis arising from
the standard basis is called the projective standard basis:

1:0:---:0),...,0:0:---:D, 1 :1:---:1).

1.5 Dual Spaces

This section offers the first instance of the powerful principle of duality in
this book; throughout the book, we will come in contact with many other
incarnations of this principle. Duality roughly involves a pair of objects X
and X*, an involution X — X*, and a correspondence, often order-reversing,
between subsets or properties of X and X* that translates results on X into
results on X*,

The set of all linear maps between two linear spaces is itself a linear space,
where vector addition is defined as

(o1 +02)(D) = o1 () + 2 (D)

and scalar multiplication as

(ap)(D) = apd)

(Problem 1.12.6). In particular, the set of linear maps from R? to R forms a
linear space, called the dual space of R¢ and denoted by (R%)*.

Elements of a dual space are called linear functionals. Common examples
of linear functionals include the zero functional on R?, which assigns zero to
every vector in RY, and maps that define affine hyperplanes in R, namely
x — a - x for every x € RY and some a € R?.

The dual space of R is a linear space of dimension d. If B = (I, ...,lg)
is an ordered basis of R?, there exists a uniquely determined basis ¢, . .., ¢g
of (R?)* that is called the dual basis of B and satisfies

1, ifi=j;
‘/’i(lj)z{

0, otherwise.

The dual basis of the standard basis of R can then be defined as the basis
o1, ..., 0q given by @; (x1, ..., xq) = X;.

There is an isomorphism between the space and its dual space. To each linear
functional ¢ of R¥ there corresponds a unique vector a of R? such that ¢ (x) =
a - x forevery x € RY.If @ is the zero functional then let @ = 0; otherwise, let
a = ¢(xo)xo for any nonzero unit vector x¢ in (ker go)l, which is not empty.

How does the dual space (R?)** of (R?)*, the double dual space of R?
look? Is it what you would expect? An element of (R?)** is a linear functional
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o that sends a linear functional ¢: R¢ — R to an element in R. There is also
an isomorphism o between R? and (R?)**. A common way to define o is to
first define a linear functional gy, (RH)* > R as 0xo (@) = @(x0) for a fixed
xo € R? and every ¢ € (R?)*. Then define o (x) = ox for every x € R4,
For finite-dimensional spaces it is customary to identify R? with (R?)** via
o, and we do so in this book.

1.6 Convex Sets

If on the equation of a line through two points a; and a; of R4, namely oja; +
aray with a1 +a = 1, we impose the additional condition of a1,y > 0, then
we obtain the segment [a@1, a>] joining the points a| and a;. Segments give rise
to convex sets, sets that contain the segment between any of two of its points.
That is, X is a convex set if

X ={aja; + wpaz| a1,00 2 0,01 + o = 1, and ay,a; € X}.

The expression 1@ + arar where oq,00 > 0,1 +p = 1, and ay,a3 € X is
the convex combination of the points @ and a;. The sets R4 and J are convex
sets, and so is any singleton in RY. Figure 1.6.1 shows examples of convex and
nonconvex sets in R3.

In analogy to the affine and linear cases, given a set X in R?, the smallest
convex set containing X is the convex hull of X and is denoted by conv X. The
convex hull of a set can be described as the set of all convex combinations of
finitely many elements of X, namely

n
convX =< aja;+---+aya,|a; € X, a; >O,and2ai =1
i=1

(a) (b)

Figure 1.6.1 Convex and nonconvex sets. (a) A 3-dimensional ball, a convex set.
(b) The rhombic dodecahedron, a convex 3-polytope. (c) A nonconvex set.
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(a) (b) (c) (d)

Figure 1.6.2 Simplices in R3.

Hyperplanes and the halfspaces in R? bounded by a hyperplane are exam-
ples of convex sets. Each hyperplane H,(a, o) in R¢ with normal vector @ and
constant « determines or bounds four halfspaces in R?: the open halfspaces
H;(a,oz) and H; (a,a), and the closed halfspaces H; [a,a] and H, [a,a]. In
formulas we have that

Hj(a,a):{xeRd:a~x>a}, HJ(a,a):{xeRd:a~x<a},

Hj[a,a] = {xeRd ‘a-x 20{}, H; a,a] = {xeRd:a-x <a}.
(1.6.1)
Define the Euclidean distance between any two vectors x and y in RY as
lx — y||. The distance function turns R into a metric space and enables more
examples of convex sets such as the d-dimensional open ball, or simply the
open d-ball By(a,r), and the d-dimensional closed ball, or simply the closed
d-ball Bgla,r], both with centre a and radius r:

Bata.r) = {x | Jx —al <r}. .
Byla,r] = {x ERd‘ Ix —al <r}, (1.6.2)

In all the formulas above, if there is no place for confusion we drop the
subindex d. The ball B;[0,1] is referred to as the closed unit d-ball, while
the ball B;(0, 1) is referred to as the open unit d-ball.

Convex polytopes are other examples of convex sets. A convex polytope is
the convex hull of a finite set of points in R? (see Fig. 1.6.1(b)). In this book
we speak only of convex polytopes. Hence we drop the adjective ‘convex’
hereafter. Simplices are an important class of polytopes; they are convex hulls
of affinely independent points in R?. Figure 1.6.2 depicts all the simplices in
R3.

It turns out that to get the convex hull of a set X, we do not require the finite
convex combinations of all the points of X but rather the finite combinations
of all collections of affinely independent points of X. Carathéordory’s theorem
elucidates these remarks.
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Theorem 1.6.3 (Carathéodory, 1907)* The convex hull of a set X in R is
formed by all the convex combinations of at most d + 1 affinely independent
points of X. Furthermore, if conv X is not a simplex then no fixed collection of
affinely independent points from X suffices to span conv X.

Carathéordory’s theorem shows that a simplex possesses a proper convex
basis: a fixed subset of affinely independent points that uniquely generate

each element of the simplex. Since the set {xi,...,x,} of a simplex T :=
conv{xy,...,x,} is affinely independent, every point x of 7 has a unique
representation as an affine combination of {x1, ...,x,} and, in particular, as a
convex combination of {x1,...,x,}.

Remark 1.6.4 If, for a set X < R9, conv X is not a simplex, then the notion
of ‘convex basis’ is not available for (at least) two reasons:

(i) no fixed, finite collection of affinely independent points from X would
suffice to generate conv X (by Carathéordory’s theorem), and

(ii) some points in conv X have no unique representation as the convex
combination of a fixed subset of affinely independent points from X.

Let X be a d-dimensional sphere, or simply d-sphere S;(a,r), namely a set
of the form {x € RY*! | |x — a|| = r}. The convex hull of X is the closed
ball Byla,r]. The ball B;[a,r] exemplifies Remark 1.6.4(ii) in the case of X
being an infinite set. Every point in Bg[a,r] is a convex combination of at
most two points from X, every point in the open ball admits more than one
representation, and no finite subset of S;(a,r) spans By[a,r]. The justification
for (ii) in the case of X being a finite set is given by Radon’s theorem.

We will be mostly dealing with the sphere S;(0, 1), which is referred to as
the unit d-sphere and is denoted by S¢.

Theorem 1.6.5 (Radon, 1921)° Let X be a finite set of affinely dependent
points in R, Then the set X can be partitioned into subsets X, and X _ whose
convex hulls intersect. Furthermore, conv X 4 and conv X_ can be assumed to
be simplices.

A Radon partition {X 1, X_} of aset X < R? is a partition of X such that
conv X4 nconv X_ # . A Radon point is a point in conv X4 nconv X_, a
point that admits more than one representation as a convex hull of points of X.
Figure 1.6.3 shows Radon partitions of four points in R2.

‘A proof is available in Webster (1994, thm. 2.2.4).
SA proof is available in Webster (1994, thm. 2.2.5).
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- + 4d b+
+

(a) (b) (c)

Figure 1.6.3 Radon partitions of four points in R2. Elements of the sets X and
X _ in Radon’s theorem (1.6.5) are labelled with a + and — sign, respectively.
Then conv X4 nconvX_ # (F. (a) Two line segments intersecting at a point;
the convex hull of the four points is a quadrilateral. (b) A triangle and a point
contained in the triangle; the convex hull of the four points is a triangle. (c) Two
line segments intersecting at a point; the convex hull of the four points is a triangle.

An implication of the lack of a ‘basis’ for a convex set is that its dimension
is defined as the dimension of its affine hull. It follows that dim ¢ = —1, since
aff & = (7. As it should be, the dimension of a convex set is an invariant that
does not dependent on the space in which the set is embedded.

Convexity is preserved by a number of operations; the final theorem of this
section gathers some of these. Before stating the theorem, we require some
basic definitions.

Definition 1.6.6 The Minkowski sum or sum X + Y of two sets X and Y is
the set

X+Y:={x+ylxeX,ye¥}
The sets X and Y are the summands of X + Y.
The scalar multiple « X of a set X is the set
aX :={ax |x € X,x e R}.

Minkowski sums and scalar multiples of sets are illustrated in Fig. 1.6.4.

Let ¢: X — Y be a function and let B < Y. The preimage ¢~ '(B) of B
is the subset {x € X | ¢(x) € B} of X. The preimage of a function is well
defined even if the function is not a bijection. In the case that ¢ is a bijection,
¢~ 1(B) coincides with the image of B under the inverse function ¢! of ¢.

Theorem 1.6.7% The following operations in R? all return convex sets.

(1) The intersection of an arbitrary family of convex sets.
(i) The Minkowski sum of convex sets.

oA proof is available in Webster (1994, sec. 2.1).
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z+y x+y

: v A

0 0 0
(a) (b) (c)

aX

Figure 1.6.4 Minkowski sums and scalar multiple of sets. (a)—(b) Minkowski
sums of a triangle and a segment. (c) Scalar multiple of a triangle.

(iii) The scalar multiple of a convex set.
(iv) The image of a convex set under an affine map.
(v) The preimage of a convex set under an affine map.

A function is convexity-preserving if it maps convex sets to convex sets.
Every affine map is a convexity-preserving function (Theorem 1.6.7(iv)), but
not every convexity-preserving function is an affine map (Problem 1.12.13). It
is, however, true that every injective convexity-preserving function ¢: R” —
RS with r > 2 is an affine map (Meyer and Kay, 1973).

1.7 Interior, Boundary, and Closure

This section considers the topological notions of interior, boundary, and
closure in the context of convex sets.

The interior of a set X in R? is defined as the set of all points of X that are
centres of some open d-dimensional ball that lies in X. Notationally,

intX := {x € ]Rd‘ there exists » > 0 such that B;(x,r) < X}. (1.7.1)

The points in the interior of X are its interior points.

An immediate consequence of the above definition is that a set X in R? of
dimension less than d has an empty interior. We benefit from studying the
interior of X relative to the smallest affine space containing X; this is the
relative interior of X. Notationally,
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3
R P

Figure 1.7.1 Difference between the relative interior and the interior of a 2-
polytope, or polygon, P in R3. The affine hull of P is a plane; its relative interior
is highlighted in a tiling pattern. However, the interior of P is empty: no ball in
R3 centred at a point of P is fully contained in P.

rint X = {x € Rd) there exists r > 0 such that (By(x,r) n aff X) < X} .
(1.7.2)
The points in the relative interior of X are its relative interior points.

The relative interior of a set is a more natural concept than that of its interior
and, as such, we discuss it in more detail. The geometric difference between
the relative interior and the interior of a set is captured in Fig. 1.7.1.

For a set X  RY, it is obvious that int X  rint X € X (Problem 1.12.14).
In the case of X being a nonempty convex set, it is not straightforward but it
is true that int X = rint X if and only if int X # ¢ (Problem 1.12.15(ii)); the
necessity of the statement relies on the nontrivial assertion that rint X # (.

Theorem 1.7.37 If X is a nonempty convex set in RY, then rint X # (.
We unveil some geometric properties of the relative interior of a convex set.

Theorem 1.7.4% Let X be a convex set in RY and let a € R?. The following
statements hold.

(1) If a € rint X, then the halfopen segment [a,b) lies in rint X for every

be X.

(ii) If a € rint X then, for each b € aff X, there exists « > 1 such that ava +
(1—a)be X.

(iii) If; for each b € X, there exists « > 1 such that aa + (1 — a)b € X, then
a € rint X.

As a corollary of Theorem 1.7.4 we get another geometric property of
relative interior points.

Corollary 1.7.5 Let X be a convex set in RY and let a € rint X. Then, for each
b € aff X\{a}, there is a point ¢ € X\{a} such that a € (b, c).

TA proof is available in Webster (1994, thm. 2.3.1).
8 A proof is available in Webster (1994, sec. 2.3).
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Proof According to Theorem 1.7.4(ii), there exists an « > 1 such that ¢ :=
aa + (1 — a)b € X. Wherefrom it follows that

1 1
a:—c+<1 ——)b,
o o
and with this equality, the corollary. O

Perhaps the most useful geometric property of the relative interior is the
following.

Theorem 1.7.6° Let X = RY be defined as conv {x1,...,xp} and leta € X.
The point a is in rint X if and only if there exist scalars «q, ...,q, > 0 with
Dy o = 1 such that

n
a = Z oiX;.
i=1
A closure point of a set X < R< is a point x in which every open d-

dimensional ball with centre at x meets X. The set of closure points is the
closure of X and is denoted cl X. Notationally,

clX = {x E]Rd‘ forevery r > 0, By(x,r) n X # @}.

A sequence Xxi,...,X,,... of points in RY, written as (x5), is said to
converge to a point x if ||x,, — x|| tends to zero as n tends to infinity. Sequences
provide a characterisation of closure points.

Theorem 1.7.7'0 Ler X < R be a set in R?. A point x € R? is a closure point
of X if and only if there exists a sequence of points of X converging to x.

A boundary point of a convex set X < R? is a point x in which every open
ball with centre at x meets both X and R¢ \X. The set of boundary points is the
boundary of X and is denoted bd X. The definition of a boundary point gives
the following at once.

Proposition 1.7.8 Let X < R? be a set and let x € bd X. The following
assertions hold.

(i) bd X = cl X\ int X.
(i) There exists a sequence of points of X converging to x.
(iii) There exists a sequence of points of Rd\X converging 1o x.

A proof is available in Webster (1994, thm. 2.3.7).
10 A proof is available in Webster (1994, thm. 1.8.2).
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The boundary of a convex set X with respect to aff X defines its relative
boundary. Formally, a relative boundary point of a convex set X < R? is a
point in cl X\ rint X. The set of boundary points is the relative boundary of X
and is denoted rbd X. If X < R¢ is full dimensional then rbd X = bd X, while
ifdimX <dthenrbd X c bd X =cl X.

Theorem 1.7.9!! Let X = RY be a convex set. Then rint X, int X, and cl X are
all convex sets.

1.8 Separation and Support

Two disjoint nonempty compact convex sets can be ‘separated’ by a hyperplane
(Theorem 1.8.5); this is an intuitive and fundamental result in convexity.
Also intuitive and fundamental is the result that a closed convex set is the
intersection of (possibly infinitely many) halfspaces (Theorem 1.8.3) that
‘support’ the set. This section explores this kind of result.

Every nonempty closed set X contains a point x¢ closest to a given point a
of R?. If we add convexity then the point x¢ is unique and the angle between
the vectors @ — x and x — x( is nonacute for every x € X. The details are
captured in Theorem 1.8.1.

Theorem 1.8.1'2 Let X be a nonempty closed convex set in R? and let a € RE.
Then there exists a unique point xo € X that is closest to a; notationally,

la — xo|| = inf{|la — x||| x € X}.

Moreover, the angle between the vectors a — xo and x — X is nonacute for
every x € X; notationally,

(a—x9) - (x —x0) <0 foreveryx € X.

Figure 1.8.1 depicts a geometric description of the theorem.

We proceed with a number of definitions. Let X be a set in R?. A supporting
halfspace of X is a closed halfspace in R? that contains X and whose
bounding hyperplane meets cl X. A supporting hyperplane of X in R is a
hyperplane H that bounds a supporting halfspace of X. In the case X < H, the
supporting hyperplane is said to be trivial; otherwise it is said to be nontrivial.
Notationally, a hyperplane H(a,«) is a supporting hyperplane of X if and
only if

T A proof is available in Webster (1994, thm. 2.3.5).
12 A proof is available in Webster (1994, thm. 2.4.1).
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Lo

Figure 1.8.1 The point x¢ in a closed convex set that is closest to a point @ € R?;
the nonacute angle between a — x¢ and x — x is also shown.

eithero = supa-x or o= infa-x.
xeX xeX

And a supporting hyperplane H (a, ) is nontrivial if and only if

either infa-x <supa-x =« or supa-x > infa -x =«.
xeX xex xex xeX

A supporting hyperplane of X is said to support X at the points where it
intersects cl X.

Theorem 1.8.1 facilitates the proof of a number of results; the first such
result comes next.

Corollary 1.8.2 Ler X < RY be a nonempty closed convex set and let a ¢ X.
Then there exists a hyperplane that does not contain a and that supports X at
the point xo € X closest to a.

Proof Thanks to Theorem 1.8.1, we find a point x( € X closest to a such that
(@ —xp) - (x —xp) < O0forevery x € X
or, equivalently, that
(@ —x0)-x < (a—xp)-xo forevery x € X.

Define b := a—xg and 8 := (a—xg)-x¢. [t immediately follows that H ~[b, 8]
is a supporting halfspace of X and that H (b, 8) supports X at x¢.
Suppose that a € H~ [b, 8]. Then

2
0= (a—x0) - a—(a—xq) xo=|a—xol,

which implies that a = x( (Problem 1.12.1(ii)). This is a contradiction because
xoe Xanda ¢ X. O

Another consequence of Theorem 1.8.1 is that a closed convex set is the set
of solutions of a system of (possibly infinitely many) linear inequalities.
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H H
(a) (b) ()

Figure 1.8.2 Examples of the separation of sets X,¥ < R2. (a) Sets X and Y that
cannot be separated. (b) Sets X and Y that are strictly separated by the hyperplane
H. (c) Sets X and Y that are separated but not strictly by the hyperplane H.

Theorem 1.8.3'3 A nonempty closed convex set in RY is the intersection of its
supporting halfspaces.

It seems intuitive that through each relative boundary point of a closed
convex set passes a nontrivial supporting hyperplane; this intuition is correct.

Theorem 1.8.4'4 Let X be a nonempty convex set in R and let xo € bd X.
Then there exists a hyperplane in R supporting X at xqo. In the case xq €
rbd X, the hyperplane can be assumed to be nontrivial.

A hyperplane in R separates the space into two closed halfspaces. This fact
gives rise to the important concept of separation of convex sets. Let X and Y
be two sets in R? and let H be a hyperplane in R?. The sets X and Y are said
to be separated by H if X and Y lie in opposite closed halfspaces defined by
H. And the sets X and Y are said to be strictly separated by H if X and Y
lie in opposite open halfspaces defined by H. Figure 1.8.2(b)—(c) exemplifies
these new notions.

Not every two disjoint sets in R? can be separated by a hyperplane, as
Fig. 1.8.2(a) shows. But every two disjoint convex sets can. We, however,
content ourselves with an instance of this assertion.

Theorem 1.8.5 (Separation theorem)'> Let X and Y be disjoint nonempty
convex sets in RY. Suppose that X is closed and Y is compact. Then X and
Y can be strictly separated by a hyperplane in R¢.

Recall that a set X in R is said to be compact if each sequence of its points
contains a subsequence that converges to a point of X. Compact sets in RY

BA proof is available in Webster (1994, cor. 2.4.8).
14 A proof is available in Webster (1994, thm. 2.4.12).
15 A proof is available in Webster (1994, thm. 2.4.6).
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have a neat characterisation: they are precisely the closed and bounded sets in
R? (Webster, 1994, thm. 1.8.4).
We state a useful, particular case of Theorem 1.8.5.

Corollary 1.8.6 Let X < R be a nonempty closed convex set and let a ¢ X.
Then X can be strictly separated from a by a hyperplane.

1.9 Faces

Convex sets are structured around other convex sets, their faces; this feature
makes their mathematics amenable to inductive arguments. A convex subset
F of a convex set X < R? is a face of X if each time the relative interior
of a segment in X meets F' then the segment is fully contained in F. By the
convexity of F, a segment is in F if its endpoints are. Hence the definition of
a face amounts to the following.

Ifax;+ (1 —a)xy e F withx,xo, € Xand o € (0,1), thenx,x7 € F.
(1.9.1)
It is clear that (J and X itself are faces of X; these are its improper faces. Every
other face of X is a proper face.

A k-dimensional face of a convex set X is referred to as a k-face. The set of
k-faces of X is denoted by /% (X) and the set of all faces of X is denoted by
F(X). The O-faces are called extreme points, and the set of extreme points of
X is denoted by ext X.

Proposition 1.9.2 Let X be a convex set. An extreme point v of X is not in
any segment (x1,x72) with x1,x2 € X or, equivalently, the set X\{v} is again
convex.

Another immediate consequence of (1.9.1) is that ‘is a face of” is a transitive
relation on the faces of a convex set X.

Proposition 1.9.3 Let X be a convex set in RE. If F is a face of X and I is a
face of F, then I is a face of X.

We now characterise faces.

Theorem 1.9.4! Let X be a convex set in R and let F be a convex subset of
X. Then F is a face of X if and only if X\F is convex and F = X n aff F.

16 A proof is available in Webster (1994, thm. 2.6.2).
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We list a corollary of Theorem 1.9.4.

Corollary 1.9.5 If X is a convex set in R? and F is a proper face of X, then
dim F < dim X.

Proof Suppose dim F = dim X. Then, aff F = aff X and, by Theorem 1.9.4,
F = X naff X = X. Hence, a proper face F of X must satisfy dim F <
dim X. O

The next theorem reveals five ways in which faces appear.

Theorem 1.9.6 Let X < R? be a convex set. Then the following assertions
hold.

(i) The intersection of any nonempty family of faces of X is a face of X.
(ii) The intersection of any nonempty family of faces of X can be expressed as
the intersection of at most d + 1 members of the family.
(>iii) The intersection of X and any of its supporting hyperplanes is a face of
X.
(iv) Let ¢ : R? — R? be an affine transformation. If F is a face of X, then the
set Y (F) is a face of o~ 1(X).
(v) Let ¢: RY — R? be an injective affine transformation and let F < X.
The set F is a face of X if and only if the set ¢ (F) is a face of p(X).

Proof Takex(,xp € Xanda € (0,1).

(i) Let I be some index set and let {F; | i € I} be a family of faces of X.
Let F :=(),¢; Fi. Then F is a convex subset of X (Theorem 1.6.7). Suppose
that ax| + (1 — a)xy € F. It follows that x| + (1 —a)x, € F; foreachi € I.
Since F; is a face, we get that x1,x, € F; for each i € I. This confirms that
X1,X2 € F and that F is a face of X.

(ii) Let I be some index set; let {F; | i € I} be a family of distinct faces of
X and let F = ﬂie[ F;. We show that there are elements iy, . ..,i, of I, with
n < d + 1, such that

F=F,n-nF (1.9.6.1)

n*

Pick any element iy € I.If F = F;, then we are done; otherwise F' < F;,,
dim F' < dim F;, by Corollary 1.9.5, and there is another index i3 of I such that

FcF,nF,cCk,.

The selection of iy is possible because the intersection of all these faces F;
(withi € I')is F and dim F' < dim F;, . If the statement is false, then there are
indices iy, ...,i, of I suchthatn > d + 2, and
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FcF,n---nFk,c---CcF,nF,CF,.

Additionally, as a consequence of Corollary 1.9.5, we have that dim F;, <
d and

dim F < dim(F;; n Fj, n--- N F) <--- <dim(F;; n F;,) < dim Fj,.
But from this series of inequalities, it follows that
-1 <dmF <dm(F;; nF,n---nF,) <dmF, —-(n—-1)<d—-n+1,

which yields that —1 < d — n + 1, a contradiction for n > d + 2. Hence
(1.9.6.1) holds and n < d + 1, as desired.

(iii) Let H := H (b, 8) be a supporting hyperplane of X with X < H~[b, B].
Then b-x < B forevery x € X. Let F := X n H. It follows that F is a convex
subset of X. Now suppose that ax|+ (1 —a)x2 € F. Since ax1 + (1 —a)xs €
H, we must have that

B=b-(ax;+(1—-a)x2)=ab-x;+(1—-a)b-x2 <af+(1—-a)f=8.

Hence, b -x; = b - x> = B since « € (0, 1). This proves that x,x, € X n H
and that F is a face of X.

(iv) Take y;,y, € (pfl(X). Then ¢(yq),¢(y,) € X. From F being
a convex set of X, it follows that (p*I(F) is a convex subset of (pfl(X)
(Theorem 1.6.7(v)). Suppose that

ay; + (1 —a)y, e g (F).

Then ¢(ay; + (1 — a)y,) € F. Since ¢ is an affine transformation, we have
that

play; + (1 —a)yy) = apy) + 1 = a)e(y,),

and since F is a face of X we have that ¢(y,),¢(y,) € F. Hence y;,y, €
—1

o (F).
(v) The proof goes along the lines of that for (iv) and is left to the reader. [

The condition of ¢ being injective in Theorem 1.9.6(v) cannot be removed.
We can find many examples of convex sets X, faces F' of X, and noninjective
affine transformations ¢ for which ¢(F) is not a face of ¢(X). Consider,
for instance, the two-dimensional unit ball X := BJ[0,1] and the orthogonal
projection ¢ of R? onto the x-axis. Then ¢(X) = [—1,1]. It is now clear that,
for any extreme point x of X other than 1, ¢(x) is not a face of [—1,1].

A face of a convex set X is exposed if it is either an improper face of
X or is of the form X n H where H is a supporting hyperplane of X
(Theorem 1.9.6(iii)); Figure 1.9.1(b) gives examples of exposed faces. Suppose
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Figure 1.9.1 Faces of convex sets. (a) An extreme point x as the intersection of
three 2-faces. (b) A 2-face and an extreme point x as exposed faces.

vy U2

(@) W) © (@

Figure 1.9.2 Faces in closed convex sets. (a) A two-dimensional closed convex set
X with faces that are not exposed. The set X is the convex hull of two closed discs;
its boundary consists of two closed segments [v,v2] and [v3,v4] and two open
halfcircles. The extreme points are the points vy, v, v3, v4 and the points on each
of the two open halfcircles, and the 1-faces are the two aforementioned segments.
The extreme points vy, v;,v3,v4 are not exposed: a supporting hyperplane of
X passing through precisely one of them must also meet one of the two open
halfcircles; every other face of X is exposed. (b) A convex set with no extreme
points. (c) A two-dimensional closed convex set with extreme points but no 1-
faces. (d) A two-dimensional closed convex set with extreme points and 1-faces.

that H = {x € R? | @ - x = o} and that X lies in the supporting halfspace
H ™ [a,a]. From the definition it follows that an exposed face F := X n H
maximises the linear functional a - x over X:

o=max{a-x|xeX}and F={xe X |a -x =a}. (1.9.7)

This face is often denoted by F(X,a). An inequality ¢ - x < y is valid for a
set in RY if it is satisfied for every point x in the set. The inequality a - x < «
that defines H ™ [a, «] is valid for X.

Not every face of a convex set X is exposed, as Fig. 1.9.2(a) shows.
However, every intersection of exposed faces of X is exposed.
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Proposition 1.9.8!7 Let X be a convex set in RY. Then the intersection of any
nonempty family of exposed faces of X is also exposed.

Theorem 1.8.4 established that, through each relative boundary point of a
nonempty convex set X, it passes a nontrivial supporting hyperplane of X,
while Theorem 1.9.6(iii) established that the intersection of X and a nontrivial
supporting hyperplane of it is a proper face of X. Consequently, some proper
faces of X meet its relative boundary. More is true: proper faces of X are
contained in the relative boundary of X.

Theorem 1.9.9'% If X is a closed convex set in R? and F is a proper face of
X, then F C rbd X.

According to Theorem 1.9.6(i), for any subset Y of a convex set X there is
a smallest face of X containing Y, the intersection of all faces containing Y.
In the case of Y being a point, a simple characterisation of the smallest face
containing it follows from Theorem 1.9.9.

Theorem 1.9.10'° Let X be a closed convex set in R%, let F be a proper face
of X, and let x € F. Then F is the smallest face of X that contains x if and
only if x erint F.

Figure 1.9.2(b) depicts a closed convex set in R? with no extreme points. But
every bounded, closed, and convex set in R4 has extreme points and, moreover,
it is spanned by them. This is perhaps the most important result on the facial
structure of compact convex sets.

Theorem 1.9.11 (Minkowski—Krein—-Milman’s theorem)?® Let X be a compact
convex set in R, Then X is the convex hull of its extreme points. Notationally,

X = conv(ext X).

A simple consequence of Minkowski—Krein—-Milman’s theorem (1.9.11) is
that every compact convex set has extreme points, but this does not extend to
higher dimensional faces. Figure 1.9.2(c) depicts a compact convex set with
no 1-faces. In fact, a compact convex set in R? can have a very diverse face-
dimension pattern. The face-dimension pattern of a compact convex set X is an
increasing sequence (dj, . ..,d,) of positive integers that encode all possible
positive dimensions of faces in X. We have all the possible patterns in R?:

17 A proof is available in Webster (1994, thm. 2.6.17).
18 A proof is available in Brgndsted (1983, thm. 5.3).
194 proof is available in Brgndsted (1983, thm. 5.6).
20 A proof is available in Brgndsted (1983, thm. 5.10).
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(a) (b) () (d)

Figure 1.9.3 All the possible face-dimension patterns for three-dimensional
compact convex sets in R3. (a) The three-dimensional unit ball, which has pattern
(3). (b) A set obtained as the convex hull of a circle on a plane and two points
at opposite sides of the plane; the set has pattern (1,3). (c) A set obtained by
intersecting a closed halfspace with the three-dimensional, unit ball; the set has
pattern (2,3). (d) A 3-simplex, which has pattern (1,2,3).

the pattern (), exemplified by a singleton; the pattern (1), exemplified by a
line segment; the pattern (2), exemplified by Fig. 1.9.2(c); and the pattern
(1,2), exemplified by Fig. 1.9.2(d). This gives a total of 2% patterns in R?.
Figure 1.9.3 shows examples with all the possible face-dimension patterns in
three-dimensional compact convex sets: (3), (1,3), (2,3), and (1,2,3); these
examples together with the lower dimensional examples give a total of 23
patterns in R3.

A result of Roshchina et al. (2018) states that for any finite, increasing
sequence of positive integers, there exists a compact convex set in R? that has
extreme points and faces with dimensions only from this prescribed sequence;
in other words, for any of the 2¢ possible face-dimension patterns, there is a
compact convex set in R¢ exhibiting that pattern.

1.10 Cones and Lineality Spaces
If on the line through the points @ and a@| + a3, namely the set
{al —i—ozaz‘ a) e Rd, 0+#ae Rd, and every o € R},

we impose the condition of o > 0, we arrive at the definition of a ray.
A subset X of R? is a convex cone if it is convex and it contains the ray
passing through any of its points and the origin; that is, X is a set of the form

{a1a) + wpaz| @1,00 = 0and aj,az € X}. (1.10.1)
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(a) (b)

Figure 1.10.1 Parts of cones. (a) Part of a cone in R2. (b) Part of a cone in R3.

The expression aja; + azar where a1,a2 = 0 is the positive combination or
conical combination of the points a; and a;. We consider only convex cones,
so we will drop the adjective convex hereafter, unless we want to reinforce the
convexity of the cone. Figure 1.10.1 depicts examples of cones in R3.

The positive hull or conical hull of a set X < R4, denoted cone X, is
the smallest cone containing X. It is also defined as the set of all positive
combinations of finitely many points of X. That is,

cone X = {wja; + -+ +aya,| a; € X and o; > 0} .

In this case, we say that cone X is generated by X and call the elements of X
generators. And if X is finite, then we call the cone a V-cone.

A set X := {ay,...,a,} is positively dependent if some a; is a positive
combination of the others; otherwise it is positively independent. The set X
positively spans a linear subspace L if any vector of the subpace can be
expressed as a positive combination of elements of X. And the set X is a
positive basis of L if it is positively independent and positively spans the
subspace. The next characterisation of positively spanning sets is well known.

Theorem 1.10.2 (Davis, 1954, thm. 3.6) Let X := {ay,...,a,} with each
a; # 0 such that X linearly spans R%. Then the following statements are
equivalent.

(i) The set X positively spans RA.
(ii) For every i € [1...n), the point —a; € cone(X\{a;}).
(i) 0 = >, oja;, witho; > 0 fori € [1...n].

It will often be useful to call translations of convex cones affine convex
cones, following the same analogy between linear spaces and affine spaces.
An affine convex cone A in R? is a set of the form ao + C where ay € R? and
C is a convex cone in R?, the translation of C by a(. We often call the point

https://doi.org/10.1017/9781009257794.002 Published online by Cambridge University Press


https://doi.org/10.1017/9781009257794.002

1.10 Cones and Lineality Spaces 35

a the apex of the cone, or we say that the affine convex cone is based at ay.
Every (standard) convex cone is an affine convex cone with 0 as the apex. In
this way, we have that hyperplanes and halfspaces are affine convex cones.

Lineality Spaces and Recession Cones

The dimension of the dual set of a set (Section 1.11) and the structure of an
unbounded convex set can be described by the lines and rays that are contained
in the set, and specifically by the lineality space and recession cone of the set.

Let X be a nonempty convex set in R?. The lineality space of X is defined as

lineal X := {y € Rd‘ x+aye Xforallx e Xandall ¢ € R}, (1.10.3)
and the recession cone of X is defined as
rec X := {y € Rd‘ x+aye Xforallx e Xandall« > 0}. (1.10.4)
From the definitions, it easily follows that
lineal X =rec X n (—rec X) (1.10.5)

and that the set lineal X is a linear subspace of R?.
A convex set X is pointed if it contains no lines, which together with the
definition of lineal X implies the following.

Proposition 1.10.6 A nonempty convex set X in R is pointed if and only if
lineal X = {0}.

Another basic property of lineality spaces is stated below.
Proposition 1.10.72' If X is a nonempty closed convex set in RY, then
X = lineal X + (x A (lineal X)L) ,
where X n (lineal X )L is a pointed closed convex set.

According to Proposition 1.10.7, every point x of a closed convex set X can
be uniquely written as a sum of a point in lineal X and one in a pointed closed
convex set. This decomposition often makes it possible to focus on pointed
closed convex sets.

Definitions (1.10.3) and (1.10.4) also ensure, albeit not at once, that the
recession cone is a convex cone and that if X is a cone, then rec X = X
(Problem 1.12.17).

21 A proof is available in Webster (1994, thm. 2.5.8).
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1.11 Dual Sets

This section explores another manifestation of duality.

Definition 1.11.1 (Dual set) With each set X < R?, we associate the set
X* < R? defined as

X* = {yeRd‘y-x <1 foreveryxeX}.

The set X* is said to be the dual of X.

From this definition, it is plain that the dual of ¢ and {0} is R? and that the
dual of R? is {0}. Moreover, it follows that the set X* can also be expressed as

x*= () {x}* =) H 10 (1.11.2)

xeX xeX
The geometric relation between x € X and {x}* = H[x,1] is depicted
in Fig. 1.11.1. The next proposition is also immediate from the definition of

dual sets.

Proposition 1.11.3 Ler X be a subset in RY. Then X* is a closed convex set
in RY that contains the origin.

Example 1.11.4 We find the dual of a closed ball. Let » > 0. Each nonzero
point y := (y1,...,ya)" of BJ[04,r] satisfies y - x < 1 for every point x €
B,4[04,7] and, in particular, for the point x := ry/llyl of B4[04,7]. Then

H [z,1]
H [z,1]
T H™ [, 1]
7 x
Bk
o o
0 0

(a) (b) (©)

Figure 1.11.1 Geometric relation between x and H ~[x, 1] in R2. The halfspace
H™[x,1] is highlighted in grey. The hyperplane bounding H~[x,1] passes
through x /|| x ||2. Also, the unit ball is depicted to better see the relative Euclidean
distance between x and 0. (a) ||x|| < 1. (b) ||x|| = 1. (¢) ||x|| > 1.
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ry
yxy=y —=rlyl <1l
Iyl

Hence
Bj[04,r] = {z € Rd‘ lzll < 1/V}~

Take z € R? such that ||z|| < 1 /r. Then, for every point x in B;[04,7], the
Cauchy—Schwarz inequality (Problem 1.12.1(iii)) ensures that

N | =

z-x<lz-x|<|zllx| < -r=1;

here |x| denotes the absolute value of the real number x. Hence, z € B}[04,7]
and

BX[04.r] = {z e Rd‘ Izl < l/r} — Byl04,1/r]. (1.11.4.1)
This concludes the example.

Example 1.11.4 illustrates another consequence of Definition 1.11.1, the
order-reversing inclusion between subsets of X and subsets of X*:

YSX =— X*cv* (1.11.5)

For any set X < RY, the dual set X** of X* is well defined. Additionally,
if x € X then, for every y € X*, we have that x - y < 1 by Definition 1.11.1.
Hence x € X** and

X © X**, (1.11.6)

Combining (1.11.2), (1.11.5), and (1.11.6), we get that the set X** < R? isa
closed convex set containing X and the origin. Thus, X ** contains the smallest
closed convex set in RY that contains X and the origin, namely cl(conv(X U
{0})). But more is true: X** = cl(conv(X U {0})) (Webster, 1994, thm. 2.8.3).
The next theorem follows from this discussion.

Theorem 1.11.7%2 If X ¢ R9 is a closed convex set that contains the origin,
then X** = X.

Because of Theorem 1.11.7, we are mostly interested in dual sets of closed
convex sets that contains the origin.

While taking duals is an involution in the class of closed convex sets in
R¢ that contain the origin (Theorem 1.11.7), compactness is not necessarily
preserved by this involution. Compactness is, however, preserved in a special
subclass.

22 A proof is available in Webster (1994, thm. 2.8.3).
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Theorem 1.11.8% Let X < RY be a closed convex set that contains the origin.
The set X* is bounded if and only if the set X contains the origin in its interior,
and vice versa.

We state a consequence of Theorems 1.11.7 and 1.11.8.

Corollary 1.11.9 If X < R? is a compact convex set that contains the origin
in its interior, then so is X*. In addition, we have that X** = X.

Linear Subspaces and Cones

In the case of linear subspaces and convex cones, Definition 1.11.1 for the dual
set can be sharpened.

Let L be a linear subspace of RY. We show that if y € L*, then y - x = 0
for every x € L. Suppose otherwise: y - x # 0 for some x € L. Because L
is a linear space, ax € L for each « € R. In the case y - x > 0, we choose
a > 0 sufficiently large, and in the case y - x < 0, we choose o < 0 with |«|
sufficiently large. In either case, our chosen o would cause y - (ax) > 1. This
contradiction validates our claim. Hence,

L*:{yeRd’yox=OforeveryxeL}=LJ‘. (1.11.10)

In other words, the dual of a linear subspace coincides with its orthogonal
complement (Example 1.1.6). Therefore, we will use (1.11.10) as the definition
of the dual linear subspace L* of L. It is instructive to compare this discussion
on dual linear subspaces with our discussion on dual spaces in Section 1.5.
Let C be a convex cone. The analysis in the previous paragraph also proves
that if y € C*, then y - x < O for every x € C. Suppose otherwise: y - x > 0
for some x € C. Then, since ax € C for any o > 0, choosing « sufficiently
large would cause y - (wx) > 1. This contradiction validates our claim. Hence,

c* = {y eRd( y-x <0 forevery x € C} = () H [x0l. (LILLD
xeC

It is clear that ajy; + apy, € C* for every y;,y, € C* and every
aj,ap = 0. Hence, C* is a closed convex cone by (1.10.1) and (1.11.11).
As a consequence, we will use (1.11.11) as the definition of the dual cone C*
of C. Note that our dual cone is sometimes called the polar cone of C; see, for
instance, Lauritzen (2013, sec. 3.4)

23 A proof is available in Webster (1994, thm. 2.8.4).
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1.12 Problems

1.12.1 Let x,y,z be three vectors in R? and let @ € R. Prove the following
properties of the dot product.

Hx-y=y-x.
()x-x=[x|*>0andx-x = 0 if and only if x = 0.
(iii) |x - y| < |Ix|/llyll, and equality holds if and only if one vector is a scalar
multiple of the other (Cauchy—Schwarz inequality).
(iv) Ix + yIl < llx]| + |yl (triangle inequality).
W [xll =Nyl < llx =yl
(Vi) (ax) -y =a(x - y).
(vip)x-(y+z2)=x-y+x-z.

1.12.2 Prove that a set of R? is a linear subspace if and only if it is the solution
of a system of homogenous linear equations.

1.12.3 Prove that a set of A? is an affine subspace if and only if it is the solution
of a system of linear equations.

1.12.4 Let L be a linear subspace of R?. Prove the following assertions.

@ (LH* =L
(i) Lt n L = {0}.
(iii) dim L+ = d — dim L.
(iv) Every vector of R? can be written uniquely as the sum of a vector in L
and a vector in L.

1.12.5 Let M € R**?. Prove the following assertions.

() null M = (row M)~L.
(ii) null M* = (col M)=+.
(iii) dim(null M) + rank M = d (nullity-rank theorem).

1.12.6 Prove the following assertions related to linear and affine maps.

(i) Not every affine map is a linear map.
(i1) An affine map o is linear if and only if 0(0) = 0.
(iii) Any affine map can be obtained as a translation of some unique linear
map.
(iv) Linear maps send linear subspaces into linear subspaces, and affine maps
do the same for affine subspaces.
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(v) Injective linear maps send linear subspaces of dimension r into linear
subspaces of dimension r, and so do injective affine maps with affine
subspaces.

(vi) The set of linear automorphisms form a group, called the general linear
group, under composition of functions.

(vii) The set of affine automorphisms form a group, called the affine group,
under composition of functions.

(viii) The set of all linear maps between two linear spaces is itself a linear
space.

1.12.7 Define the image of a linear map ¢: X — Y as the linear subspace
of Y consisting of the images of X under ¢, and define the rank of ¢ as the
dimension of its image. Prove that the rank of ¢ coincides with the rank of any
matrix representing it.

1.12.8 (Continuity of linear and affine maps) This exercise explores continuity
of linear and affine maps.

A map ¢: X — R’ defined on a nonempty set X < R’ is said to satisfy
a Lipschitz condition on X if there exists a real number « such that, for all
X1,X2 € X, we have that

le@x1) — 2l < aflxr —x2.

Prove the following.

(i) Ifamap ¢: X — RS satisfies the Lipschitz condition on a subset X < R”,
then ¢ is continuous on X.
(i) Every linear functional ¢(x) := a - x for some a € R is continuous on
R4
(iii) Every linear map ¢: R” — R® is continuous on R".
(iv) Every affine map ¢: R” — R*® is continuous on R".

1.12.9 Suppose that B := {I1, ...,l,} is a basis of a linear subspace L of RY
and let x be any vector of RY. Write M := (ly---1,). Then M is ad x r matrix
whose columns are these basis vectors. Prove the following.

() (1L4.1): 7 (x) == (M(M' M)~ ' M)x.

,
1
(1) (1.4.2): if B is an orthogonal basis of L, then 7 (x) := Z |)|Cl_||12 i
i=1 1%
(iii) The orthogonal projection is a linear transformation.
(iv) M' M is nonsingular.
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1.12.10 Let L := {x € Rd} Nx = 0} be a linear subspace of R? and let x be
any vector of R?. Prove (1.4.3): 7 (x) = x — (N'(NN)~H)(Nx).

1.12.11 Let A be an affine subspace of R¢ and let @y € A. Suppose that
B := {ag.ay, ...,a,} is a basis of A of R? and let x be any vector of R9.
Prove (1.4.6): write M := (a; —ag - - - a, — agp); then

TA(x) = ao + (M (M M)~ M’) (x — ag).

1.12.12 Let A := {x € Rd} Nx = Nay, ap € A} be an affine subspace of R4
and let x be any vector of R?. Prove (1.4.7), namely

Ta(x) =x — (N'(NN)™H(Nx — Nayg).
1.12.13 Find convexity-preserving functions that are not affine.
1.12.14 Let X,Y < R? be sets. Prove the following.

(i) intX CrintX < X.
(i) If X € Y and aff X = aff Y, then rint X < rintY.
(>iii) rint(rint X) = rint X.
@Gv) Ifrint X € Y € X thenrint X = rintY.
(v) rint(X 4+ x) = rint X + x for every x € RY.

1.12.15 Let X < R? be a convex set. Prove that int X = rint X if and only if
intX # 7.

1.12.16 (Supporting function) Let X < R be a nonempty convex set. For
every y € RY, define the supporting function h of X as

h(X,y) :=sup{x - y|x € X}. (1.12.0.1)
It follows that, if h(X,a) < o0 and a # 04, then the hyperplane
{z € Rd’ a-z= h(X,a)}

is a supporting hyperplane of X with normal vector a.
Prove that, for any nonempty convex sets X < R¢ and ¥ < R?, the function
h satisfies the following.

() X ={xeR?|x-a <h(X,a)forall a e R¢}.

(1) h(X,ax) = ah(X,x) foralla > O0and all x € RY.
(iii) h(aeX,x) = ah(X,x) foralla > O and all x € RY.
(v) h(X,x +y) < h(X,x) + h(X,y) forall x, y € RY.
W) h(X,x) <h(Y,x)ifandonlyif X € Y forall x R4,
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Vi) h( X +Y,x) =h(X,x) + h(Y,x).
(vii) If, in addition, X and Y are closed sets that satisfy #(X,x) = h(Y,x) for
alx eRY then X = Y.

1.12.17 Let X be a nonempty closed convex set set in R. Prove the following.

(1) lineal X is a linear subspace of R4,

(ii) rec X is a convex cone.
(>ii1) If X is a convex cone, thenrec X = X.
(iv) lineal (x A (lineal X)l) — {0}

1.13 Postscript

The information related to linear subspaces and linear maps (Sections 1.1
and 1.4) can be found in most linear algebra books; for instance, in Shifrin
and Adams (2011). For the material on affine subspaces, while fairly standard,
one may need look outside linear algebra books; for instance in Webster
(1994, chap. 1) or Lauritzen (2013, chap. 2). The presentation in Section 1.2
on the embedding of affine spaces into linear spaces follows that of Berger
(2009, ch. 3) and Gallier (2011, ch. 4). The material on projective spaces and
projective maps can be found in Berger (2009, ch. 4), Gallier (2011, ch. 5),
and Reid and Szendroi (2005, ch. 5); if there is a need for a concise review of
results in projective geometry that we did not cover, albeit with no proofs, we
recommend Fortuna et al. (2016, ch. 1). The section on dual spaces is based on
Halmos (1974, secs. 13-20,67-69).

The presentation of basic convexity in Sections 1.6 to 1.11 is standard
and can be found elsewhere, for instance, in Webster (1994); Soltan (2015);
Lauritzen (2013); Brgndsted (1983).

Carathéodory’s theorem (1.6.3), Radon’s theorem (1.6.5), and a theorem of
Helly (1923) all appeared in the first half of the 20th century (Carathéodory,
1907; Radon, 1921). Since then they have sparked a great deal of interest in
intersection and covering patterns of convex sets. Equally influential was the
second wave of such theorems that appeared in the second half of the 20th
century, including the colourful Carathéodory theorem (Bérdny, 1982) and
Tveberg’s theorem (Tverberg, 1966). All these results are covered with care
in Barany (2021).

Radon’s theorem (1.6.5) can be restated in terms of affine maps: for every
n > d+1 and every affine map ¢ from the (n — 1)-simplex to R?, there exists a
pair of disjoint faces of the simplex whose g-images intersect. The equivalence
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between the statement in Theorem 1.6.5 and this affine formulation stems from
noticing that every set X < R? with cardinality n determines a unique affine
map ¢ that takes the extreme points of the (n — 1)-simplex to the elements of
X and, in this way, each face of the simplex is mapped to the convex hull of
the images of its extreme points. A topological version of Radon’s theorem,
due to Bajméczy and Bérany (1979), replaces the adjective ‘affine’ with the
adjective ‘continuous’, and thus relaxes the condition on ¢. These topics and
their topological versions are also presented in Barany (2021).

The main concepts related to separation and support originated in
Minkowski (1896), including the separation theorem (1.8.5). The converse
of Theorem 1.8.1 is also true: if X < R? is a nonempty set in which, to
each point @ in R, there is a unique point in X closest to @, then X must be
closed and convex; this was shown independently by Bunt (1934) and Motzkin
(1935).

A more general version of Minkowski—Krein—Milman’s theorem (1.9.11)
appeared in Krein and Milman (1940). Theorem 1.9.11 is often called
Minkowski’s theorem because Minkowski (1911, pp. 131-229) proved the
finite-dimensional version that we presented.
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