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Abstract

In this paper we study persistence features of topological entropy and periodic orbit
growth of Hamiltonian diffeomorphisms on surfaces with respect to Hofer’s metric. We
exhibit stability of these dynamical quantities in a rather strong sense for a specific
family of maps studied by Polterovich and Shelukhin. A crucial ingredient comes from
enhancement of lower bounds for the topological entropy and orbit growth forced by
a periodic point, formulated in terms of the geometric self-intersection number and a
variant of Turaev’s cobracket of the free homotopy class that it induces. Those bounds
are obtained within the framework of Le Calvez and Tal’s forcing theory.

1. Introduction and results

Prototypical examples of maps that define a dynamical system of chaotic nature are horseshoe
maps, introduced by Smale [Sma67]. In dimension 2, a horseshoe model is given by stretch-
ing a square horizontally and squeezing it vertically before folding it back in the shape of a
horseshoe. Iterating a horseshoe T has the features of a topologically chaotic system: there is
a rich symbolic dynamics on a compact invariant set and, in particular, there is exponential
growth of periodic orbits and positive topological entropy. A remarkable property of horseshoes
is their local stability. Structural stability asserts that a diffeomorphism T ′ that is sufficiently
C1-close to T contains the same symbolic dynamics as that of T , and has at least the topological
entropy of T .1 Horseshoes are prevalent in dynamical systems of complex orbit structure. This is
particularly the case for surface diffeomorphisms: By a celebrated result of Katok [Kat80], any
C2 surface diffeomorphism of positive topological entropy on a compact surface has a hyperbolic
fixed point with a transverse homoclinic point and has a horseshoe in some iterate. Besides these
local stability features of surface maps, there exist ‘global’ analogues in surface dynamics, by
restricting to certain isotopy classes of homeomorphisms: a pseudo-Anosov homeomorphism is a
factor of a subsystem of any homeomorphism isotopic to it [Han85]. In particular, it minimizes
the topological entropy in its isotopy class.

In this paper we exhibit stability phenomena for Hamiltonian diffeomorphisms on surfaces
that have flavors of local as well as global nature. We motivate and briefly explain here some
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results and refer to § 1.2 below for definitions and precise statements. The group of Hamil-
tonian diffeomorphisms carries a remarkable conjugation-invariant norm ‖ · ‖Hofer inducing a
bi-invariant metric dHofer, the Hofer metric. From a point of view that is concerned with Ck

topology, k ≥ 0, this metric is rather flexible, in particular diffeomorphisms close with respect
to dHofer are in general not C0 close, and at least part of the dynamics of some horseshoe might
not survive under perturbation. Nevertheless, in terms of lower bounds of some dynamical quan-
tities, remarkable stability features are displayed, even under relatively large perturbations (in
terms of Hofer’s metric). We exhibit such phenomena in the case of surfaces of genus g ≥ 2 by
considering a specific construction from [PS16] of the so-called eggbeater maps or eggbeaters,
and its generalization by the first author [Cho22]. Eggbeaters are Hamiltonian variants of linked
twist maps, and the latter were studied by various authors (e.g. by Thurston [Thu88] as a family
of examples of pseudo-Anosov homeomorphisms). Eggbeaters have positive topological entropy
and exponential homotopical orbit growth (cf. [Dev78] for the detection of horseshoes in linked-
twist maps). We are interested in the extent to which dynamical properties of eggbeaters persist
under perturbation. To that end, fix some 0 < δ < 1. We say that some dynamical property of
φ δ-persists if it holds for all ψ with dHofer(ψ, φ) < δ‖φ‖Hofer. One of our main results is that
on closed surfaces of genus g ≥ 2 and for some fixed δ > 0, any given lower bound on the topo-
logical entropy (‘htop ≥ E’) δ-persists for an unbounded family of eggbeater diffeomorphisms
(cf. Theorem 1.4). An analogous result holds for the exponential homotopical orbit growth.
Moreover, we exhibit minimality of htop up to a fixed finite error on a family of eggbeaters
(cf. Corollary 1.5), which is reminiscent of the minimality property of htop for pseudo-Anosov
homeomorphisms.

To obtain our persistence results we will use certain lower bounds on the topological entropy
for surface homeomorphisms in the presence of orbit types with specific properties (cf. Theo-
rems 1.1–1.3), and the first part of the paper is devoted to their proofs. We will now motivate
and state these results as well as define relevant dynamical notions, and then, below in § 1.2,
turn to the persistence results mentioned above.

1.1 Free homotopy classes of periodic orbits and forcing
Let M be a closed oriented surface and f : M →M a homeomorphism isotopic to the identity.
The topological entropy htop(f) is one of the most widely used measures for the complexity of the
dynamics of f and can be defined as follows: for a fixed metric d on M , denote by Ntop(f, n, ε)
the maximal cardinality of a set X in M such that sup0≤k≤n d(fk(x), fk(y)) ≥ ε for all x, y ∈ X
with x �= y. The topological entropy of f is then

htop(f) := lim
ε→0

lim sup
n→∞

log(Ntop(f, n, ε))
n

,

which is well defined and independent of the metric d. A related measure for dynamical com-
plexity is the growth of periodic points: if Nper(f, n) denotes the number of periodic points
of f of period at most n, then the (exponential) growth rate of periodic points is defined as
Per∞(f) := lim supn→∞(log(Nper(f, n))/n).

Although it is in general very hard to calculate or estimate the topological entropy, remark-
ably, the existence of certain types of periodic points of f implies lower bounds on htop(f).
The following result in dimension 1 is a typical example of this forcing phenomenon: if a con-
tinuous mapping g on [0, 1] admits a periodic point of period n which is not a power of 2,
then htop(g) > (1/n) log(2) (see [BF76]). Passing to dimension 2, in order to deduce some inter-
esting dynamical information of f , the period alone is not sufficient and one has to take into
account further characteristics of a periodic point. It is natural to require that the desired
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bounds are invariant under any isotopy of f relative to the periodic orbit, which amounts to
considering the braiding information, or braid type, of the periodic orbit in the suspension flow.
Thurston–Nielsen theory provides a natural framework for understanding the dynamics that is
forced by a given braid type, namely, dynamically minimal maps for a braid type are given by the
Thurston–Nielsen canonical form. There are algorithmic methods to obtain the latter, although
it sometimes becomes difficult to apply them in practice, especially when passing to families of
braid types. Entropy bounds for specific (families of) braid types have been investigated by many
researchers (see, for example, [Hal94, Son05, HK06] and references therein). The complete braid-
ing information of an orbit, in particular if one considers orbits of higher complexity, is somewhat
hard to overlook, and one simplification is to project braids back to the surface, in other words,
to look for braid-type invariants that can be presented purely in terms of the homotopy class
of the curve that the orbit traces on M through an identity isotopy of f . It is that kind of
invariants that we will consider in this paper. Especially for dealing with bounds related to that
kind of invariants, the recently developed forcing theory of Le Calvez and Tal [LeCT18] building
upon Le Calvez’s theory of transverse foliations [LeC05] is perfectly suited. Lower bounds for
htop(f) and Per∞(f) of that kind are contained in [LeCT18, LeCT22, DaS19], as applications of
their methods, and in [Dow11] using Thurston–Nielsen theory. Our results improve and extend
part of these bounds, and we work closely within the theory in [LeCT18]. For related results see
also the recent work [GM22]. It contains a proof of the existence of topological horseshoes if the
homotopy class induced by the orbit cannot be represented by a multiple of a simple curve, with
additional properties of the horseshoe depending on further specifics of that class.

Let us introduce some essential notions. Let I = (It)t∈[0,1] be an identity isotopy for f (i.e. a
continuous path from the identity to f), and consider the set dom(I) = M \ Fix(I), where
Fix(I) = {x ∈M | It(x) ≡ x for all t ∈ [0, 1]} ⊂ Fix(f) are the points that are fixed throughout
the isotopy I. We denote by π̂(X) the set of free homotopy classes of loops in a space X,
and for any loop Γ : S1 → X, by [Γ] = [Γ]π̂(X) its free homotopy class in π̂(X). We say that
α ∈ π̂(dom(I)) is primitive if there is no representative of α that multiply covers another loop.
For m ∈ N, denote by mα the free homotopy class that is represented by the m-fold itera-
tion of a loop that represents α. For any periodic point x ∈ dom(I) of f , say of period q ∈ N,
consider the loop Iq(x) given by the concatenation of the paths It(x)t∈[0,1], It(f(x))t∈[0,1], . . . ,
and It(f q−1(x))t∈[0,1]. The loop Iq(x) defines a free homotopy class [Iq(x)] = α ∈ π̂(dom(I))
of loops in dom(I). An identity isotopy I is maximal if, for any fixed point y ∈ dom(I) of f ,
the loop I(y) = I1(y) is not contractible in dom(I) (cf. § 2.3). Let Γ : S1 → dom(I) be a loop
and denote by S(Γ) := {y ∈ dom(I) | y = Γ(t) = Γ(t′), t �= t′} the set of self-intersections of Γ,
and by si(Γ) = #S its cardinality. The geometric self-intersection number of α is defined as
sidom(I)(α) := min si(Γ), where the minimum is taken over all smooth loops Γ with [Γ] = α in
π̂(dom(I)) that are in general position, that is, each self-intersection y ∈ S(Γ) is transverse and
#Γ−1(y) = 2.

Theorem 1.1. Let M be a closed oriented surface, f : M →M a homeomorphism isotopic
to the identity, and I a maximal identity isotopy for f . Let α ∈ π̂(dom(I)) be primitive with
sidom(I)(α) �= 0. If there is a q-periodic point x of f in dom(I) with [Iq(x)] = mα ∈ π̂(dom(I))
for some m ∈ N, then both Per∞(f) and htop(f) are at least equal to

m

q
max
{

log(sidom(I)(α) + 1)
16

,
log(2)

2

}
.

If M = S2 and sidom(I)(α) �= 0, a fixed positive lower bound for htop(f) and Per∞(f) was
obtained in [LeCT18, Theorem 41] and improved in [LeCT22, DaS19]. Theorem 1.1 improves
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these lower bounds, the main addition here being that the bounds grow with the complexity
of α. We note that for many choices of M and α, similar lower bounds were obtained by Dowdall
in [Dow11] using Thurston–Nielsen theory.

Theorem 1.1 implies similar lower bounds that are independent of the isotopy I. If M has
genus greater than or equal to 2, then, since the space of homeomorphisms isotopic to the identity
is contractible, the free homotopy class α := [Iq(x)]π̂(M) in π̂(M) for a q-periodic point x ∈M
of f does not depend on the choice of identity isotopy I, and we may say that x is a q-periodic
point of class α.2 Theorem 1.1 and a result in [BCLR20] about existence of maximal isotopies
(cf. § 2.3) yield the following theorem (see § 4).

Theorem 1.2. Let M be a closed oriented surface of genus g ≥ 2 and α a primitive class in
π̂(M) with siM (α) �= 0. Let f : M →M be a homeomorphism that is isotopic to the identity. If
f has a q-periodic point of class α, then Per∞(f) and htop(f) are at least equal to

1/qmax
{

log(siM (α) + 1)
16

,
log(2)

2

}
.

In other words, a periodic point of class α that admits geometric self-intersections forces lower
bounds for topological entropy and exponential orbit growth, and the more self-intersections the
higher the bounds.

Theorem 1.2 raises the following question. What can be said about the classes in π̂(M) of
those periodic points that are forced by the periodic point x of class α? We address this question
in connection with growth and consider the exponential homotopical orbit growth rate given by

H∞(f) := lim sup
n→∞

log(Nh(f, n))
n

,

where Nh(f, n) is the number of distinct classes of periodic points of period less than n. Do
H∞(f) and Per∞(f) satisfy similar bounds? While the proof of Theorem 1.2 does not give a
positive lower bound on H∞(f) in terms of siM (α), we can bound H∞(f) in terms of another
invariant of α. We adapt a construction of Turaev [Tur78, Tur91] and then use it to define a
growth rate T∞(α). We explain this construction briefly here (see § 5 for details).

Denote by π̂(M)∗ the set of non-trivial classes in π̂(M). A loop Γ : [0, 1]→M in general
position representing a class α ∈ π̂(M)∗ splits at each self-intersection point y ∈ S(Γ) into two
(oriented) closed loops uy

1 and uy
2 based at y, representing two classes αy

1, α
y
2 ∈ π̂(M), where we

choose the labeling such that the initial tangent points of uy
1 and uy

2 define the orientation of Σ.
Denoting by Y the intersection points for non-trivial αy

1 and αy
2,

v(α) =
∑
y∈Y

αy
1 ⊗ α

y
2 − α

y
2 ⊗ α

y
1 ∈ Z[π̂(M)∗]⊗ Z[π̂(M)∗]

defines (by linear extension) Turaev’s cobracket on the free Z-module over π̂(M)∗. We consider a
variant of this construction, and assume additionally that x0 = Γ(0) = Γ(1) is not an intersection
point of Γ. For each self-intersection point y = Γ(t) = Γ(t′), t < t′, by composing with the paths
Γ[0,t] and its inverse Γ[0,t] we obtain loops Γ[0,t]u

y
i Γ[0,t], i = 1, 2, based at x0 = Γ(0) = Γ(1). These

loops define elements ay
i ∈ π1(M,x0), i = 1, 2 (see Figures 12 and 13).

Let g ∈ π1(M,x0) be the element represented by Γ. Denote by π1(M,x0)∗g the set of
g-equivalence classes of the non-trivial elements in π1(M,x0), where we say that two elements
are g-equivalent if one is a conjugation of the other by a multiple of g, and denote the equivalence

2 This partitions q-periodic points into equivalence classes which coincide with fq-Nielsen classes of those points
(see, for example, [Jia96]).
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class by [·]g. The element

μ(g) =
∑
y∈Y

[ay
1]g ⊗ [ay

2]g − [ay
2]g ⊗ [ay

1]g ∈ Z[π1(M,x0)∗g]⊗ Z[π1(M,x0)∗g]

is independent of the choice of the loop Γ based at x0 that represents g; moreover, μ(g)
behaves well with respect to conjugation (see Lemma 5.1). One actually obtains via μ an
invariant of α ∈ π̂(M) that is a (strict) refinement of the invariant v. We continue to define
a growth rate as follows. First, for a subset S = {s1, . . . , sm} ⊂ π1(M,x0), let N̂(n, S) be the
number of distinct conjugacy classes of elements in π1(M,x0) that can be written as a prod-
uct of at most n factors from S, and define Γ(S) := lim supn→∞(log(N̂(n, S))/n). Moreover,
given g ∈ π1(M,x0) and a set S of g-equivalence classes of elements in π1(M,x0), we define
Γ(S, g) = inf Γ(S), where the infimum is taken over all sets S ⊂ π1(M,x0) with #S = #S

and such that each element in S represents a different g-equivalence class in S. Now, writ-
ing μ(g) =

∑
a,b∈π1(M,x0)∗g

ka,b

(
a⊗ b

)
, with ka,b ∈ Z, we define the complexity Comp(μ(g)) as

the collection of terms a⊗ b with ka,b > 0. Let Comp+(μ(g)) = {a | ∃b : a⊗ b ∈ Comp(μ(g))}
and Comp+(μ(g)) = {b | ∃a : a⊗ b ∈ Comp(μ(g))}, and define

Γg := min± min
S

{
Γ(S ∪ [g]g, g)

∣∣S ⊂ Comp±(μ(g)), #S =
⌈

1
2#Comp(μ(g))

⌉}
.

One shows that Γg is actually invariant under conjugation, and hence defines a growth rate
T∞(α) ∈ [0,+∞) associated to each free homotopy class α of loops in M .

We obtain the following result.

Theorem 1.3. Let M be a closed oriented surface of genus g ≥ 2 and α ∈ π̂(M) be a primitive
class. Let f : M →M be a homeomorphism isotopic to the identity. If f has a q-periodic point
x of class α, then H∞(f) ≥ (1/q)T∞(α).

By a version of Ivanov’s inequality we have that htop(f) ≥ H∞(f) ([Iva82, Jia96]; see
also [Alv16a]). Hence, Theorem 1.3 provides another lower bound on htop(f) in terms of
the complexity of α. In § 7.3 we exhibit an infinite family of classes α in π̂(M) such that
T∞(α) ≥ log(siM (α)/4) (see Lemmas 7.8 and 7.9). In particular, the bound in Theorem 1.3
sometimes turns out to be significantly better than that in Theorem 1.2.

We outline the general strategy for the proofs of Theorems 1.1–1.3. Assume there is a
q-periodic point x of f that is in a primitive class α with siM (α) > 0. By the results in [BCLR20]
one can choose a maximal identity isotopy I for f . Le Calvez’s theory of transverse foliations
yields a singular foliation F on M that is transverse to I (see § 2). This means, in particular, that
there is a loop Γ transverse to F which is freely homotopic to Iq(x) in dom(I), and we say that Γ
is associated to x. Le Calvez and Tal’s results provide methods to manipulate Γ in order to obtain
other transverse loops associated to periodic points of f . Roughly speaking, in good situations
such loops might be created by starting at Γ(0), following Γ positively transverse to F , stopping
at some intersection point y which is reached for the first time, and finally continuing along Γ in
positive direction after a turn at y. The turn is to the left or to the right, depending on which
direction is positively transverse to the foliation. In other words, one creates a shortcut of Γ
at y. Moreover, one might iterate this procedure and create shortcuts at several self-intersection
points of Γ. The question whether the created loops are associated to periodic points is a bit
subtle and one crucial assumption is that the intersections where the shortcuts are created are
F-transverse (see § 2 for the definition). Moreover, especially if several self-intersections are con-
sidered, it is important to understand what the maximal ‘length’ of a subpath of a lift of Γ to
the universal cover of dom(I) is such that this subpath is F̃-equivalent to a subpath of another
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lift of Γ (see § 2 for the definitions). A better upper bound on this length generally leads to a
better lower bound on the topological entropy. We address this and related problems in § 3 and
establish some results (e.g. Lemma 3.8), which might also be of independent interest. The proof
of Theorem 1.1 is then given in § 4. Finally, let us outline the argument for Theorem 1.3, and
refer to § 5 for details. If T∞(α) > 0 and g denotes the element represented by Γ in π1(M,Γ(0)),
then for each element a⊗ b in Comp(μ(g)) there is an F-transverse self-intersection point y of
Γ for which the shortcut at y represents either a or b, and one can deduce the existence of a
periodic point of a class that is induced by a or b. Moreover, one can create several shortcuts
to an iterate of Γ. We show that for (sufficiently large) n > 0 the loops Γ′ = γρ1γρ2 · · · γρn are
associated to periodic points of period nq, where Γ′ is a concatenation of n loops γρi , each of
which either is equal to Γ or is obtained from Γ by a shortcut at some of the above intersection
points y with one additional assumption: the turns at the chosen intersection points have to be
either all to the left or all to the right. These observations allow us to conclude the inequality
H∞(f) ≥ (1/q)T∞(α).

1.2 Hamiltonian diffeomorphisms and persistence of topological entropy
We now turn to applications of Theorem 1.1 in the context of Hamiltonian diffeomorphisms.

Let us consider a closed symplectic manifold (M,ω) and denote by Ham(M,ω) the group
of Hamiltonian diffeomorphisms on M , that is, the group of those diffeomorphisms that are the
time-1 map of the (time-dependent) flow generated by a Hamiltonian vector field XHt of some
H : S1 ×M → R (cf. § 6.1). The group Ham(M,ω) carries a distinctive bi-invariant metric dHofer,
the Hofer metric, which plays a central role in the study of rigidity phenomena of Hamiltonian
diffeomorphisms. The distance dHofer(ϕ,ψ) for any ϕ,ψ ∈ Ham(M,ω) may be defined to be
‖ϕ ◦ ψ−1‖Hofer, where

‖θ‖Hofer := inf
H

∫ 1

0

(
max

M
Ht −min

M
Ht

)
dt,

with the infimum taken over all Hamiltonian functions H : [0, 1]×M → R whose associated
Hamiltonian flow has θ as time-1 map. It follows directly from the definition that small pertur-
bations in the sense of Hofer’s metric are not necessarily small in the C0 metric.3 The geometry
of (Ham(M,ω), dHofer) and its interplay with dynamics has been thoroughly studied since its
discovery by Hofer and his work in the early 1990s (see [Pol01] for an extensive account with
many results and references).

Hofer’s metric plays an important role in the stability features of Floer homology. Let us
briefly explain this in our context (more details can be found in § 6.1). Given that (M,ω)
is symplectically aspherical and atoroidal, then for a free homotopy class α the action func-
tional of a Hamiltonian H on the smooth representatives Lα(M) of α is given by AH(x) =∫ 1
0 H(t, x(t)) dt−

∫
x̄ ω, where x̄ : S1 × [0, 1]→M is a smooth map from an annulus to M , where

one boundary component S1 × {1} maps to x and the other S1 × {0} to a fixed representative
of α. If H is non-degenerate one defines the Floer homology as the homology of a chain complex
generated by 1-periodic orbits ofXHt , and chain maps given by counting zero-dimensional moduli
spaces of solutions u : R× S1 →M of a certain perturbed nonlinear Cauchy–Riemann equation
∂̄H,J(u) = 0 whose asymptotes lims→±∞ u(s, t) = x±(t) are 1-periodic orbits x±(t) of XHt . Since
action decreases along such solutions, the Floer homology can be filtered by action, taking into
account only periodic orbits of action less than a, for varying a ∈ R. The full Floer homology
for a non-trivial free homotopy class α vanishes, but one can take the filtration into account in

3 More subtle is the fact that also the converse fails in general (see, for example, [EPP12]).
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order to understand the structure and existence of orbits in α. An elegant and fruitful way to
keep track of the filtered Floer homology is to use the theory of persistent modules and bar-
codes [PRSZ20]. With this terminology, any Hamiltonian gives rise to a barcode (i.e. a multiset
of intervals in R). The barcode, in this setting, only depends on the Hamiltonian diffeomorphism
that is the time-1 map of XHt . Action estimates on continuation maps in Floer homology lead
to stability properties of barcodes with respect to Hofer’s metric, and hence in particular to the
persistence of certain fixed points.

A special family Eg of Hamiltonian diffeomorphisms on surfaces M = Σg of genus g, called
eggbeaters, was introduced by Franjione and Ottino in [FO92], and used in a symplectic set-
ting by Polterovich and Shelukhin in [PS16]. The construction was carried out for surfaces
of genus g ≥ 4 and later extended by the first author in [Cho22] to surfaces of genus g ≥ 2.
Computations of certain barcode invariants were carried out and it was proved that Eg pro-
vide a class of Hamiltonian diffeomorphisms whose Hofer distance to the space of autonomous
Hamiltonian diffeomorphisms can be arbitrarily large. The same results pass to some products
Σg ×N [PS16, Zha19], and the constructions allow the free group of two generators to be embed-
ded into the asymptotic cone of the group of Hamiltonian diffeomorphisms equipped with Hofer’s
metric [AGK+19, Cho22].

One may formulate the above results as (a consequence of) persistence of certain dynamical
properties of eggbeaters. Eggbeaters are prototypical for a chaotic dynamical system. While this
chaotic behavior, as opposed to integrable behavior, served as motivation to investigate these
maps in [PS16], the question of the persistence of chaos, that is, the persistence of entropy,
exponential orbit complexity etc., has not yet been addressed. The following result gives some
answers in the setting of surfaces of genus g ≥ 2.

Theorem 1.4. Let (Σg, σg) be a surface of genus g ≥ 2 with an area form σg. There is a sequence
φl ∈ Eg of eggbeaters on Σg with Ml := ‖φl‖Hofer →∞ and constants δ, C > 0, such that for all
l ∈ N and all ψ ∈ Ham(M,ω) with dHofer(ψ, φl) < δMl,

H∞(ψ) ≥ log(CM2
l )

and, in particular,

htop(ψ) ≥ log(CM2
l ). (1)

In particular, using the terminology at the beginning of this introduction, for any constant
E there is an unbounded family in (Ham(Σg, σg), dHofer) on which (‘htop ≥ E’) δ-persists.

The sequence φl satisfies htop(φl) ≤ log(C ′M2
l ) for some constant C ′ > C (see Remark 7.4),

and hence the lower bounds in (1) are ‘optimal’ from an asymptotic viewpoint, or, in other
words, eggbeaters are ‘almost’ minimal points for the topological entropy on Ham(Σg, σg). More
precisely, we shall prove the following corollary in § 7.

Corollary 1.5. Let (Σg, σg) be as above. Then there are constants K > 0 and δ > 0, and a
sequence of φl ∈ Eg with Ml := ‖φl‖Hofer →∞ and htop(φl) →∞, such that all ψ ∈ Ham(Σg, σg)
with d(ψ, φl) < δMl satisfy

htop(ψ) ≥ htop(φl)−K.

The sequence φl defines an element in the asymptotic cone of (Ham(Σg, σg), dHofer). An inter-
esting question is whether similar minimality properties hold also for defining sequences of most
elements in the image of the embedding of F2 into the asymptotic cone of (Ham(Σg, σg), dHofer)
obtained in [AGK+19], and this question motivates efforts to further strengthen the bounds
obtained in Theorem 1.3.
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Finally, we will also observe that the lower bounds obtained in Theorem 1.4 are Hofer generic
and we show the following theorem.

Theorem 1.6. Let (Σg, σg) be a surface of genus g ≥ 2, and let M ≥ 0. There is an open and
dense set U ⊂ Ham(Σg, σg) with respect to the topology induced by Hofer’s metric dHofer such
that htop(ψ) ≥M for all ψ ∈ U .

The proofs of Theorems 1.4 and 1.6 and Corollary 1.5 are given in § 7.
A recent result in [Kha21], building on different methods (cf. [BM19]), asserts that for surfaces

Σg of genus g ≥ 1 there is for any C ≥ 0 a class of Lagrangian pairs (L,L′), L,L′ ⊂ Σg, such
that htop(ϕ) > C for all ϕ with ϕ(L) = L′. It would be interesting to understand whether these
sets of pairs may satisfy some stability properties similar to those of Theorems 1.4 and 1.6.

Very recently, the authors of [ÇGG21] show that the topological entropy of a Hamiltonian
diffeomorphism ϕ on a closed surface coincides with its barcode entropy �(ϕ) which they intro-
duce, and which measures the growth of the number of certain bars in the barcode of the iterates
of ϕ. Hence, together with the results in this paper, this shows that the results obtained in
Theorems 1.4, 1.6 and Corollary 1.5 hold additionally for �. This is noteworthy, since it is a
priori not clear which stability properties hold for � with respect to Hofer’s metric.

Also recently, motivated by the present work, stability properties with respect to dHofer on
the braid types of periodic orbits of Hamiltonian surface diffeomorphisms have been studied by
Alves and the second author (see [AM21]). One dynamical consequence is that htop is lower
semi-continuous on (Ham(Σ, ω), dHofer) for closed surfaces Σ.

Related questions of global robustness of positive entropy for families of contactomorphisms
on contact manifolds were studied extensively and fruitfully in recent years by various methods.
A large class of contactomorphisms are those that arise via Reeb flows, and there is an abundance
of contact manifolds for which the topological entropy or the exponential orbit growth rate is
positive for all Reeb flows. Examples and dynamical properties of those manifolds are investigated
in [AASS21, Alv16a, Alv16b, Alv19, ACH19, AM19, Côt21, FS06, MS11, Mei18]. Some of these
results generalize to positive contactomorphisms [Dah18], and results on the dependence of some
lower bounds on the topological entropy with respect to their positive contact Hamiltonians
have been obtained in [Dah21]. Forcing results for Reeb flows are obtained in [AP22]. A related
discussion and results on questions of C0-stability of the topological entropy of geodesic flows
can be found in [ADMM22]. While the approach in our paper is suited to dimension 2, different
methods yield higher-dimensional symplectic manifolds for which conclusions similar to that of
Theorems 1.4 and 1.6 hold. This will be discussed elsewhere.

1.3 Structure of the paper
In § 2 we recall the theory of transverse foliations on surfaces, which is the setting in which
Theorems 1.1–1.3 are proved. In § 3 we restrict our attention to loops with so-called F-transverse
self-intersections, and prove a few key claims.

In § 4 we prove Theorems 1.1 and 1.2, using the tools developed in the previous sections. In
§ 5 we define the growth rate T∞ of a free homotopy class and prove Theorem 1.3.

Section 6 gives a short background on Floer theory and persistence modules, which is then
used in § 7 to derive bounds on entropy and periodic orbit growth of large perturbations with
respect to Hofer’s metric of eggbeater maps. This will, in particular, prove Theorems 1.4 and 1.6.

2. Transverse foliations and transverse intersections

In this section we will give the definitions and results from the theory of transverse foliations
that are relevant for this paper. We follow mainly [LeCT18].
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2.1 Surface foliations and transverse paths
In the following let M be an oriented surface. The plane R2 will be endowed with the usual
orientation. A path on M is a continuous map γ : J →M , defined on an interval J ⊂ R. A path
γ is proper if J is open and the preimage of every compact subset of M is compact. A line is
an injective and proper path λ : J →M ; it inherits a natural orientation induced by the usual
orientation of R. If M = R2, the complement of λ has two connected components, one on the
right, R(λ), and one on the left, L(λ). A loop is a continuous map Γ : S1 = R/Z→M . It lifts to
a path γ : R→M with γ(t+ 1) = γ(t) for all t ∈ R, the natural lift of Γ. For two closed finite
intervals J = [a, b], J ′ = [a′, b′] and paths γ : J →M , γ′ : J ′ →M with γ(b) = γ′(a′), we denote
by γγ′ the usual concatenation of paths. In particular, Γm, for m ∈ N, is the m-fold iteration
of a loop Γ (i.e. Γm(t) := γ(mt)). The path obtained by reverse parametrization of γ is denoted
by γ.

A singular oriented foliation on M is an oriented topological foliation F defined on an open
set of M . This set is called the domain of F and is denoted by dom(F). The complement
M \ dom(F) is the singular set, denoted by sing(F). We denote by φz the leaf passing through
z ∈ dom(F), and by φ+

z the positive and by φ−z the negative half-leaf. A path γ : J →M is
(positively) transverse to F or F-transverse if its image does not meet the singular set and if, for
every t0 ∈ J , there is a continuous chart h : W → (0, 1)2 at γ(t0) compatible with the orientation
and sending the foliation F|W onto the vertical foliation oriented downwards such that the map
π1 ◦ h ◦ γ is increasing in a neighborhood of t0, where π1 is the vertical projection. If dom(F) is

connected we denote by ˜dom(F) the universal covering space of the surface dom(F), otherwise

we denote by ˜dom(F) the disjoint union of the universal coverings of its connected components.

Then F|dom(F) lifts to a (non-singular) foliation F̃ on ˜dom(F). Note that since there is no non-

singular foliation on S2, ˜dom(F) is always homeomorphic to R2, or to several copies of R2 if

dom(F) is disconnected. Every lift of an F-transverse path γ is an F̃-transverse path on ˜dom(F).

We say that γ̃ : R→ ˜dom(F) is a lift of the loop Γ (to ˜dom(F)) if it is a lift of its natural lift
γ : R→ dom(F).

If F is a non-singular foliation on R2, then two F-transverse paths γ : J → R2 and γ′ :
J ′ → R2 are equivalent for F if there exists an increasing homeomorphism h : J → J ′ such that
φγ′(h(t)) = φγ(t) for every t ∈ R. In general, if F is a (possibly singular) foliation on an oriented
surface M , two transverse paths γ : J →M and γ′ : J ′ →M are called equivalent for F if they
can be lifted to the universal covering space ˜dom(F) of dom(F) as paths that are equivalent for
the lifted foliation F̃ . A loop Γ : S1 → dom(F) is called positively transverse to F if this holds for
the natural lift γ : R→ dom(F). Two F-transverse loops Γ and Γ′ are equivalent if there exist

two lifts γ̃ : R→ ˜dom(F) and γ̃′ : R→ ˜dom(F) of Γ and Γ′ respectively, a deck transformation
T and an orientation-preserving homeomorphism h : R→ R invariant by t �→ t+ 1 and such
that for all t ∈ R,

γ̃(t+ 1) = T (γ̃(t)), γ̃′(t+ 1) = T (γ̃′(t)), φγ̃′(h(t)) = φγ̃(t).

2.2 F-transverse intersection
We now recall the definition of F-transverse intersection, which is a central notion in [LeCT18].
Many details and illustrating figures can also be found in [LeCT18, §§ 2 and 3].
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Figure 1. γ1 and γ2 intersect F-transversally and positively at φ.

Let λ0, λ1, and λ2 be three lines in R2. The line λ2 is above λ1 relative to λ0 (or λ1 is below
λ2 relative to λ0) if:

• the three lines are pairwise disjoint;
• none of the lines separates the two others;
• if γ1, γ2 are two disjoint paths that join z1 = λ0(t1) (respectively, z2 = λ0(t2))

to z′1 ∈ λ1 (respectively, z′2 ∈ λ2) and do not meet the three lines except at the ends, then
t2 > t1.

Assume F is a non-singular foliation on R2. Let γ1 : J1 → R2 and γ2 : J2 → R2 be two
transverse paths such that φγ1(t1) = φγ2(t2) = φ. The paths γ1 and γ2 intersect F-transversally
and positively at φ (see Figure 1) if there exist a1, b1 in J1 and a2, b2 ∈ J2 satisfying a1 < t1 < b1,
a2 < t2 < b2, such that

• φγ2(a2) is below φγ1(a1) relative to φ, and
• φγ2(b2) is above φγ1(b1) relative to φ.

In this situation, we also say that γ1 intersects γ2 F-transversally and positively, γ2 and γ1

intersect F-transversally and negatively, or γ2 intersects γ1 F-transversally and negatively at φ.

Remark 2.1. One has the following transitivity property. Let γ1 : J1 → R2, γ2 : J2 → R2, and
γ3 : J3 → R2 be transverse paths with φγ1(t1) = φγ2(t2) = φγ3(t3) = φ. If γ1 and γ2 intersect
F-transversally and positively at φ, and γ2 and γ3 intersect F-transversally and positively at φ,
then γ1 and γ3 intersect F-transversally and positively at φ.

Now let F be a (possibly singular) foliation on an oriented surface M . Let γ1 : J1 →M
and γ2 : J2 →M be two transverse paths such that φγ1(t1) = φγ2(t2) = φ. We say that γ1 and γ2

intersect F-transversally and positively at φ (respectively, negatively at φ) if there exist paths
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γ̃1 : J1 → ˜dom(F) and γ̃2 : J2 → ˜dom(F), lifting γ1 and γ2, with a common leaf φ̃ = φγ̃1(t1) =
φγ̃2(t2) that lifts φ such that γ̃1 and γ̃2 intersect F̃-transversally and positively at φ̃ (respectively,
negatively at φ̃). If two paths γ1 and γ2 intersect F-transversally, there exist t′1 and t′2 such that
γ1(t′1) = γ2(t′2) and such that γ1 and γ2 intersect F-transversally at φγ1(t′1) = φγ2(t′2). We say
that γ1 and γ2 intersect F-transversally at γ1(t′1) = γ2(t′2). A transverse path γ has a (positive)
F-transverse self-intersection at γ(t1) = γ(t2), t1 < t2, if for every lift γ̃ there is a deck transfor-
mation U such that γ̃ and Uγ̃ have a (positive) F̃-transverse intersection at γ̃(t1) = Uγ̃(t2). A
transverse loop Γ has an F-transverse self-intersection at Γ(t1) = Γ(t2) if its natural lift γ has
an F-transverse self-intersection at γ(t1) = γ(t2).

Finally, we say that a transverse path γ : [a, b]→ R2 (for a regular foliation F on R2) has
a leaf on its right (respectively, a leaf on its left), if there is a leaf φ such that φ is above
(respectively, below) φγ(a) relative to φγ(b). We say that γ : [a, b]→M has a leaf on its right
(respectively, a leaf on its left), if a lift of γ to F̃ has a leaf on its right (respectively, a leaf on
its left).

2.3 Identity isotopies
In the following, let f be a homeomorphism on M that is isotopic to the identity. Let I be the
set of isotopies I = (ft)t∈[0,1] between the identity and f . Here, isotopy means a continuous path
of homeomorphisms with respect to the topology defined by the uniform convergence of maps
and their inverses on compact sets. For I ∈ I, the trajectory I(z) of a point z ∈M is defined to
be the path t �→ ft(z).

Let Fix(I) :=
⋂

t∈[0,1] Fix(ft) and dom(I) = M \ Fix(I). There is the following preorder on I.
We define I < I ′ if

• Fix(I) ⊂ Fix(I ′), and
• I ′ is homotopic to I relative to Fix(I).

For each I ∈ I, there is I ′ ∈ I with I < I ′ and such that I ′ is maximal with respect to <. This was
proved in [Jau14] with certain restrictions and in [BCLR20] in full generality. See also [HLRS16]
for the case of diffeomorphisms. Maximal elements are exactly those I ∈ I such that for every
z ∈ Fix(f) \ Fix(I) the loop I(z) is not contractible in dom(I) (see [Jau14]). A foliation F on
M is called transverse to I if

• the singular set sing(F) coincides with Fix(I), and
• for every z ∈ dom(I), the trajectory I(z) is homotopic in dom(I) relative to the endpoints to

a path γ positively transverse to F .

One has the following fundamental result.

Theorem 2.2. [LeC05] For any maximal isotopy I ∈ I there exists a singular oriented foliation
F on M that is transverse to I.

2.4 Admissible paths
Let I be a maximal isotopy to f and F be transverse to I. Let IF (z) denote the class of paths
that are positively transverse to F , that join z and f(z), and that are homotopic in dom(I)
to I(z) relative to the endpoints. Every path in this class is called a transverse trajectory to z.
One defines for every n, In

F (z) := Π0≤k<nIF (fk(z)), which means the class of paths that can be
written as concatenation of paths in IF (fk(z)), 0 ≤ k < n.
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A path γ : [a, b]→ dom(I) positively transverse to F is called admissible of order n if it is
equivalent to a path in In

F (z) for some z ∈ dom(I). A path γ is called admissible of order at most
n if it is a subpath of a path that is admissible of order n. A transverse path that has a leaf
on its right or a leaf on its left and that is admissible of order at most n, is also admissible of
order n [LeCT18, Proposition 19].

The concept of F-transverse intersections allows us to show admissibility for various
transverse paths. Let us state the ‘fundamental proposition’ in [LeCT18].

Proposition 2.3 [LeCT18, Proposition 20]. Let γ1 : [a1, b1]→M and γ2 : [a2, b2]→M be
transverse paths that intersect F-transversally at γ1(t1) = γ2(t2). If γ1 is admissible of order
n1 and γ2 is admissible of order n2, then γ1|[a1,t1]γ2|[t2,b2] and γ2|[a2,t2]γ1|[t1,b1] are admissible of
order n1 + n2. Furthermore, either one of these paths is admissible of order min(n1, n2) or both
paths are admissible of order max(n1, n2).

This proposition is essential for the following result.

Proposition 2.4 [LeCT18, Proposition 23]. Suppose that γ : [a, b]→M is a transverse path
admissible of order n and that γ has an F-transverse self-intersection at γ(s) = γ(t) with s < t.
Then γ|[a,s]γ|[t,b] is admissible of order n and γ|[a,s](γ|[s,t])qγ|[t,b] is admissible of order qn for
every q ≥ 1.

The second statement of Proposition 2.4 is a direct consequence of Proposition 2.3, whereas
the first statement follows from Proposition 2.3 and from the fact that there is q such that
γ|[a,s](γ|[s,t])qγ|[t,b] is not admissible of order n (see [LeCT18, Proof of Proposition 23]). Besides
Proposition 2.4 we will use the following, slightly more general, statement.

Proposition 2.5. Let k > 0. Suppose that γ : [a, b]→M is a transverse path admissible of
order n and that γ has positive F-transverse self-intersections at γ(si) = γ(ti), i = 1, . . . , k,
with a < s1 < t1 < s2 < t2 < · · · < sk < tk < b. Then γ|[a,s1]γ|[t1,s2]γ|[t2,s3] · · · γ|[tk,b] is admissible
of order n. The same holds true if all F-transverse self-intersections above are negative.

Proof. One obtains the proof by iterating the arguments for the proof of Proposition 2.4 con-
tained in [LeCT18]. By Proposition 2.4, γ|[a,s1]γ|[t1,b] is admissible of order n. We claim that
γ|[a,s1]γ|[t1,b] and γ have a positive F-transverse intersection at γ|[a,s1]γ|[t1,b](s2) = γ(t2). Indeed,
choose lifts γ̃1 and γ̃2 of γ with γ̃1(s2) = γ̃2(t2), and choose a1, a2, b1, b2 ∈ [a, b] with a1 < s2 < b1,
a2 < t2 < b2 such that φγ̃1(a1) is above φγ̃2(a2) relative to φ := φγ̃1(s2) = φγ̃2(t2) and φγ̃2(b2) is above
φγ̃1(b1) relative to φ. Let γ̃0 be the lift of γ such that γ̃0 and γ̃1 intersect F̃-transversally and
positively at γ̃0(s1) = γ̃1(t1), and choose a0 ∈ [a, b] and decrease a1 ∈ [a, b] if necessary (which
will not change the properties above) such that φγ̃0(a0) is above φγ̃1(a1) relative to φγ̃1(t1). Since
φγ̃0(a0) and φγ̃1(a1) are on the right of φγ̃1(t1), φγ̃0(a0) is also above φγ̃1(a1) relative to φ. To ensure
that the paths γ̃0|[a,s1]γ̃1|[t1,b] and γ̃2|[a,b] intersect F̃-transversally and positively at φ, we need
to check that φγ̃0(a0) is above φγ̃2(a2) relative to φ. That those three leaves are pairwise disjoint
is clear. Moreover, φγ̃0(a0) and φγ̃2(a2) lie on the right of φ, and hence φ does not separate them.
Since φγ̃2(a2) does not separate φγ̃1(a1) and φ, it does not intersect γ̃1|[a1,s2]. Hence, φγ̃2(a2) does
not intersect the path γ̃0|[a0,s1]γ̃1|[t1,s2], neither its subpath that is equivalent to a subpath of
γ̃1|[a1,s2], nor the complementary subpath, which would contradict the fact that φγ̃1(a1) is above
φγ̃2(a2) relative to φ. Hence, φγ̃1(a1) does not separate φγ̃0(a0) and φ, and similarly one sees that
φγ̃0(a0) does not separate φγ̃1(a1) and φ. Finally, for any two disjoint paths η0 (respectively, η2)
that join a point in φγ̃0(a0) to a point y0 in φ (respectively, a point in φγ̃2(a2) to a point y2

in φ), there is, by the non-separation property, a path η1 that joins a point in φγ̃1(a1) to a point
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y1 which lies in the subpath of φ connecting y2 and y0. It follows by our assumptions that y2 must
be above y0 in φ. We conclude that the paths γ̃0|[a,s1]γ̃1|[t1,b] and γ̃2|[a,b] intersect F̃-transversally
and positively at φ, which implies the claim above.

Hence, by Proposition 2.3, the path γ|[a,s1]γ|[t1,s2]γ|[t2,b] is admissible of order n or the path
γ|[a,t2]γ|[s2,b] = γ|[a,s2](γ|[s2,t2])2γ|[t2,b] is admissible of order n. Repeating this argument induc-
tively, that is, applying Proposition 2.3 to the paths γ|[a,s1]γ|[t1,b] and γ|[a,s2](γ|[s2,t2])qγ|[s2,b],
we get that γ|[a,s1]γ|[t1,s2]γ|[t2,b] is admissible of order n or γ|[a,s2](γ|[s2,t2])qγ|[t2,b] is admissi-
ble of order n for all q ≥ 1. That the latter is impossible is shown in [LeCT18, Proof of
Proposition 23]. Hence, repeating this argument for i = 3, . . . , k shows the assertion. �

Certain assumptions on a transverse loop Γ guarantee the existence of periodic points of f .
An F-transverse loop Γ with natural lift γ is linearly admissible of order q if there exist two
sequences (rk)k≥0 and (sk)k≥0 of natural numbers with

lim
k→∞

rk = lim
k→∞

sk = +∞, lim sup
k→∞

rk/sk ≥ 1/q,

and such that γ|[0,rk] is admissible of order at most sk.

If z is a periodic point of period q, then there exists a transverse loop Γ′ whose natural lift
satisfies γ′|[0,1] = Iq

F (z). A transverse loop Γ is said to be associated to z if it is F-equivalent to
Γ′. Note that Γ is then linearly admissible of order q. The following important realization result
asserts a partial converse.

Proposition 2.6 [LeCT18, Proposition 26]. Let Γ be a linearly admissible transverse loop of
order q that has an F-transverse self-intersection. Then for every rational number r/s ∈ (0, 1/q]
written in lowest terms, Γr is associated to a periodic point of period s.

3. Non-simple free homotopy classes and F-transverse self-intersections

Throughout this section let M be an oriented closed surface and F a (singular) oriented foliation
on M . In this section we study F-transverse loops in dom(F) that are not freely homotopic to a
multiple of a simple loop and derive some useful properties. In particular, we prove Lemma 3.8
which provides some upper bounds on the length of intervals along which different lifts of
such loops to the universal cover can be F̃-equivalent. First, we show that the existence of an
F-transverse self-intersection is sufficient for a loop to be of this type.

Lemma 3.1. If Γ is an F-transverse loop in dom(F) that has an F-transverse self-intersection,
then Γ is not freely homotopic in dom(F) to a multiple of a simple loop.

Proof. Choose a Riemannian metric g on dom(F) and let g̃ be the lift to the universal cover
˜dom(F), d̃(·, ·) its induced metric. For a lift γ̃ of γ and for ε > 0 denote by U(γ̃, ε) := {x ∈
˜dom(F) | ∃t ∈ R with d̃(γ̃(t), x) < ε} the ε-neighborhood of γ̃. Since Γ is F-transverse we can

choose ε > 0 so small that, for any lift γ̃ of γ, every leaf of F̃ that intersects U(γ̃, ε) also
intersects γ̃. Now let γ̃1 and γ̃2 be two lifts of γ that intersect F-transversally and positively at
γ̃1(t1) = γ̃2(t2). We show that

∀C > 0,∃a, b ∈ R such that γ̃1(a) ∈ R(γ̃2), γ̃1(b) ∈ L(γ̃2), and

γ̃1(a), γ̃1(b) do not lie in the C-neighborhood U(γ̃2, C) of γ̃2.
(2)

If Λ is a loop freely homotopic to Γ, then (2) still holds for the lifts λ1 and λ2 of Λ that are
obtained by lifting a homotopy of Γ to Λ to homotopies that extend γ̃1 and γ̃2, respectively.
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Figure 2. Situation in the proof of Lemma 3.1. The points γ̃1(t1 − 2kl) are on the right of γ̃2

for all l > 0 and are not contained in U(γ̃2, C) if l > C/2ε.

In particular, the images of λ1 and λ2 are non-identical and so Λ cannot be a multiple of a
simple loop.

Let T : ˜dom(F) → ˜dom(F) be the deck transformation that is given by T (γ̃1(t)) = γ̃1(t+ 1).
By the assumptions, there exist a1, b1, a2, b2 ∈ R with a1 < t1 < b1 and a2 < t2 < b2 such that
φγ̃1(a1) is above φγ̃2(a2) relative to φ := φγ̃(t1) = φγ̃(t2) and φγ̃2(b2) is above φγ̃1(b1) relative to φ.
Since the lifts of γ intersect the foliation F̃ positively and since φ and φγ̃2(b2) are on the right of
φγ̃1(b1), the lift γ̃2 is on the right of φγ̃1(b1). Similarly, γ̃2 is on the left of φγ̃1(a1). Choose k ∈ N

with t1 + k ≥ b1 and t1 − k ≤ a1. Then γ̃2 also lies on the right of φγ̃1(t1+k) = T k(φγ̃1(t1)) and
γ̃2 lies on the left of φγ̃1(t1−k) = T−k(φγ̃1(t1)). Consider the lifts T 2klγ̃2(t) := T 2kl(γ̃2(t)), l ∈ Z,
of γ. The lifts γ̃1 and T 2klγ̃2 intersect F̃-transversally and positively at γ̃1(t1 + 2kl) = T 2klγ̃2(t2).
The line T 2klγ̃2 is on the right of φγ̃1(t+2kl+k) = T 2kl+k(φγ̃1(t)) and on the left of φγ̃1(t+2kl−k) =
T 2kl−k(φγ̃1(t)). Moreover, φγ̃1(t+2kl+k) is on the left of T 2klγ̃2 and φγ̃1(t+2kl−k) is on the right of
T 2klγ̃2. It follows that for all l1, l2 ∈ Z, l1 < l2, the line T 2kl2 γ̃2 is on the left of T 2kl1 γ̃2 and T 2kl1 γ̃2

is on the right of T 2kl2 γ̃2. No leaf of F̃ intersects both T 2kl1 γ̃2 and T 2kl2 γ̃2 for l1 �= l2, hence the
sets U(T 2klγ̃2, ε), l ∈ Z, are pairwise disjoint. Since any path from T 2kl1 γ̃2 to T 2kl2 γ̃2, l1 < l2 ∈
Z, has to cross the lifts T 2k(l1+1)γ̃2, T

2k(l1+2)γ̃2, . . . , T
2k(l2−1)γ̃2, the d̃-distance of the images

of T 2kl1 γ̃2 and T 2kl2 γ̃2 in ˜dom(F) is bounded from below by 2ε(l2 − l1 − 1) + 2ε = 2ε(l2 − l1).
Hence, for any C > 0 we have for l > C/2ε that γ̃1(t1 + 2kl) ∈ L(γ̃2), γ̃2(t1 − 2kl) ∈ R(γ̃2), and
both points do not lie in U(γ̃2, C) (see Figure 2). �
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Now, and throughout the section if not explicitly stated otherwise, let Γ : S1 → dom(F) be
an F-transverse loop that is not freely homotopic in dom(F) to a multiple of a simple loop, and
denote by γ : R→ dom(F) its natural lift. We will assume that dom(F) is connected, otherwise
consider instead of dom(F) the connected component that contains Γ. In the remainder of the

section we will prove a few properties of lifts of Γ to ˜dom(F). In particular, we will see that the
converse of Lemma 3.1 holds, that is, that Γ has an F-transverse self-intersection.

Since there is a primitive non-simple free homotopy class of loops in dom(F), dom(F) is not
homeomorphic to a sphere, to a sphere minus one or two points, or to the torus. Equip dom(F)
with a complex structure. By the uniformization theorem, we can identify the universal cover
˜dom(F) with the unit disc. It follows that dom(F) admits a complete hyperbolic metric ghyp that

lifts to the Poincaré metric on ˜dom(F). We obtain a circle compactification ˜dom(F) ∪ S∞ by

adding the boundary at infinity S∞ to ( ˜dom(F), g̃hyp). In the hyperbolic surface (dom(F), ghyp)
there is a sequence of compact subsurfaces, C1 ⊂ · · ·Ck ⊂ Ck+1 · · · ⊂M , such that their bound-
ary ∂Ck is a finite union of simple closed geodesics and every non-trivial closed curve in dom(F)
is freely homotopic to a closed curve that is contained in Ck for sufficiently large k (see, for exam-
ple, [BK08, Proposition 2.3]). In particular, every free homotopy class that is not a multiple of
a simple class has a geodesic representative.

For a lift γ̃ of γ to the universal cover ˜dom(F) and a deck transformation U on ˜dom(F), we
write Uγ̃ : R→ d̃om(F) for the lift satisfying Uγ̃(t) = U(γ̃(t)) for every t ∈ R. We call the deck
transformation T with T γ̃(t) = γ̃(t+ 1) the shift for γ̃. Note that every deck transformation U

extends to a homeomorphism U on ˜dom(F) ∪ S∞ and, since Γ has a geodesic representative in
dom(F), any shift T for some lift γ̃ of Γ is a hyperbolic transformation; in particular, T admits
exactly two fixed points γ̃+ = limt→+∞ γ̃(t) = limn→+∞ Tnγ̃(t) ∈ S∞ and γ̃− = limt→−∞ γ̃(t) =
limn→+∞ T−nγ̃(t) ∈ S∞. For any lift γ̃ we get two non-empty arcs L̂(γ̃) := (γ̃+, γ̃−) and R̂(γ̃) :=
(γ̃−, γ̃+) on S∞, where we equip S∞ with the counterclockwise orientation. We say that two lifts

γ̃1 : R→ ˜dom(F) and γ̃2 : R→ ˜dom(F) are translates of each other if the shifts T1 and T2 for
γ̃1 and γ̃2, respectively, coincide. If the free homotopy class of Γ is primitive, then this holds if
and only if γ̃1(t+ k) = γ̃2(t) for some k ∈ Z and all t ∈ R. Using that Γ has a closed geodesic
representative in (dom(F), ghyp), one obtains that two lifts γ̃1 and γ̃2 are not translates of each
other if and only if γ̃±1 and γ̃±2 are four pairwise distinct points in S∞. Since Γ is not freely
homotopic to a multiple of a simple loop, there are two lifts γ̃1 and γ̃2 such that γ̃±1 separate γ̃±2
in S∞ (i.e. L̂(γ̃1) ∩ R̂(γ̃2) �= ∅ and R̂(γ̃1) ∩ L̂(γ̃2) �= ∅).

The following lemma states that the foliation separates two lifts with different asymptotics.

Lemma 3.2. Let γ̃1 and γ̃2 be two lifts of γ and assume there are t1, t2 ∈ R such that φγ̃1(t1) =
φγ̃2(t2) =: φ.

• If γ̃−1 ∈ R̂(γ̃2) (respectively, γ̃−1 ∈ L̂(γ̃2)), then there is a1 < t1 and a2 < t2 such that φγ̃1(a1)

is above (respectively, below) φγ̃2(a2) relative to φ.

• If γ̃+
1 ∈ L̂(γ̃2) (respectively, γ̃+

1 ∈ R̂(γ̃2)), then there is b1 > t1 and b2 > t2 such that φγ̃1(b1) is
below (respectively, above) φγ̃2(b2) relative to φ.

Proof. Since Γ is not freely homotopic to a multiple of a simple loop, we can choose for any given
lift γ̃ of γ a deck transformation S on ˜dom(F) such that (Sγ̃)+ ∈ L̂(γ̃) and (Sγ̃)− ∈ R̂(γ̃). For all
n ∈ Z, we then have more generally that (TnSγ̃)+ ∈ L̂(γ̃), (TnSγ̃)− ∈ R̂(γ̃), (TnS−1γ̃)+ ∈ R̂(γ̃),
and (TnS−1γ̃)− ∈ L̂(γ̃), where T denotes the shift for γ̃.
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Figure 3. Lifts and leaves in the proof of Lemma 3.2. The dotted areas are A1 = L(T−n1
1 S1γ̃1) ∪

(R(γ̃1) ∩R(γ̃2) ∩R(φ)) and A2 = R(T−n2
2 S−1

2 γ̃2) ∪ (L(γ̃1) ∩ L(γ̃2) ∩R(φ)).

Now let γ̃1 and γ̃2 be the two lifts considered in the lemma, T1 and T2 their shifts, and S1

and S2 the deck transformations considered above. We show that if γ̃−1 ∈ R̂(γ̃2) then there exist
a1 < t1 and a2 < t2 such that φγ̃1(a1) is above φγ̃2(a2) relative to φ. The other three statements
of the lemma are proved similarly.

So assume γ̃−1 ∈ R̂(γ̃2). Since γ̃−1 �= γ̃−2 are the unique repelling fixed points in dom(F) ∪ S∞
of T1 and T2 respectively, there are n1, n2 ∈ N such that L(T−n1

1 S1γ̃1) ∩R(T−n2
2 S−1

2 γ̃2) = ∅.
Choose a1 < t1 and a2 < t2 such that γ̃1(a1) ∈ L(T−n1

1 S1γ̃1) and γ̃2(a2) ∈ R(T−n2
2 S−1

2 γ̃2)
(see Figure 3). Let φi := φγ̃i(ai) for i = 1, 2. Since the lifts are positively transverse to F
we have that φ−1 ∈ L(T−n1

1 S1γ̃1) and φ+
2 ∈ R(T−n2

2 S−1
2 γ̃2), as well as φ+

1 ∈ R(γ̃1) ∩R(γ̃2) and
φ−2 ∈ L(γ̃1) ∩ L(γ̃2). Hence, A1 := L(T−n1

1 S1γ̃1) ∪ (R(γ̃1) ∩R(γ̃2) ∩R(φ)) contains φ1 and A2 :=
R(T−n2

2 S−1
2 γ̃2) ∪ (L(γ̃1) ∩ L(γ̃2) ∩R(φ)) contains φ2. The sets A1 and A2 are disjoint, are both

connected, are both contained in R(φ), and the points on φ that are on the boundary of A1

lie above the points of φ that lie on the boundary of A2. It follows that φ1 is above φ2 relative
to φ. �

Corollary 3.3. Let γ̃1 and γ̃2 be two lifts of γ such that γ̃±1 separate γ̃±2 on S∞. Then γ̃1 and

γ̃2 intersect F̃-transversally. In particular, Γ has at least one F-transverse self-intersection.
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Proof. The first statement follows directly from Lemma 3.2 and the definition of an F̃-transverse
intersection. Since Γ lies in a non-simple free homotopy class, there are at least two such lifts γ̃1

and γ̃2 of γ. �
We also note the following result.

Lemma 3.4. If two lifts γ̃1 and γ̃2 of γ intersect F̃-transversally, then γ̃±1 separate γ̃±2 in S∞.

Proof. Let γ̃1 and γ̃2 two lifts that intersect F̃-transversally. Since Γ has a closed geodesic
representative and since the boundary at infinity S∞ of ( ˜dom(F), g̃hyp) can be identified with
equivalence classes of geodesic rays, where two geodesic rays are equivalent if and only if they
stay at finite distance from each other, it suffices to show that d̃(γ̃1(t), γ̃2(t)) → +∞ as t→ ±∞,

where d̃ is the metric on ˜dom(F) induced by the Poincaré metric g̃hyp. But this follows directly
from the proof of Lemma 3.1 by considering in that proof the hyperbolic metric ghyp as a metric
on dom(F). �

We proceed with a few further observations.

Lemma 3.5. There are two lifts γ̃1 and γ̃2 of γ such that

• γ̃1 and γ̃2 intersect F̃-transversally and positively,
• there are no lifts γ̃ of γ that intersect both γ̃1 and γ̃2 F̃-transversally and positively, and
• there are no lifts γ̃ of γ that intersect both γ̃1 and γ̃2 F̃-transversally and negatively.

Remark 3.6. Note that if γ̃1 and γ̃2 satisfy the properties stated in the lemma, then so do Uγ̃1

and Uγ̃2 for any deck transformation U on ˜dom(F), as well as γ̃1 and T1γ̃2, where T1 is the shift
for γ̃1.

Proof of Lemma 3.5. Recall that two lifts are translates of each other if their shifts coincide. In
this proof we denote by [γ̃] the equivalence class of a lift γ̃ with respect to this equivalence rela-
tion. Consider in the following all pairs ([γ̃], [γ̃′]), where γ̃ and γ̃′ are lifts of γ that intersect
F̃-transversally and positively. For each pair p = ([γ̃], [γ̃′]) consider the (well-defined) arcs
C(p) := (γ̃+, γ̃′−) and D(p) := (γ̃−, γ̃′+) in S∞ (see Figure 4). We say p1 = ([γ̃1], [γ̃′1]) ≤ p2 =
([γ̃2], [γ̃′2]) if C(p2) ⊂ C(p1) and D(p2) ⊂ D(p1). ‘≤’ defines a partial order on the set of pairs as
above.

For a given pair p = ([γ̃], [γ̃′]) as above there are only finitely many equivalence classes [γ̃∗]
such that for a representative γ̃∗,

γ̃+
∗ ∈ C(p) and γ̃−∗ ∈ D(p), (3)

as well as finitely many classes [γ̃∗] such that for a representative γ̃∗,

γ̃−∗ ∈ C(p) and γ̃+
∗ ∈ D(p). (4)

Indeed, note that if γ̃∗ satisfies (3) or (4), then it intersects γ̃ and γ̃′. Also, the group of deck
transformations act freely and cocompactly, so there are only finitely many deck transformations
U such that Uγ̃|[0,1] ∩ γ̃|[0,1] �= ∅. Hence, for every lift γ̃∗ with γ̃∗ ∩ γ̃ �= ∅, there exist r∗, r ∈ Z
such that T rUγ̃ = T r∗∗ γ̃∗, for one of the finitely many deck transformations U from above, where
T and T∗ denote the shift for γ̃, and γ̃∗, respectively. In particular, [γ̃∗] = [T rUγ̃]. Assume
(Uγ̃)+ ∈ (γ̃+, γ̃−). Then, for all n ∈ Z, the lift TnUγ̃ does not satisfy (4). Furthermore, note
that T restricted to S∞ has exactly two fixed points, one repelling fixed point, γ̃−, and one
attracting fixed point, γ̃+. Hence there is r < s such that no representative of [TnUγ̃] satisfies (3)
for n /∈ [r, s]. Similarly, if (Uγ̃)+ ∈ (γ̃−, γ̃+), then there is r < s such that no representative of
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Figure 4. Lifts in the proof of Lemma 3.5. For each pair ([γ̃], [γ̃′]), there are only finitely many
[γ̃∗] such that γ̃+∗ ∈ C([γ̃], [γ̃′]) and γ̃−∗ ∈ D([γ̃], [γ̃′]).

[TnUγ̃] satisfies (3) or (4) for n /∈ [r, s]. Hence, there are only finitely many equivalence classes
[γ̃∗] such that its representatives satisfy (3) or (4).

We conclude that for every pair p there are only finitely many pairs that are greater than
or equal to p and so there exist maximal elements. Let γ̃1 and γ̃2 be lifts of γ such that p0 :=
([γ̃1], [γ̃2]) is maximal with respect to ‘≤’. In particular, there is no γ̃∗ that satisfies (3) or (4)
for p0, which means, using Lemma 3.4, that the properties stated in the lemma hold for the lifts
γ̃1 and γ̃2. �

We get the following consequence of Lemma 3.5.

Lemma 3.7. There are t, t ∈ [0, 1) with Γ(t) = Γ(t) such that there exist two lifts γ̃1 and γ̃2 of

Γ to ˜dom(F) that intersect F̃-transversally and positively in γ̃1(t) = γ̃2(t), and such that

(1) if two lifts γ̃ and γ̃′ intersect F̃-transversally and positively, then γ̃ does not intersect the
leaves φγ̃′(t+k), for all k ∈ Z; and

(2) if two lifts γ̃ and γ̃′ intersect F̃-transversally and negatively, then γ̃ does not intersect the
leaves φγ̃′(t+k), for all k ∈ Z.

Proof. Let γ̃1 and γ̃2 be two lifts of γ that satisfy the properties in Lemma 3.5; in particular, γ̃1

and γ̃2 intersect F̃-transversally and positively in γ̃1(t) = γ̃2(t) for some t, t ∈ R. By Remark 3.6
we can choose γ̃1 and γ̃2 such that also t, t ∈ [0, 1). Furthermore, by the same remark the prop-
erties of Lemma 3.5 are satisfied for γ̃1 and γ̃k,2 := T k

1 γ̃2, for any k ∈ Z, where T1 is the shift
for γ̃1. Note that γ̃1 and γ̃k,2 intersect F̃-transversally in γ̃1(t+ k) = γ̃k,2(t). Analogously, for all
k ∈ Z, the properties of Lemma 3.5 hold for γ̃k,1 = T k

2 γ̃1 and γ̃2, where T2 is the shift for γ̃2.
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We now prove (1); the proof of (2) is analogous. So let γ̃ and γ̃′ be two lifts of γ that intersect
F̃-transversally and positively. Let U be the deck transformation such that Uγ̃′ = γ̃1. Then,
for all k ∈ Z, γ̃′ = U−1γ̃1 and U−1γ̃k,2 satisfy the properties of Lemma 3.5, and they intersect
F̃-transversally and positively in γ̃′(t+ k). Assume that γ̃ intersects the leaf φγ̃′(t+k) for some
k ∈ Z. Then γ̃ and γ̃′ also intersect F-transversally and positively at φγ̃′(t+k). By the transitivity
property (see Remark 2.1), γ̃ intersects U−1γ̃k,2 F̃-transversally and positively, which contradicts
the properties of Lemma 3.5 for the lifts γ̃′ and U−1γ̃k,2. �

Lemma 3.8. Let a0, a1, b0, b1 ∈ R with a0 < b0 and a1 < b1. Let γ̃0, γ̃1 be two lifts of γ which
are not translates of each other and such that γ̃0|[a0,b0] is equivalent to γ̃1|[a1,b1]. Then

(1) max{b0 − a0, b1 − a1} ≤ 1 if γ̃0 and γ̃1 intersect F̃-transversally,
(2) min{b0 − a0, b1 − a1} > max{�b0 − a0�, �b1 − a1�} − 2,
(3) max{b0 − a0, b1 − a1} < 6.

Proof. Part (1) follows directly from Lemma 3.7.
For (2) it is sufficient by symmetry to show that b0 − a0 > �b1 − a1� − 2, and to show this,

we may assume b1 − a1 ≥ 3. Denote by T0 (respectively, T1) the shift for γ̃0 (respectively, γ̃1),
and let S be the deck transformation with Sγ̃0 = γ̃1. Choose t ∈ [0, 1) according to Lemma 3.7.
Let k < l ∈ Z with a1 ≤ t+ k < a1 + 1, and b1 − 1 < t+ l ≤ b1. Any lift γ̃ that intersects γ̃1

F̃-transversally and positively in γ̃(t) = γ̃1(t1) for some t ∈ R and t1 ∈ (t+ k, t+ l), already
intersects γ̃1|[t+k,t+l] F̃-transversally and positively by Lemma 3.7, and hence also γ̃0|[a0,b0] F̃-
transversally and positively in γ̃(t′) = γ̃0(t0) for some t′ ∈ R and t0 ∈ (a0, b0). The latter holds
since a subpath of γ̃0|[a0,b0] is equivalent to γ̃1|[t+k,t+l]. There are finitely many (pairwise non-
identical) images {γ̃(t) | t ∈ R} of such lifts γ̃, say M many. By Lemma 3.7, we can choose N
lifts γ̃1, . . . , γ̃N of γ with pairwise non-identical image such that γ̃i and γ̃0|[t,t+1] intersect F̃-
transversally and positively, and such that the image of a lift γ̃ for which γ̃ and γ̃0 intersect
F̃-transversally and positively is of the form

{Tm
0 γ̃

i(t) | t ∈ R}, for some 1 ≤ i ≤ N, m ∈ Z.

The same holds for γ̃1 instead of γ̃0 with γ̃1, . . . , γ̃N replaced by Sγ̃1, . . . , Sγ̃N , and hence M =
(l − k)N . Choose, for i = 1, . . . , N , real numbers si and ti with 0 < si < ti < 1 such that a
subpath of γ̃i is equivalent to γ̃0|(t+si,t+ti). The interval [a0, b0] contains at most �b0 − a0�N
many intervals of the form (t+m+ si, t+m+ ti) with 1 ≤ i ≤ N , m ∈ Z. This means that
(l − k)N = M ≤ �b0 − a0�N , and hence b0 − a0 > l − k − 1. On the other hand, the non-negative
integer �b1 − a1� − (l − k) = �b1 − a1 − (l − k)� = �(b1 − l) + (k − a1)� is strictly smaller than 2.
Hence,

b0 − a0 > l − k − 1 ≥ �b1 − a1� − 2.

To show (3), we argue by contradiction. So assume the contrary, and, without loss of gener-
ality, that b1 − a1 ≥ 6. By (1), we can assume that γ̃0 and γ̃1 do not intersect F̃-transversally.
By (2), b0 − a0 > 4. Consider γ̃2 := T0γ̃1 (see Figure 5). The path γ̃2|[a1,b1] is equivalent to
γ̃0|[a0+1,b0+1]. Let c1 ∈ (a1, b1) be the parameter such that γ̃2|[a1,c1] is equivalent to γ̃0|[a0+1,b0]. So,
again by (2), c1 − a1 > �b0 − (a0 + 1)� − 2 ≥ 1. On the other hand, γ̃2|[a1,c1], which is equivalent
to γ̃0|[a0+1,b0], is by assumption equivalent to a subpath of γ̃1|[a1,b1]. Note now that γ̃2 intersects
γ̃1 F̃-transversally. Indeed, since γ̃1 and γ̃0 are not translates of each other, the attracting fixed
point of T0 in S∞ is disjoint from γ̃+

1 . It follows that either γ̃±2 = (T0γ̃1)± separate γ̃±1 , or these
limit points have one of the following four orders on S∞: (a) γ̃−1 , γ̃

+
1 , γ̃

+
2 , γ̃

−
2 ; (b) γ̃+

1 , γ̃
−
1 , γ̃

−
2 , γ̃

+
2 ;
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Figure 5. Lifts and leaves in the proof of Lemma 3.8(3).

(c) γ̃−1 , γ̃
+
1 , γ̃

−
2 , γ̃

+
2 ; (d) γ̃+

1 , γ̃
−
1 , γ̃

+
2 , γ̃

−
2 . Since the asymptotics of γ̃0 and γ̃1 do not separate in S∞,

T0 turns γ̃−1 and γ̃+
1 to the same direction on S∞ and so (a) and (b) can be excluded. Since there

are leaves of F̃ that intersect both γ̃1 and γ̃2, (c) and (d) can be excluded. Hence γ̃±2 separate
γ̃±1 and by Corollary 3.3, γ̃1 and γ̃2 intersect F̃-transversally. By (1), c1 − a1 ≤ 1, and we obtain
a contradiction. �

We end this section with the following two lemmas about the existence of a convenient choice
of loops equivalent to Γ.

Lemma 3.9. Let Γ be any F-transverse loop and assume that [Γ]π̂(dom(F)) = mα, where α
is a primitive free homotopy class and m > 1. Then there is an F-transverse loop Γ′ with
[Γ′]π̂(dom(F)) = α such that Γ is equivalent to (Γ′)m.

Lemma 3.10. Let Γ be an F-transverse loop such that [Γ]π̂(dom(F)) ∈ π̂(dom(F)) is primitive,
and let k := sidom(F)([Γ]). Then, up to a modification of Γ in its equivalence class, there are
pairwise distinct points x1, . . . , xk ∈ dom(F), pairwise distinct parameters t1, . . . , tk, t

′
1, . . . , t

′
k ∈

[0, 1) with ti < t′i, for i ∈ {1, . . . , k}, and lifts γ̃1, . . . , γ̃k of Γ, pairwise not translates of each

other, such that, for all i ∈ {1, . . . , k}, xi = Γ(ti) = Γ(t′i) and γ̃ and γ̃i intersect F̃-transversally
(positively or negatively) in γ̃(ti) = γ̃i(t′i).

Proof of Lemma 3.9. Let γ̃ be a lift of Γ and T the shift for γ̃. There is a deck transformation S on
˜dom(F) such that Sm = T and such that after identifying S with an element in the fundamental

group of dom(F), its projection to π̂(dom(F)) is α. Consider the lifts Skγ̃ of Γ for k = 0, 1, . . . .
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We first show that these lifts are all pairwise equivalent in ˜dom(F). To this end it suffices to
show that Sγ̃ is equivalent to γ̃. Note that Skγ̃ intersects γ̃ for all k ∈ N, otherwise, for some
k ∈ N, Skγ̃ is completely on the left or completely on the right of γ̃, and by induction this
will hold for Skmγ̃ = T kγ̃ = γ̃, a contradiction. Let s, t ∈ R such that Sγ̃(s) = γ̃(t). Note that
for every k ∈ N, we have Sγ̃(s+ k) = ST kγ̃(s) = T kSγ̃(s) = T kγ̃(t) = γ̃(t+ k), so in fact, Sγ̃
and γ̃ intersect infinitely many times. This implies that for any k ∈ N, the paths Sγ̃|[s+k,s+k+1]

and γ̃|[t+k,t+k+1] are equivalent, otherwise there would be a leaf φ that meets one of these
F̃-transverse paths twice, which is impossible since F̃ is non-singular. Therefore, the lifts Sγ̃
and γ̃ are equivalent.

Let Z ⊂ ˜dom(F) be the union of the images of the lifts Skγ̃, k = 0, . . . ,m− 1. For each t,
consider the unique point x ∈ Z with the property that

• x ∈ φγ̃(t), and
• there is no y ∈ Z, y �= x such that y ∈ φ+

x .

Since Skγ̃, k = 0, . . . ,m− 1 are pairwise equivalent, it is easy to see that this map defines a
transverse line t �→ γ̃′(t) in ˜dom(F), equivalent to γ̃. The deck transformation S leaves the

image of Z =
⋃m−1

k=0 S
kγ̃ in ˜dom(F) invariant. Since S is orientation-preserving, and preserves Z

and the foliation F̃ , γ̃′ is also invariant under S. Hence, γ̃′ is a lift of a loop Γ′ on dom(F) with
the desired properties. The proof of the lemma is complete. �

Proof of Lemma 3.10. By perturbing Γ in its equivalence class we may assume that for any
x̃ ∈ ˜dom(F) there are at most two lifts γ̃ of Γ that intersect in x̃. Let Λ : S1 → (dom(F), ghyp)
be a closed geodesic that is freely homotopic to Γ. We have si(Λ) = sidom(F)([Γ]) = k. Let λ̃ : R→
˜dom(F) be a lift of Λ, and T the shift for λ̃. Since Λ is a primitive closed geodesic in a hyperbolic

surface, we have lifts λ̃1, . . . , λ̃k with λ̃+
i ∈ (λ̃+, λ̃−) ⊂ S∞ and λ̃−i ∈ (λ̃−, λ̃+) ⊂ S∞ such that for

every l ∈ Z and i �= j, T lλ̃i and λ̃j are not translates of each other. Lifting a free homotopy from

Λ to Γ to homotopies of the universal cover ˜dom(F) that extend λ̃1, . . . , λ̃k respectively, we
obtain lifts γ̃′1, . . . , γ̃′k, with the same properties. By applying multiples of the shifts T ′

1, . . . , T
′
k

for γ̃′1, . . . , γ̃′k respectively, and applying multiples of T to them, we may additionally assume that
γ̃′i|[0,1) and γ̃|[0,1) intersect, for each i ∈ {1, . . . , k}. Choose si, s

′
i ∈ R with γ̃(si) = γ̃′i(s

′
i). Then

let Si, i ∈ {1, . . . , k}, be the deck transformation with Siγ̃ = γ̃′i. With the following choice of lifts
γ̃1, . . . , γ̃k of γ and the parameters t1, . . . , tn, t′1 . . . , t′n, the properties of the lemma are satisfied.
If si < s′i set γ̃i := γ̃′i, and ti := si, t′i := s′i. If si > s′i, set γ̃i := S−1

i γ̃, and ti := s′i, t
′
i := si. �

4. Geometric self-intersections, growth of periodic points and entropy

In this section let M be an oriented closed surface, f : M →M a homeomorphism isotopic to
the identity, I a maximal identity isotopy for f , and F an oriented foliation transverse to I. As
in the introduction, denote by Nper(f, n) the number of n-periodic points of f of period at most
n, let Per∞(f) := lim supn→+∞ log(Nper(f, n))/n, and let htop(f) denote the topological entropy
of f . Let Γ be an F-transverse loop that is not freely homotopic to a multiple of a simple loop
in dom(I), say [Γ]π̂(dom(I)) = mα, where α is a non-simple primitive class in dom(I) and m ∈ N.
In this section we prove the following propositions.
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Proposition 4.1. If Γ is linearly admissible of order q, then

Per∞(f) ≥ m

q
max
{

log(sidom(I)(α) + 1)
16

,
log 2

2

}
. (5)

Proposition 4.2. If Γ is linearly admissible of order q, then

htop(f) ≥ m

q
max
{

log(sidom(I)(α) + 1)
16

,
log 2

2

}
. (6)

Remark 4.3. Note that the lower bound m log(2)/2q on the topological entropy of f is larger
than the bound obtained in Proposition 38 in [LeCT18] and the bound obtained in Theorem N
in [LeCT22].

Theorem 1.1 follows from Propositions 4.1 and 4.2.

Proof of Theorem 1.1. If x is a q-periodic point of f then Iq(x) is homotopic with fixed endpoints
to an F-transverse loop Γ in dom(I). By assumption, [Γ]π̂(dom(I)) = mα. The natural lift γ of Γ
satisfies that γ|[0,k] is admissible of order kq, for every k ∈ N. In particular, Γ is linearly admis-
sible of order q. Hence, the lower bounds on Per∞(f) and htop(f) follow from Propositions 4.1
and 4.2. �

Before we proceed with the proofs of Propositions 4.1 and 4.2, we give a proof of Theorem 1.2.

Proof of Theorem 1.2. Let x be a periodic point of class α. For any identity isotopy I for f there
is by [BCLR20, Corollary 1.3] a maximal identity isotopy Î for f such that Fix(I) ⊂ Fix(Î) and
such that the loop Î(y) is homotopic to I(y) in dom(I) for any y ∈ dom(I) ∩ Fix(f). In particular,
[Î(x)] = α in π̂(M) and so Î(x) defines a free homotopy class α̂ of loops in dom(Î) whose
pushforward by the inclusion dom(Î) ↪→M is α. The class α̂ is primitive and siM (α̂) ≥ siM (α).
So the statement follows from Theorem 1.1. �

The main steps in the proofs of Propositions 4.1 and 4.2 are adaptions of the main steps in
the proofs of Propositions 31 and 38 in [LeCT18]. The notation and arguments are kept close to
those in the corresponding proofs in [LeCT18].

Proof of Proposition 4.1. By modifying Γ in its equivalence class if necessary we may assume by
Lemma 3.9 that there exist an F-transverse loop Γ′, primitive in dom(I), and m ∈ N such that
Γ = (Γ′)m. We first give the proof of Proposition 4.1 for m = 1 (i.e. Γ = Γ′). It will be easy to
adapt that proof for m > 1. Let k = sidom(I)([Γ]), and fix a lift γ̃ of the natural lift γ of Γ. By
Lemma 3.10 there are, after modifying Γ further in its equivalence class, pairwise distinct points
x1, . . . , xk ∈ dom(F), pairwise distinct parameters t1, . . . , tk, t′1, . . . , t′k ∈ [0, 1) with ti < t′i, and
lifts γ̃1, . . . , γ̃k of Γ, pairwise not translates of each other, such that, for all i = 1, . . . , k, xi =
Γ(ti) = Γ(t′i) and γ̃ and γ̃i intersect F̃-transversally (positively or negatively) in γ̃(ti) = γ̃i(t′i).

By Lemma 3.7 there are x ∈ {x1, . . . , xk} and t, t ∈ [0, 1) with x = Γ(t) = Γ(t), such that for
any lifts γ̃′ and γ̃′′ of Γ that intersect F-transversally and positively, (respectively, negatively),
γ̃′ does not intersect the leaves φγ̃′′(t+k), (respectively, φγ̃′′(t+k)), for all k ∈ Z. We may assume
that x = x1 (i.e. {t1, t′1} = {t, t}). For each i ∈ {1, . . . , k} and l ∈ N let γi,l be the transverse
path γ[0,ti]γ[t′i,l] in dom(F). Furthermore, let γ0,l := γ[0,l]. Let n ≥ 1. For any ρ = (ρ1, . . . , ρn)
with ρi ∈ {0, . . . , k}, and l ≥ 1, consider the path γρ,l := γρ1,lγρ2,l · · · γρn,l. This path defines a
transverse loop Γρ,l.
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Claim 1.

(1) For each ρ = (ρ1, . . . , ρn) with ρi ∈ {0, . . . , k}, i = 1, . . . , n and l ≥ 2, Γρ,l is linearly
admissible of order lnq.

(2) For each ρ = (ρ1, . . . , ρn) with ρi ∈ {0, 1}, i = 1, . . . , n, Γρ,1 is linearly admissible of
order nq.

Proof. Let l ≥ 1. Let ρ = (ρ1, . . . , ρn), with ρi ∈ {0, . . . , k} if l ≥ 2 and ρi ∈ {0, 1} if l = 1.
Consider the paths γ|[0,l(pn+1)], p ∈ N. Since Γ is linearly admissible of order q, there is a sequence
sp = sp(n, l), p ∈ N, with sp → +∞, lim supp→∞(lpn)/sp ≥ 1/q, and such that γ|[0,l(pn+1)] is
admissible of order at most sp. Now fix p ∈ N and let γ̂ := γ|[0,l](γρ,l)p. We will show that γ̂ is
admissible of order at most sp. From this, it follows that the same holds for (γρ,l)p. So, since p
was arbitrary, the claim follows.

Let ρ̂ = (ρ̂1, . . . , ρ̂pn) = (ρ1, . . . , ρn, ρ1, . . . , ρn, ρ1, . . . , . . . , ρn) be the pn-tuple that is built
from p repetitions of ρ. Consider the transverse paths γ̂j , j ∈ {0, . . . , pn} given by γ̂0 :=
γ|[0,l]γ|[0,lpn], γ̂j := γ|[0,l]γρ̂1,l · · · γρ̂j ,lγ|[lj,lpn], for j ∈ {1, . . . , pn− 1}, and γ̂pn := γ̂. If j ∈
{0, . . . , np− 1} we will say that γ̂j is reducible if it has an F-transverse self-intersection at
γ|[lj,lpn](lj + tρ̂j+1) = γ|[lj,lpn](lj + t′ρ̂j+1

). For j ∈ {0, . . . , pn} consider the following statement.

(Rj) : The path γ̂j is admissible of order at most sp, and it is reducible if j < pn.

We want to show (Rpn), and we prove it by induction. Note that (R0) holds. Indeed, γ̂0 =
γ|[0,l]γ|[0,lpn] = γ|[0,l(pn+1)] is admissible or order at most sp and γ|[0,l(pn+1)] has an F-transverse
self-intersection at γ(l + tρ̂1) = γ(l + t′ρ̂1

) by assumption. Assume now that (Rj) holds for some
j ∈ {0, . . . , pn− 1}. Applying Proposition 2.4 at γ|[lj,lpn](lj + tρ̂j+1) = γ|[lj,lpn](lj + t′ρ̂j+1

) yields
that γ̂j+1 is admissible of order at most sp. We are left to show that γ̂j+1 is reducible if j ∈
{0, . . . , pn− 2}. So let s1 := l(j + 1) + tρ̂j+2 and s2 := l(j + 1) + t′ρj+2

. Take two lifts τ1 and τ2
of γ̂j+1 that intersect at a lift ỹ of y := γ|[l(j+1),lpn](s1) = γ|[l(j+1),lpn](s2).

For l ≥ 2, consider the subpaths τ1 = τ1|[l(j+1)−1,l(j+1)+2] and τ2 = τ2|[l(j+1)−1,l(j+1)+2] of
τ1 and τ2. It is enough to show that these subpaths intersect F̃-transversally at ỹ. Note
that since l ≥ 2, τ1 and τ2 are themselves subpaths of lifts γ̃1 : R→ ˜dom(F) and γ̃2 : R→
˜dom(F) of γ that intersect F̃-transversally at ỹ. Therefore, since |si − (l(j + 1)− 1)| ≥ 1 and
|si − (l(j + 1) + 2)| ≥ 1 for i = 1, 2, we conclude by Lemma 3.8(1) that τ1 and τ2 intersect
F̃-transversally.

For l = 1, and ρi ∈ {0, 1} for all i ∈ {1, . . . , n}, consider the subpaths τ1 = τ1|[j+t′1,j+1+t′1]

of τ1 and τ2 = τ2|[j+1+t1,j+2+t1], which are also subpaths of lifts γ̃1, γ̃2 of γ that inter-
sect F̃-transversally at ỹ. It follows from Lemma 3.7 that the subpaths τ1 and τ2 intersect
F̃-transversally at τ1|[j+t′1,j+1+t′1](j + 1 + t1) = τ2|[j+1+t1,j+2+t1](j + 1 + t′1), positively if t′1 = t
and negatively if t′1 = t.

In both cases considered above, (Rpn) follows now by induction, that is, γ̂ is admissible of
order at most sp. �

Let z = Γ(0) ∈ dom(F). Choose a lift z̃ of z in ˜dom(F). Let l ≥ 1. For J ⊂ {0, . . . , k} with
0 ∈ J , consider the family of paths γi,l, i ∈ J , where γi,l is defined as above. Set tmin := min{ti, i ∈
J \ {0} } and t′max := max{t′i, i ∈ J \ {0} }. For all i ∈ J , and suitable ai < bi, let γ̃i,l : [ai, bi]→
˜dom(F) be the lift of the path γi,lγ[0,tmin] that starts at z̃. Furthermore, define the paths γ′i,l, i ∈ J ,

by γ′i,l := γ|[0,l−1+ti]γ|[l−1+t′i,l], for i �= 0 and γ′0,l := γ|[0,l], and consider the lifts γ̃′i,l : [a′i, b
′
i]→

˜dom(F) of the paths γ[t′max,1]γ
′
i,l, i ∈ J , that end at z̃. We say that the paths γi,l, i ∈ J , spread
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Figure 6. Some lifts of the loop Γ to ˜dom(F), with t1 < t′1, t2 < t′2 ∈ [0, 1), and Γ(t1) = Γ(t′1),
Γ(t2) = Γ(t′2) in the situation that the family γ0,8, γ1,8, γ2,8 spreads, with 1 ≺ 2 ≺ 0 and 1∗ = 0,
2∗ = 1, 0∗ = 2.

if for all i �= j ∈ J , φγ̃i,l
(bi) is above or below φγ̃j,l

(bj) relative to φz̃, and φγ̃′
i,l

(a′i) is above or
below φγ̃′

j,l
(a′j) relative to φz̃ (see Figure 6). We get two total orders ≺ and ≺∗ on J , by saying

that i ≺ j if φγ̃i,l
(bi) is below φγ̃j,l

(bj) relative to φz̃, and by saying that i ≺∗ j if φγ̃′
i,l

(a′i) is
below φγ̃′

j,l
(a′j) relative to φz̃. For each i ∈ J we define i∗ ∈ J by requiring that #{j ∈ J | j ≺ i}

= #{j ∈ J | i∗ ≺∗ j∗}. Note that if j ≺ i, then i∗ ≺∗ j∗.
A 2n-tuple ρ̂ = (ρ1, . . . , ρ2n) with ρj ∈ J that satisfies ρn+j = ρ∗n−j+1 for all j ∈ {1, . . . , n}

will be called a quasi-palindromic word of length 2n for J . In the following, we will
only consider quasi-palindromic words ρ with ρ1 = 0. For such a quasi-palindromic word ρ
of length 2n for J we consider the lift γ̃ρ = γ̃−ρ γ̃+

ρ of
∏

1≤j≤2n γρj ,l = γ[0,l]

∏
2≤j≤2n γρj ,l =

γ[0,1]

∏
2≤j≤n γ

′
ρj ,lγ[1,l]

∏
n+1≤j≤2n γρj ,l, where γ̃−ρ is the lift of γ[0,1]

∏
2≤j≤n γ

′
ρj ,lγ[1,l] ending at

z̃ and γ̃+
ρ is the lift of

∏
n+1≤j≤2n γρj ,l starting at z̃. Let Tρ be the deck transformation that

sends the starting point of γ̃ρ to its endpoint. Let γ̃∞ρ :=
∏

k∈Z T
k
ρ (γ̃ρ). It is a lift of Γρ,l. We will

also consider the path γ̃2
ρ = γ̃ρTρ(γ̃ρ).

Claim 2. Let l ≥ 1 and let γi,l, i ∈ J , be a family of paths as above that spread. If ρ and ρ′

are two distinct quasi-palindromic words of the same length with ρ1 = ρ′1 = 0, then the paths γ̃ρ

and γ̃ρ′ intersect F̃-transversally at z̃.

Proof. Let ρ �= ρ′ with ρ1 = ρ′1 = 0. Note that then ρ2n = ρ′2n. Hence, there is j ∈ {1, . . . , n− 1}
such that ρn+i = ρ′n+i for 0 < i < j and ρn+j �= ρ′n+j . Assume that ρn+j ≺ ρ′n+j , the other case
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being analogous. This implies that ρ′n−j+1 ≺∗ ρn−j+1. There are lifts of
∏

n+1≤i≤n+j γρi,lγ[0,tmin]

and
∏

n+1≤i≤n+j γρ′i,lγ[0,tmin] with the same starting point z̃, and the leaf through the other
endpoint of the first lift is below the leaf through the other endpoint of the second lift. Since
j < n, these lifts are subpaths of γ̃+

ρ and γ̃+
ρ′ . Dually, there are lifts of γ[t′max,1]

∏
n−j+1≤i≤n γ

′
ρi,l
γ[1,l]

and γ[t′max,1]

∏
n−j+1≤i≤n γ

′
ρ′i,l
γ[1,l] that are subpaths of γ̃−ρ and γ̃−ρ′ with the same second endpoint

z̃, and the leaf through the first endpoint of the first lift is above the first endpoint of the second
lift. The claim follows. �
Claim 3. Let γi,l, i ∈ J , be a family of paths that spread. Then there is a constant L > 0 such
that, for a given quasi-palindromic word ρ of length 2n with ρ1 = 0, there are at most Ln2

different such quasi-palindromic words ρ′ such that Γρ,l and Γρ′,l are equivalent.

Proof. The proof is the same as the proof of Lemma 35 in [LeCT18]. There is a constant L′

such that the number of deck transformations S such that γ̃i,l and S(γ̃j,l) intersect is at most
L′ for all i, j ∈ J . Hence, there are at most 8L′n2 deck transformations S such that γ̃ρ and
S(γ̃2

ρ) have an F̃-transverse intersection. Let ρ and ρ′ be two quasi-palindromic words of length
2n with ρ1 = ρ′1 = 0 such that Γρ,l and Γρ′,l are equivalent. This means that there is a deck
transformation Sρ′ such that the lift γ̃∞ρ′ of Γρ′,l is equivalent to the lift Sρ′ γ̃

∞
ρ of Γρ,l. And, if γ1

and γ2 are subpaths of γ̃∞ρ′ and Sρ′ γ̃
∞
ρ , respectively, that are equivalent, then T1γ1 is equivalent

to T2γ2, where T1 = Tρ′ and T2 = Sρ′TρS
−1
ρ′ are the shifts for those lifts. This means that γ̃ρ is

equivalent to a subpath γ′ of Sρ′ γ̃
∞
ρ for which T2 sends the first endpoint to the second endpoint.

Any such path γ′ is contained in T k
2 Sρ′(γ̃2

ρ) for some k ∈ Z. Hence, by replacing Sρ′ with Sρ′T
k
ρ ,

we can assume that γ̃ρ′ is equivalent to a subpath of Sρ′(γ̃2
ρ). Moreover, if ρ′ �= ρ′′, it follows that

Sρ′ �= Sρ′′ by Claim 2. Also by Claim 2, γ̃ρ and Sρ′(γ̃2
ρ) intersect F̃-transversally. This proves the

claim. �
Claim 4.

(1) The family P1 of paths γi,8, i ∈ {0, 1, . . . , k}, spread.
(2) The pair P2 of paths γ0,1, γ1,1 spread.

Proof. We first show (2). Let γ̃0,1 = γ̃0|[0,1+t1] and γ̃1,1 = γ̃0|[0,t1]γ̃1|[t′1,1+t1] be the lifts of γ0,1γ|[0,t1]

and γ1,1γ|[0,t1], respectively, that start at the point z̃. Here γ̃0 and γ̃1 are suitable lifts of γ. Note
that γ̃0 and γ̃1 have an F̃-transverse intersection. So, by Lemma 3.7 and since {t1, t′1} = {t, t},
we have that φγ̃0(t′1) does not intersect γ̃1,1 and φγ̃1(1+t1) does not intersect γ̃0,1. It is then easy
to see that φγ̃0(1+t1) is above or below φγ̃1(1+t1) relative to φz̃. Similarly, one can see that the leaf
through the starting point of γ̃′0,1 is above or below the leaf through the starting point of γ̃′1,1

relative to φz̃, where these paths lift γ|[t′1,1]γ
′
0,1 and γ|[t′1,1]γ

′
1,1 with a common endpoint.

We now turn to (1). Consider first a pair γ0,8 = γ[0,8] and γi,8 = γ[0,ti]γ|[t′i,8], for some i ∈
{1, . . . , k}. The same argument as in the proof of (2) shows that such a pair of paths spread.
Now let i, j ∈ {1, . . . , k} with i �= j, and consider γi,8 = γ[0,ti]γ|[t′i,8] and γj,8 = γ[0,tj ]γ|[t′j ,8], and
their lifts γ̃i,8 = γ̃|[0,ti]γ̃i|[t′i,8] and γ̃j,8 = γ̃|[0,tj ]γ̃j |[t′j ,8] that start at z̃. Here γ̃, γ̃i, and γ̃j are
suitable lifts of γ. We will show that φγ̃i(8) is below or above φγ̃j(8) relative to φz̃. Since the lifts
γ̃i,8 and γ̃j,8 start at the same point, it is sufficient to show that neither γ̃i,8 is equivalent to a
subpath of γ̃j,8 nor γ̃j,8 is equivalent to a subpath of γ̃i,8. Assume that γ̃i,8 is equivalent to a
subpath of γ̃j,8. Then, in particular, γ̃i|[t′i+1,8] is equivalent to a subpath of γ̃j,8. Since γ̃i and
γ̃ intersect F-transversally in γ̃i(t′i) = γ̃(ti), there is, by Lemma 3.7, t∗ ∈ (t′i, t

′
i + 1) such that

the leaf φγ̃i(t∗) does not intersect γ̃. Moreover, φγ̃i(t∗) separates γ̃i|[t′i+1,8] and γ̃ and therefore
no subpath of γ̃i|[t′i+1,8] is equivalent to a subpath of γ̃|[0,tj ]. Hence, γ̃i|[t′i+1,8] is equivalent to
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a subpath of γ̃j |[t′j ,8]. Since γ̃i and γ̃j are not translates of each other, and 8− (t′i + 1) > 6, we
obtain a contradiction by Lemma 3.8(3). Analogously γ̃j,8 is not equivalent to a subpath of γ̃i,8.
Similarly, one can show, for i, j ∈ {0, . . . , k} with i �= j, that the leaf through the starting point
of γ̃′i,8 is above or below the leaf through the starting point of γ̃′j,8 relative to φz̃, where these
paths are lifts of γ′i,8 and γ′j,8, respectively, with common endpoint at z̃. �

By Claim 3 applied to the family P1 and by Claim 1(1), there is a constant L > 0 such that
for every n there are at least (k + 1)n−1/Ln2 different equivalence classes of linearly admissible
loops of order 16nq, hence, by Proposition 2.6, there are at least (k + 1)n−1/Ln2 many fixed
points of f16nq, and so

Per∞(f) ≥ lim sup
n→+∞

1
16nq

log
(k + 1)n−1

Ln2
= log(k + 1)/16q.

Similarly, by Claim 3 applied to the pair of paths P2, we obtain that Per∞(f) ≥ (log 2)/2q.
The proof is easily adapted to the general case m > 1. As noted above, we can assume that

Γ = (Γ′)m and Γ′ satisfy the properties of Lemma 3.10. We can carry out the proof with Γ′

instead of Γ, where we consider n that are multiples of m. With the proof of Claim 1 one obtains
that the loops Γ′

ρ,l are even linearly admissible of order at most lnq/m. So one obtains at least
(k + 1)n−1/Ln2 different equivalence classes of linearly admissible loops of order 16nq/m, and
also at least 2n−1/Ln2 different equivalence classes of linearly admissible loops of order 2nq/m.
Hence, the lower bound on Per∞(f) claimed in Proposition 4.1 follows as above. �

Proof of Proposition 4.2. As before, we first assume that Γ is primitive in dom(I) (i.e. m = 1).
The proof in [LeCT18] carries over with slight technical changes. Hence, we will indicate these
changes and refer for the full proof to [LeCT18]. The outline of the proof in [LeCT18] can be
described as follows. One considers a pair of paths that spread with some suitable l ≥ 1 and
such that for every quasi-palindromic word ρ of length 2n (in the situation in [LeCT18] it is
also a palindromic word), there is a linearly admissible loop Γρ of order 2lnq. Each such loop
gives rise to a fixed point of f2lnq. Furthermore, there are at least 2n/Ln2 equivalence classes
of such loops Γρ. Consider the one-point compactification dom(I) ∪ {∞} of dom(I) and the
extension f̂ of f |dom(I) that fixes {∞}. For every p ∈ N a family of suitable coverings Vp of
dom(I) ∪ {∞} is constructed (the coverings differ by the size of their neighborhoods at ∞)
such that for each element V =

⋂
0≤k≤2lnq f̂

−k(V k), V k ∈ Vp, of the covering
∨

0≤k≤2lnq f̂
−k(Vp)

there are at most M lnq/p equivalence classes of those loops Γρ that are associated to some
fixed point of f̂2lnq that lies in V . Here M is a suitable constant independent of p. Hence, the
minimal cardinality N2lnq(f̂ ,Vp) of a subcover of

∨
0≤k≤2lnq f

−k(Vp) is at least 2n/(Ln2M lnq/p).
A lower bound on the entropy can then be directly obtained, using the classical definition of
topological entropy. The main idea in the proof is to show that orbits that stay close to ∞
for ‘many’ iterates only contribute to rather ‘few’ non-equivalent paths. See [LeCT18] for the
proof.

One can adapt the proof to other families of paths that spread. We consider the two fam-
ilies P1 = {γ0,8, . . . , γk,8} and P2 = {γ0,1, γ1,1}. We use the same notation as in the proof of
Proposition 4.1 and for a given n ∈ N let Γρ,l =

∏2n
i=1 γρi,l, where ρ = (ρ1, . . . , ρ2n) with ρi ∈

{0, . . . , l}, l = 8 in the case of the family P1, and l = 1 in the case of the family P2. In order
to find the suitable coverings that allow us to make the conclusions above, it is clear from the
proof in [LeCT18] that it is sufficient to check the following condition: there exist a finite family
of paths τ1, . . . , τN , and a transverse loop Γ∗ with natural lift γ∗ such that
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• τi, for any i ∈ {1, . . . , N}, has a leaf on its right and a leaf on its left, and
• if a path σ in dom(I) is equivalent to a subpath of

∏2n
i=1 γρi,l, for some n ∈ N, and there is

no subpath of σ that is equivalent to τi, for some i ∈ {1, . . . , N}, then σ is equivalent to a
subpath of γ∗.

For P1 this condition holds, as one can easily check for the choices τi := γi,8, i ∈ {0, . . . , k},
and Γ∗ :=

∏
1≤i≤k

∏
1≤j≤k τiτj . One then can conclude from Proposition 4.1, considering quasi-

palindromic words ρ with ρ1 = 0 and arguing as in the proof of [LeCT18, Proposition 38], that
there is a constant M1 > 0 and for every p ∈ N a covering Vp

1 such that the cardinality of∨
0≤k≤16nq f

−k(Vp
1 ) is at least (k + 1)n−1/Ln2M

8nq/p
1 . We conclude that

htop(f) ≥ sup
p∈N

htop(f̂ ,Vp
1 ) ≥ sup

p∈N
lim

n→∞
1

16nq
log

(k + 1)n−1

Ln2M
8nq/p
1

= sup
p∈N

{
log(k + 1)

16q
− logM1

2p

}
=

log(k + 1)
16q

, (7)

where htop(f̂ ,U) := lim supn→∞ log(Nn(f̂ ,U))/n for a covering U of dom(I) ∪ {∞}.
In the case of P2 we choose some large u ∈ N and consider only quasi-palindromic words

ρ of length 2n such that ρνu = 0 for all ν ∈ N. Let τ1 := γ2
0,1, τ2 := γ0,1γ1,1, τ3 := γ1,1γ0,1, and

Γ∗ = γ3
0,1γ

u
1,1. The paths τ1, τ2, and τ3 have all a leaf on their right and a leaf on their left, as

can easily be checked. Any path σ that is equivalent to a subpath of
∏

1≤j≤2n γρj ,1 and does not
have a subpath equivalent to some τi, 1 ≤ i ≤ 3, must be equivalent to a subpath of γ0,1, γ2

0,1,
γ3

0,1, γ
2
0,1γ1,1, γ1,1γ

2
0,1, γ0,1γ

s
1,1, γ

s
1,1γ0,1, γs

1,1, 1 ≤ s ≤ u− 1, hence is a subpath of the natural lift
γ∗ of Γ∗. One can conclude that there is a constant M2 > 0 and for every p ∈ N a covering Vp

2

such that the cardinality of
∨

0≤k≤2nq f
−k(Vp

2 ) is at least 2((u−1)/u)(n−1)/Ln2M
nq/p
2 . Hence,

htop(f) ≥ sup
p∈N

htop(f̂ ,Vp
2 ) ≥ sup

p∈N
lim

n→∞
1

2nq
log

2((u−1)/u)(n−1)

Ln2M
nq/p
2

= sup
p∈N

{
u− 1
u

log 2
2q

− logM2

2p

}
=
u− 1
u

log 2
2q

. (8)

But since u can be chosen arbitrarily large, we get that htop(f) ≥ log 2/2q.
The proof for the case m > 1 is again almost identical. From the proof of Proposition 4.1 for

the families P1 or P2 we get, for every quasi-palindromic word ρ of order 2n with ρ1 = 0 and
n ∈ N that is a multiple of m, transverse loops Γρ,l that are linearly admissible of order 2lnq/m.
One then argues as above to get the lower bounds claimed in Proposition 4.2. �

5. Turaev’s cobracket and orbit growth

Goldman’s bracket [Gol86] and Turaev’s cobracket [Tur91] define a Lie bialgebra structure on the
free Z-module of non-trivial free homotopy classes of loops π̂(M)∗ := π̂(M) \ {[∗]} on a surface
M .4 Turaev’s cobracket v : Z[π̂(M)∗] → Z[π̂(M)∗]⊗ Z[π̂(M)∗] applied to a free homotopy class
α gives some information about the free homotopy classes of the loops that split at intersection
points of any representative Γ of α. We adopt the construction of v and refine it to keep additional
information about how these loops relate to Γ in the fundamental group π1(M,Γ(0)). Via this
invariant, we then define an exponential growth rate T∞(α) of α, and prove Theorem 1.3.

4 Similar mappings were investigated earlier in [Tur78].
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Recall that we denote by S(Γ) = {y ∈M | y = Γ(t) = Γ(t′), t �= t′} the set of self-intersection
points of a loop Γ : S1 →M . We say that a smooth loop Γ is in general position if it is an
immersion, has only double intersection points which, moreover, are transverse, and Γ(0) /∈ S(Γ).
We first recall the construction of Turaev’s cobracket. Let α ∈ π̂(M)∗ be a free homotopy class
of loops in M . Choose a smooth representative Γ : [0, 1]→M , Γ(0) = Γ(1) of α that is in general
position. For y ∈ S(Γ), let �v1 and �v2 be the two tangent vectors of Γ at y, labeled such that the
pair �v1, �v2 is positively oriented (see Figure 7). Consider two loops uy

1, u
y
2 that start both at y

in the direction �v1 and �v2, respectively, follow along Γ until their first return to y (see Figures 8
and 9). Set

v(α) :=
∑

y∈S(Γ)

[uy
1]

∗ ⊗ [uy
2]

∗ − [uy
2]

∗ ⊗ [uy
1]

∗ ∈ Z[π̂(M)∗]⊗ Z[π̂(M)∗],

where [u]∗ denotes the free homotopy class of u if u is non-contractible and [u]∗ := 0 otherwise.
One can show that the right-hand side is invariant under free homotopies and hence v is well
defined (see [Tur91]). Extending v linearly to Z[π̂(M)∗], sending the trivial class to 0, defines
Turaev’s cobracket.

To refine this construction, we make the following definitions. Choose a basepoint
x0 ∈M . For g ∈ π1(M,x0), we say that two elements a and a′ in π1(M,x0) are g-equivalent
if there is k ∈ Z with gkag−k = a′. Denote by π1(M,x0)∗ = π1(M,x0) \ {1} the set of non-
trivial elements of π1(M,x0), and by π1(M,x0)∗g the set of g-equivalence classes in π1(M,x0)∗.
Let Z[π1(M,x0)∗g] be the free Z-module over π1(M,x0)∗g. We view the disjoint union
H :=

⋃
g∈π1(M,x0) Z[π1(M,x0)∗g]⊗ Z[π1(M,x0)∗g] as a bundle p : H → π1(M,x0) over π1(M,x0)

with fiber p−1(g) = Z[π1(M,x0)∗g]⊗ Z[π1(M,x0)∗g]. We define a section μ : π1(M,x0) → H
as follows. Let Γ with Γ(0) = Γ(1) = x0 be any smooth loop in general position that
represents g. For each y ∈ S(Γ) let v1, v2, u

y
1, u

y
2 be as above, and additionally consider two

paths qy
1 , q

y
2 that both start at Γ(0), follow Γ in positive direction, and end at y such that the

following holds: qy
1 ends at y as soon as it reaches y the first time for which its tangent vector

coincides with v2, and qy
2 ends at y as soon as it reaches y the first time for which its tangent

vector coincides with v1 (see Figures 10 and 11). Let ay
i = 〈qy

i u
y
i q

y
i 〉 ∈ π1(M,x0), i = 1, 2, be

the element represented by the loop qy
i u

y
i q

y
i , where qy

i is the reverse path of qy
i (see Figures 12

and 13). One checks that

[ay
2]g = [(ay

1)
−1g]g, [ay

1]g = [g(ay
2)

−1]g. (9)

Define

μ(g) :=
∑

y∈S(Γ)

[ay
1]

∗
g ⊗ [ay

2]
∗
g − [ay

2]
∗
g ⊗ [ay

1]
∗
g ∈ H, (10)

where [a]∗g denotes the g-equivalence class of a if a �= 1 and [1]∗g := 0.
We now show that μ is well defined, and respects conjugation in the following sense. Let

g ∈ π1(M,x0). Conjugation by h ∈ π1(M,x0) defines a map φg
h : π1(M,x0)∗g → π1(M,x0)∗hgh−1 ,

[a]g �→ [hah−1]hgh−1 . By extending linearly to Z[π1(M,x0)g]∗ and taking tensor products, we
obtain mappings φh =

⋃
g∈π1(M,x0) φ

g
h ⊗ φ

g
h : H → H.

Lemma 5.1. The map μ is well defined and μ(hgh−1) = φh(μ(g)) for all h, g ∈ π1(M,x0).

Proof. In the space of C∞ loops C∞(S1,M), we denote the set of loops in general position by Ω
and denote by Ω∗ the space of loops that satisfy the properties of being in general position except
at one exceptional point y = Γ(t0), where exactly one of the following occurs: (1) the differential
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Figure 7. A self-intersecting loop Γ.

Figure 8. uy
1. Figure 9. uy

2. Figure 10. qy
1 .

Figure 11. qy
2 . Figure 12. A loop representing ay

1. Figure 13. A loop representing ay
2.

(d/dt)Γ(t0) vanishes and (d2/dt2)Γ(t0) �= 0; (2) there is a self-tangency at y; (3) there is a triple
intersection at y; (4) y = Γ(0) ∈ S(Γ).

Let g and g′ be two elements in π1(M,x0), and Γ,Γ′ be generic free loops in Ω with Γ(0) =
Γ′(0) = x0, representing g and g′, respectively. A generic path of loops Γs, s ∈ [0, 1], from Γ to Γ′

lies in Ω ∪ Ω∗ and intersects Ω∗ transversally for finitely many parameter values A ⊂ (0, 1) (see
[Gol86, pp. 291–294]). According to which of the cases (1)–(4) occurs for some s∗ ∈ A, we have
that near s∗ the homotopy Γs behaves like one of the following elementary moves: (1) birth–death
of a monogon; (2) birth–death of a bigon; (3) jumping over an intersection; (4) jumping over
Γs(0). (For (1)–(3) see [Gol86], (4) is illustrated in Figure 14). Write A as a disjoint union
A = A1 ∪A2 ∪A3 ∪A4 such that s∗ ∈ Ai if and only if situation (i), for i ∈ {1, 2, 3, 4}, occurs
near s∗.

Consider the s-family of paths bs(t), s ∈ [0, 1], with b0(t) ≡ x0 and bs(t) = Γts(0), which all
start at x0 and end at Γs(0). For each s ∈ [0, 1], and each ys ∈ S(Γs) that is not an excep-
tional point, consider paths qys

1 and qys
2 as in the definition of μ for Γs, from Γs(0) to ys, and

parametrized proportional to Γs. Similarly define uys

i , i = 1, 2. Consider for any s ∈ [0, 1] \A the
loops pys

i = bsq
ys

i u
ys

i q
ys

i bs and the following element in Z[π1(M,x0)∗g]⊗ Z[π1(M,x0)∗g]:

ξs :=
∑

ys∈S(Γs)

[〈pys
1 〉]g ⊗ [〈pys

2 〉]g − [〈pys
2 〉]g ⊗ [〈pys

1 〉]g.
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Figure 14. Jumping over Γs(0).

We claim that ξs is constant along the homotopy Γs. To see this, one has to check how ξs is
affected when s crosses some s∗ ∈ A, since outside of A one can choose all the data continuously
in s. The argument that ξs does not change near some s∗ ∈ A1 ∪A2 ∪A3 is similar to the
argument of invariance of Turaev’s cobracket [Tur91], this holds even without taking
g-equivalence classes. We check invariance near some s∗ ∈ A4. For s ∈ [s∗ − ε, s∗ + ε], ε > 0
sufficiently small, let ys be that intersection point of Γs such that ys∗ = Γs∗(0) and ys varies
continuously in s ∈ [s∗ − ε, s∗ + ε]. Let qys

i , u
ys

i , i = 1, 2, be defined as above. Note that either for
i = 1 or i = 2 we have that lims↘s∗ q

ys

i ≡ Γs∗(0) is constant and lims↗s∗ q
ys

i (t) = Γs∗(t), or
vice versa, interchanging s↘ s∗ with s↗ s∗. Assume that lims↘s∗ q

ys
1 ≡ Γs∗(0); the argu-

ment for the other cases is analogous. Clearly 〈bsqys
2 u

ys
2 q

ys
2 bs〉 ∈ π1(M,x0) is constant for

all s ∈ [s∗ − ε, s∗ + ε], since all paths vary continuously in s. Also, lims↘s∗〈bsq
ys
1 u

ys
1 q

ys∗
1 bs〉 =

〈bs∗u
ys∗
1 bs∗〉 =: f ∈ π1(M,x0), and lims↗s∗〈bsq

ys
1 u

ys
1 q

ys∗
1 bs〉 = 〈bs∗Γs∗u

ys∗
1 Γs∗bs∗〉 = gfg−1, since

g = 〈bs∗Γs∗bs∗〉. All other terms of ξs for s ∈ [s∗ − ε, s∗ + ε] correspond to non-exceptional
intersection points if ε is sufficiently small and clearly do not change along s ∈ [s∗ − ε, s∗ + ε].

If in the above discussion we take g′ = g and a homotopy Γs such that Γs(0) stays close to
x0, then the loop b1(t) is contractible, and using ξ1 = ξ2 we see that the definition of μ(g) does
not depend on choosing the loop Γ or Γ′.

If we take g′ = hgh−1 for some h ∈ π1(M,x0), then

μ(g′) =
∑

y∈S(Γ1)

[ay
1]g′ ⊗ [ay

2]g′ − [ay
2]g′ ⊗ [ay

1]g′

=
∑

y∈S(Γ1)

[hh−1ay
1hh

−1]g′ ⊗ [hh−1ay
2hh

−1]g′ − [hh−1ay
2hh

−1]g′ ⊗ [hh−1ay
1hh

−1]g′

= φh(ξ1)

= φh(μ(g)),

where in the third equation we use that the loop b1 represents h−1 as well as the definition of
ξ1, and in the last equation we use that ξs is constant along the homotopy Γs. �

Note that π̂(M) can be identified with the set of conjugacy classes of π1(M,x0). By
Lemma 5.1, μ induces a section μ̂ : π̂(M) → Ĥ, where Ĥ is obtained from H if we mod out
by the action π1(M,x0)×H → H, (h, ξ) �→ φh(ξ), and hence Ĥ is actually a bundle over π̂(M).
Turaev’s cobracket can be recovered from μ̂ by sending (tensors of) g-equivalence classes in Ĥ
to (tensors of) conjugacy classes.
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We will now define the growth rate T∞(α) of α in terms of μ̂(α). Roughly speaking, up to a
modification due to some parametrization issues, T∞(α) is the exponential growth rate in k of the
number of free homotopy classes of loops that can be obtained by following a loop representing
α a total of k times, each time allowing a shortcut at some μ̂(α)-relevant self-intersection point
and imposing that the turning at these points is always to the right or always to the left.

Let S = {s1, . . . , sm} ⊂ π1(M,x0). Denote by B(n, S) the set of elements in π1(M,x0) that
can be written as a product of up to n factors that are elements in S. Let B̂(n, S) be the set
of conjugacy classes of B(n, S), N̂(n, S) := #B̂(n, S) the cardinality of B̂(n, S), and Γ(S) :=
lim supn→∞ log(N̂(n, S))/n <∞. Given g ∈ π1(M,x0) and a set S of g-equivalence classes of
elements in π1(M,x0), we define Γ(S, g) = inf{Γ(S) |S ⊂ π1(M,x0), [S]g = S}, where by [S]g
we denote the set of g-equivalence classes of elements of S ⊂ π1(M,x0).

For a set S = {[a1]g, . . . , [ak]g} of g-equivalence classes and for h ∈ π1(M,x0), denote
h ·S · h−1 := {[ha1h

−1]hgh−1 , . . . , [hakh
−1]hgh−1}. Any h induces in this way a bijection from the

class of finite sets of g-equivalence classes to the class of finite sets of hgh−1-equivalence classes.
Moreover, one can check directly that

Γ(S, g) = Γ(h ·S · h−1, hgh−1), (11)

for all g, h ∈ π1(M,x0).
Now let α ∈ π̂(M). Choose g ∈ π1(M,x0) representing the class [g] = α. The element μ(g) ∈

H can be written as
μ(g) =

∑
a,b∈π1(M,x0)∗g

ka,b

(
a⊗ b

)
, (12)

where ka,b ∈ Z, a, b are g-equivalence classes, and ka,b = −kb,a. Let Comp(μ(g)) be the collection
of terms a⊗ b with ka,b > 0. By (9), a⊗ b �= a′ ⊗ b′ ∈ Comp(μ(g)) implies a �= a′ and b �= b′. Note
that by Lemma 5.1, for any h ∈ π1(M,x0), φ

g
h : π1(M,x0)g → π1(M,x0)hgh−1 defines a bijection

Comp(μ(g)) ∼= Comp(μ(hgh−1)). (13)

Let Comp+(μ(g)) = {a | ∃b : a⊗ b ∈ Comp(μ(g))}, and Comp−(μ(g)) = {b | ∃a : a⊗ b ∈
Comp(μ(g))}. Note that #Comp(μ(g)) = #Comp+(μ(g)) = #Comp−(μ(g)). Consider

Γg := min± min
S

{
Γ(S ∪ [g]g, g)

∣∣S ⊂ Comp±(μ(g)), #S =
⌈

1
2#Comp(μ(g))

⌉}
.

By (11), Γg = Γhgh−1
, for any h ∈ π1(M,x0). Hence, this expression is independent of the choice

of g with [g] = α and we denote it by

T∞(α) := Γg.

We now give a proof of Theorem 1.3.

Proof of Theorem 1.3. We may assume T∞(α) �= 0, and in particular siM (α) �= 0. We consider
a maximal identity isotopy Î of f , and a foliation F transverse to Î, which is possible by
Theorem 2.2. Let Γ be a q-admissible F-transverse path associated to x. Since [Γ]π̂(M) = α is
assumed to be primitive, [Γ]

π̂(dom(Î))
is also primitive. Let x0 = Γ(0) and let g = 〈Γ〉 ∈ π1(M,x0)

be the element that is represented by Γ. Let γ be the natural lift of Γ.

Claim 5. After possibly modifying Γ in its equivalence class, there exist, for any a⊗ b ∈
Comp(μ(g)), an intersection point y = Γ(t) = Γ(t′) with t < t′, and a ∈ π1(M,x0) with [a]g = a,

such that γ|[0,t′]γ|[t,t′]γ|[0,t′] is a representative of a and γ|[0,t]γ|[t′,1]γ|[0,t]γ|[0,t] = γ|[0,t]γ|[t′,1] is a
representative of b, or vice versa. Furthermore, one can choose t and t′ above such that any two
lifts γ̃ and γ̃′ of Γ that intersect in γ̃(t) = γ̃′(t′) intersect F̃-transversally.
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We will prove the claim below. It follows from Claim 5 that for m =
⌈

1
2#Comp(μ(g))

⌉
there

is S = {a1, . . . , am} ⊂ Comp+(μ(g)) or S = {a1, . . . , am} ⊂ Comp−(μ(g)) such that, with the
above choices of corresponding parameters t1, . . . , tm, t′1, . . . , t′m ∈ [0, 1), ti < t′i, and a set S =
{a1, . . . , am} ⊂ π1(M,x0) with [S]g = S, we have that γi := γ|[0,ti]γ|[t′i,1] represents the element
ai, and any two lifts γ̃ and γ̃′ of Γ that intersect in γ̃(ti) = γ̃′(t′i) intersect F-transversally, for
all i = 1, . . . ,m.

Set γ0 := γ|[0,1]. With notation similar to that in the proof of Proposition 4.1 for ρ =
(ρ1, . . . , ρn) with ρi ∈ {0, 1, . . . , k}, consider the path γρ := γρ1γρ2 · · · γρn . The path defines a
transverse loop Γρ. As in the proof of Claim 1 of the proof of Proposition 4.1, one shows that
for any ρ = (ρ1, . . . , ρn) with ρi ∈ {0, . . . , k}, i = 1, . . . , n, Γρ is linearly admissible of order nq:
the fact that, for any p ∈ N, γ̂ := γ[0,1]γ

p
ρ is admissible of order pnq follows from Proposition 2.5,

since by assumption S ⊂ Comp+(μ(g)) or S ⊂ Comp−(μ(g)), and so all relevant F-transverse
self-intersections have the same sign.

Consider the set of free homotopy classes that are defined by Γρ for all ρ = (ρ1, . . . , ρn) with
ρ1 = ρ2 = ρ3 = 0. With the notation above, this set coincides with N̂(n− 3, S). It follows from
Lemma 3.8(1) that Γρ has an F-transverse self-intersection and hence, by Proposition 2.6, there
is for each ρ of the above form a periodic point z ∈ dom(F) of period nq such that Γρ is associated
to z, so there are at least N̂(n− 3, S) periodic points of period nq that are of pairwise different
free homotopy classes. Hence,

H∞(f) = lim sup
n→∞

log(Nh(f, nq))
nq

≥ lim sup
n→∞

log(N̂(n− 3, S))
nq

≥ 1
q
Γg =

1
q
T∞(α). �

Proof of Claim 5. Note that by the definition of μ(g), the first part of the claim is immediate
if the loop Γ was smooth. We explain how to construct a smooth, not necessarily F-transverse,
loop Θ with natural lift θ such that, after modifying Γ in its equivalence class,

(1) Θ(0) = Γ(0),
(2) Θ is homotopic to Γ in dom(F) relative to Γ(0), and
(3) for any intersection point Θ(s) = Θ(s′) of Θ, the loops θ|[0,s′]θ|[s,s′]θ|[0,s′] (respectively,

θ|[0,s]θ|[s′,1]) are homotopic relative to Γ(0) to the loops γ|[0,t′]γ|[t,t′]γ|[0,t′] (respectively,
γ|[0,t]γ|[t′,1]) for some intersection point Γ(t) = Γ(t′) of Γ.

It is easy to see that we can assume that Γ has, after possibly modifying it in its equivalence
class, only finitely many self-intersection points y1 = Γ(t1) = Γ(t′1), . . . , yn = Γ(tn) = Γ(t′n), and
that all its self-intersection points are double intersections points and do not coincide with Γ(0).
We still write x0 = Γ(0). Equip dom(F) with any Riemannian metric. Choose pairwise disjoint
open balls Bi ⊂ dom(F), i = 0, 1, . . . , n, such that

• x0 ∈ B0 and yi ∈ Bi, for all i = 1, . . . , n, and
• all Bi are strongly convex, which means that any two points in Bi are connected by a unique

geodesic segment in Bi with its interior contained in Bi.

Let J1, . . . , Jk, k ∈ N, be the connected components of [0, 1] \ {t1, . . . , tn, t′1, . . . , t′n}. Using con-
tinuous charts in which the foliation is vertical, we can easily choose an open neighborhood
U of {x0} ∪ {y1, . . . , yn} with U ⊂

⋃n
i=0Bi and such that the sets Ĵi, i = 1, . . . , k, defined

by Ĵi := Γ−1(dom(F) \ U) ∩ Ji, are precisely the connected components of Γ−1(dom(F) \ U).
Choose, for i = 1, . . . , n, sufficiently small open neighborhoods Vi of Γ(Ĵi) ⊂ dom(F) such that
Vi ∩ (Vj ∪ Γ(Jj)) = ∅ if i �= j. Choose a loop Λ in dom(F) that agrees with Γ on [0, 1] \

⋃k
i=1 Ĵi,

and such that
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• each Γ|
Ĵi

is replaced by a piecewise geodesic path Λ|
Ĵi

in Vi that is homotopic to Γ|
Ĵi

relative
to its endpoints, and

• no path Λ|
Ĵi

has self-intersection points.

That we can find a loop Λ satisfying the first property is clear. It is then not hard to see that
we can modify Λ in the neighborhoods Vi such that both properties are satisfied. Note that Λ|Ji

still might have self-intersection points inside U .
For each i = 0, . . . , n, let (Ij

i )j∈Ji be the (finitely many) connected components of Λ−1(Bi),
except for the two components of the form [0, a] and [b, 1], for which we consider their
union [b, 1] ∪ [0, a] as an element in {(Ij

0)j∈J0}. Choose a smooth loop Θ : [0, 1]→ dom(F)
where

• Θ(0) ∈ B0,
• each Λ|

Ij
i

is replaced by the (suitably reparametrized) geodesic segment in Bi with the same
endpoints (in ∂Bi) as Λ|

Ij
i
,

• there are no self-intersection points of Θ in dom(F) \
⋃n

i=1Bi, and
• the subpaths of Θ and Γ defined on the connected components of Γ−1(dom(F) \

⋃n
i=0Bi) ⊂

[0, 1] are homotopic relative to their endpoints.

Note that there is at most one self-intersection point of Θ in each Bi, i = 1, . . . , n. In
the construction we can choose B0 arbitrarily small and hence, by again modifying Γ in
its F-equivalence class in a neighborhood of x0 and by reparametrizing Θ a little near
Θ(0), we can achieve that Γ(0) = Θ(0). It follows directly from the construction that for
the smooth loop Θ properties (1)–(3) above are satisfied. This implies the first part of the
claim.

By Lemma 3.8, any two lifts γ̃ and γ̃′ = Sγ̃, where S �= T k and T is the shift of γ̃, can
only be F̃-equivalent along a finite interval. In particular, if in addition they do not intersect
F̃-transversally, then γ̃|(B,∞), and γ̃|(−∞,−B) will be on the same side of γ̃′ for B suffi-
ciently large, say on the left of γ̃′. It is now sufficient to show that for any such lifts and
a, b, a′, b′ ∈ R, a < b, a′ < b′, such that γ̃(a) = γ̃′(a′), γ̃(b) = γ̃′(b′), and γ̃|(a,b) lies on the right
of γ̃′, the contributions to μ(α) at the intersection points y = Γ(a) and y′ = Γ(b) cancel each
other out. So take such a, b, a′, b′ and γ̃, γ̃′. We may, by interchanging the lifts and translat-
ing if necessary, assume that 0 < a < a′ < 1. We note that b < b′ < b+ 1. Indeed, if b ≥ b′,
then γ̃|[a,b] is equivalent to a subpath of Sγ̃|[a,b], and by iterating this argument and applying
the deck transformations S−k, k ∈ N, we see that in fact S−kγ̃|[a,b] is equivalent to a sub-
path of γ̃[a,b] for all k ∈ N. On the other hand, the pairwise different lifts S−kγ̃ all intersect
γ̃, and since S is not a multiple of T and Γ has only finitely many double self-intersection
points, there is k ∈ N such that a subpath of S−kγ̃ is equivalent to γ̃|J for an interval
J ⊃ [a, b] of length at most 6. This contradicts Lemma 3.8(3). If b′ ≥ b+ 1, then the path
T γ̃|[a,b] = γ̃|[a+1,b+1] is a subpath of γ̃|[a′,b′] and hence equivalent to a subpath of S−1γ̃|[a,b]. There-
fore the lifts (ST )kγ̃|[a,b], k ∈ N, are equivalent to a subpath of γ̃|[a,b]. This leads to a contradiction
as above.

Let k, k′ ∈ Z with k < b < k + 1 and k′ < b′ < k′ + 1. We have that γ̃|[0,a]γ̃
′|[a′,1]γ̃

′|[1,k′+1] is
homotopic relative to its endpoints to γ̃|[0,k]γ̃|[k,b]γ̃

′|[b′,k′+1]. By the construction of μ(g) and by (9)
it is enough to show that [f ]g = [f ′]g, where f ∈ π1(M,x0) is represented by the loop in M that
we obtain by projecting γ̃|[0,a]γ̃

′|[a′,1] to dom(Î) ⊂M , and f ′ is, if (i) b < b′ < k + 1 = k′ + 1,
represented by the loop in M that we obtain by projecting γ̃|[k,b]γ̃

′|[b′,k′+1] to dom(Î) ⊂M ,
and (ii) b < k′ = k + 1 < b′ < b+ 1, represented by the loop in M that we obtain by projecting
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γ̃|[k,b]γ̃′|[k′,b′] to dom(Î) ⊂M . If (i) we get fgk′
= gkf , and if (ii) we get fgk′

= gkf ′g. Hence, in
both cases [f ]g = [f ′]g. �

6. Floer theory and persistence modules prerequisites

6.1 A bit of Floer homology
Let (M2n, ω) be a symplectic manifold, and let H : S1 ×M → R be a smooth function, called
a Hamiltonian function. The function H induces a time-dependent vector field XH : S1 ×M →
TM on M that satisfies

∀t ∈ S1 : ω(·, XHt) = dHt(·),
where XHt : M → TM is the vector field at time t ∈ S1 and Ht : M → R is Ht(·) = H(t, ·). The
flow induced by H, or by XH , is the family of maps ϕt

H : [0, 1]×M →M satisfying

∀t ∈ [0, 1], x ∈M :
d

dt
ϕt

H(x) = XH(t, x).

The time-1 map induced by H is the map ϕH : M →M defined by ϕH = ϕ1
H . We say also that

H generates ϕH . The set of Hamiltonian diffeomorphisms Ham(M,ω) := {ϕH |H : S1 ×M →
R smooth} is given a group structure by composition.

In [Hof90], Hofer defined a remarkable metric dHofer : Ham(M,ω)×Ham(M,ω) → R. This
metric is induced by the Hofer norm || · ||Hofer : Ham(M,ω) → R, which is defined as follows:

||ψ||Hofer = inf
{∫ 1

0
max

M
Ht −min

M
Ht dt

∣∣∣∣H smooth, ϕH = ψ

}
,

where the infimum is taken over all Hamiltonians H which have ψ as the time-1 map of their
Hamiltonian flow.

Recall the setting of Morse theory: a manifold X and a Morse function f : X → R are given.
Morse theory reveals a connection between the homology of sublevel sets {x ∈ X | f(x) < t}t∈R
and critical points of f . Hamiltonian Floer theory is an analogous theory, set in an infinite-
dimensional manifold of loops on a manifold, which is equipped with the action functional
(see [Sal99]).

Let (M2n, ω) be a closed, symplectically aspherical symplectic manifold and let α ∈ π̂(M) be
a free homotopy class of loops in M . Denote by Lα(M) = {x : S1 →M smooth | [x]π̂(M) = α}
the set of all smooth loops in M which represent the class α. Assume that α is symplecti-
cally atoroidal; that is, that for any loop ρ in Lα(M), which is to be thought of as a function
ρ : T2 →M , ∫

T2

ρ∗ω =
∫

T2

ρ∗c1 = 0,

where c1 is the first Chern class of (M,ω) and T2 is the 2-torus.
Note for future reference that if M is a surface of genus g ≥ 2 this condition holds trivially,

since [T2,M ] = 0. Fix a reference loop ηα ∈ Lα(M) and let x ∈ Lα(M). The above condition
means that the quantity

∫
x̄ ω :=

∫
S1×[0,1] x̄

∗ω is well defined and independent of x̄, for a map
x̄ : S1 × [0, 1]→M with x̄|S1×{0} = ηα and x̄|S1×{1} = x.

Let H : S1 ×M → R be a Hamiltonian function on M . The action functional associated to
H, AH : Lα(M) → R, is defined as follows:

AH(x) =
∫ 1

0
H(t, x(t)) dt−

∫
x̄
ω.
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A fixed point z of ϕH shall be called non-degenerate if the differential (ϕH)∗ : TzM → TzM does
not have 1 as an eigenvalue. A Hamiltonian function H : S1 ×M → R and its time-1 map ϕH

shall be called non-degenerate if all fixed points z of ϕH are non-degenerate. A non-degenerate
Hamiltonian diffeomorphism φ has isolated fixed points. The property of non-degeneracy corre-
sponds, in the analogy between Morse and Floer theories, to the function f : X → R being a
Morse function.

Let x ∈ Lα(M). The tangent space to Lα(M) at the point x, TxLα(M), is identified with
the space of vector fields ξ along x, that is, with the space of maps ξ : S1 → TM which are
compositions of x with a section of TM →M . One shows that the differential of AH is

(dAH)x(ξ) =
∫ 1

0
ω(ξ,XH − ẋ(t)) dt.

This formula for the differential of the action implies the following characterization of critical
points of the action functional.

Proposition 6.1 (The least action principle). The critical points of AH are exactly the
1-periodic orbits of the flow generated by the Hamiltonian H.

Endow Lα(M) with an auxiliary Riemannian metric as follows. Choose a loop of ω-compatible
almost complex structures J(t), that is, choose smoothly for each t ∈ S1 a map J(t) : TM → TM
with J(t)2 = − idTM , such that ω(·, J ·) defines a Riemannian metric on M . The inner product
at the point x ∈ Lα(M), 〈·, ·〉x : TxLα(M)× TxLα(M) → R, is defined to be

〈ξ, ζ〉x =
∫ 1

0
ω(ξ(t), J(t)ζ(t)) dt.

Denote

P (M,H)α = {x ∈ Lα(M) |x is a 1-periodic orbit of ϕt
H}.

We wish to grade P (M,H)α; this is done using the Conley–Zehnder index as follows (for a
definition of the Conley–Zehnder index, see [Gut12]). First, if Φ is a path of symplectic matrices
starting with the identity matrix and such that Φ(1) does not have 1 as an eigenvalue, denote
by μCZ(Φ) the Conley–Zehnder index of the path Φ. Fix a trivialization η∗αTM � S1 × (R2n, ω0)
of the symplectic vector bundle η∗αTM . Let x ∈ P (M,H)α. For any annulus w : [0, 1]× S1 →M
connecting ηα to x, w defines a trivialization x∗TM � S1 × (R2n, ω0). Note that the symplectic
atoroidality condition implies that this trivialization does not depend on w. Using the trivializa-
tion of x∗TM , the differential d(ϕt

H)x(0) for t ∈ [0, 1] is a symplectic map of (R2n, ω0). Denote
Ind(x) = n− μCZ({t �→ d(ϕt

H)x(0)}). Note that by non-degeneracy of H, d(ϕ1
H)x(0) does indeed

not have 1 as an eigenvalue.
Let x, y ∈ P (M,H)α with Ind(x) = Ind(y) + 1; denote by M̃(x, y) the space of solutions

u(s, t) : R× S1 →M to the Floer equation,

∂̄H,J(u) = ∂su+ J(t)
(
∂tu−XHt

)
= 0,

which have boundary conditions lims→−∞ u(s, t) = x(t), lims→∞ u(s, t) = y(t). Note that the
loops {u(s, ·) | s ∈ R} for u ∈ M̃(x, y) are gradient descent trajectories on the space Lα(M) with
respect to the auxiliary metric defined above and the action functional AH . The space M̃(x, y)
has an obvious R-action, and one can show that for a generic choice of J , M̃(x, y)/R is a
compact zero-dimensional manifold (i.e. a finite set of points). Denote in that case n(x, y) =
#(M̃/R) mod 2.
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Consider the Floer complex over Z2, filtered by action less than r ∈ R:

CF r
k (M,H)α = SpanZ2

{x ∈ P (M,H)α | Ind(x) = k, AH(x) < r},

and consider the linear map ∂k : CF r
k (M,H)α → CF r

k−1(M,H)α which linearly extends the
following map on {x ∈ P (M,H)α | Ind(x) = k,AH(x) < r}:

x �→
∑

y∈P (M,H)α

Ind(y)=k−1

n(x, y)y.

It can be shown that ∂ : CF r∗ (M,H)α → CF r∗ (M,H)α is a differential, that is, that
∂2 = 0. Here, CF r∗ (M,H)α =

⊕
k CF

r
k (M,H)α denotes the Floer complex in all degrees.

Since (CF r∗ (M,H)α, ∂) defines a chain complex, it has a well-defined homology, the filtered
Hamiltonian Floer homology of action below r in class α, which is denoted by HF r∗ (M,H)α.
One shows that this homology does not depend on the choice of almost complex structure J(t)
and, in addition, sinceM is symplectically aspherical, that it does not depend on the Hamiltonian
H, but only on the time-1 map of its flow. Thus for φ ∈ Ham(M,ω), denote its Hamiltonian Floer
homology in free homotopy class α, filtered with action less than r and over Z2, by HF r∗ (φ)α.

6.2 Persistence modules and barcodes
We begin this subsection by defining a persistence module. For more background on the
definitions and theorems appearing in this subsection, see [PRSZ20].

Definition 6.2. Let F be a field. A persistence module is a pair (V, π) where V = (Vt)t∈R is
a family of finite-dimensional F-vector spaces and π = (πs,r)s,r∈R,s≤r is a family of linear maps
πs,r : Vs → Vr such that the following conditions hold.

• For all r ≤ s ≤ t, πs,t ◦ πr,s = πr,t.
• There exists a finite set Spec(V, π) ⊂ R, such that for any t �∈ Spec(V, π) there exists a

neighborhood U of t such that for all r, s ∈ U , with r ≤ s, πr,s is an isomorphism.
• For any t ∈ R there exists ε such that for all t− ε < s ≤ t, πs,t is an isomorphism.
• There exists s− ∈ R such that, for all s < s−, Vs = 0.

We present a few examples of persistence modules.

• Let F be a field, and let I ⊂ R be an interval of the form (a, b] with a ∈ R, a < b ∈ R ∪ {∞},
where the interval (a,∞] ⊂ R is to be interpreted as equal to (a,∞) ⊂ R. The persistence
module F(I) consists of the following data: the vector spaces F(I)t, for t ∈ R, are

F(I)t =

{
F t ∈ I
0 t �∈ I,

and the linear maps πs,r : F(I)s → F(I)r are

πs,r =

{
idF s, r ∈ I
0 otherwise.

• Let F be a field, let X be a closed manifold and let f : X → R be a Morse function. The Morse
homology H∗({x ∈ X|f(x) < t}; F) for t ∈ R induces an F-persistence module: the vector
spaces are Vt = H∗({x ∈ X | f(x) < t}; F), and the linear maps πr,s : Vr → Vs are induced by
the inclusion maps ir,s : {x ∈ X | f(x) < r} ↪→ {x ∈ X | f(x) < s}.
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Figure 15. An example barcode.

• Let (M,ω) be a symplectic manifold, let α ∈ π̂(M), and let φ ∈ Ham(M,ω) be a non-
degenerate Hamiltonian diffeomorphism. Denote by HF •∗ (φ)α = (HF r∗ (φ)α)r∈R the persis-
tence module whose vector spaces are the filtered Floer homology vector spaces in class α,
HF r∗ (φ)α for r ∈ R, and whose linear maps πr,s : HF r∗ (φ)α → HF s∗ (φ)α are induced by the
inclusion maps CF r∗ (M,H)α → CF s∗ (M,H)α, where H is a Hamiltonian that generates φ.

The direct sum of two persistence modules is defined as follows.

Definition 6.3. Let (V, π) and (W, τ) be two persistence modules over the same field. Their
direct sum, denoted by V ⊕W , is the persistence module whose vector spaces (V ⊕W )t are
(V ⊕W )t = Vt ⊕Wt and whose linear maps (π ⊕ τ)r,s : (V ⊕W )r → (V ⊕W )s are (π ⊕ τ)r,s =
πr,s ⊕ τr,s.

Definition 6.4. A barcode is a finite multiset of intervals. Explicitly, a barcode is a finite set
of pairs of intervals of R and their multiplicities, {(Ii,mi)}N

i=1 for some N ∈ N, where Ii ⊂ R is
an interval of the form (a, b] for some a ∈ R, a < b ∈ R ∪ {∞}, and mi ∈ N is the multiplicity
of Ii. The intervals which make up a barcode are called its bars (see Figure 15).

Persistence modules and barcodes are matched in a one-to-one manner, as stated in
Theorem 6.5.

Theorem 6.5 (Normal form theorem). Let (V, π) be a persistence module over a field F. Then
there exists a unique barcode B(V ) = {(Ii,mi)}N

i=1 such that

V =
N⊕

i=1

F(Ii)mi ,

where equality is to be understood as persistence module isomorphism, and uniqueness of the
barcode is up to permutation of the order in which its bars appear.

We next recall a metric on the space of all barcodes, called the bottleneck distance, and
denoted by dbot.

Definition 6.6. Let I = (a, b] be an interval with a ∈ R, a < b ∈ R ∪ {∞}, and let δ > 0.
Denote by I−δ the interval (a− δ, b+ δ]. Let B be a barcode. Denote Bδ = {(I,m) ∈ B | I =
(a, b] with b− a > δ}, that is, Bδ is the set of bars of B which have length greater than δ.

Let X,Y be multisets. A matching μ : X → Y is a bijection μ : X ′ → Y ′, where coimμ =
X ′ ⊆ X, imμ = Y ′ ⊂ Y are submultisets.

Let A,B be barcodes. A δ-matching between A,B is a matching μ : A → B such that A2δ ⊆
coim μ, B2δ ⊆ imμ, and, for any I ∈ coimμ, I ⊂ (μ(I))−δ and μ(I) ⊂ I−δ.
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Figure 16. The eggbeater surface C3.

The bottleneck distance between two barcodes A,B is

dbot(A,B) = inf{δ | ∃μ : A → B δ-matching}.

It can be easily shown that this is a genuine metric and not a pseudo-metric, that is, that
if A,B are two distinct barcodes, then dbot(A,B) > 0. The following theorem relates the Hofer
distance between two Hamiltonian diffeomorphisms and the bottleneck distance of the barcodes
associated to their Floer homology persistence modules (see [PRSZ20]).

Theorem 6.7 (Dynamical stability theorem). Let (M,ω) be a symplectic manifold with
π2(M) = 0, α ∈ π̂(M), and φ, ψ ∈ Ham(M,ω) non-degenerate. Then

dbot(B(HF •
∗ (φ)α),B(HF •

∗ (ψ)α)) ≤ dHofer(φ, ψ).

7. Eggbeater maps

We first recall in § 7.1 the definitions of eggbeater surfaces (Cg, ω0) and eggbeater maps on Cg.
The eggbeater maps on surfaces (Σg, σg) of genus g are the images under the pushforward (iΣg)∗
of eggbeaters on Cg for specific embeddings iΣg : (Cg, ω0) → (Σg, ω). For some eggbeater maps
φ and well-chosen free homotopy classes α, one obtains lower bounds on the length of some bars
in HF •∗ (φ)α (see § 7.2), as well as computations for T∞(α) (respectively, si(α)) (see § 7.3). We
then prove Theorems 1.4 and 1.6, using tools from § 6.

7.1 Definition of the eggbeater surfaces and maps
The eggbeater surface Cg is constructed as follows (see Figure 16). Fix L ≥ 4 and denote by C ′ the
cylinder of width 2 and length L, [−1, 1]×R/LZ, equipped with the standard symplectic form
dx ∧ dy. Let g ≥ 2 be an integer, which will later be the genus of the surface of interest. Denote by
C ′

V , C
′
H , C

′
1, C

′
2, C

′
3 five copies of C ′, with cV : C ′ → C ′

V , cH : C ′ → C ′
H , c1 : C ′ → C ′

1, c2 : C ′ →
C ′

2, c3 : C ′ → C ′
3 identity maps, and consider the squares S0 = [−1, 1]× [−1, 1]/LZ ⊂ C ′, S1 =

[−1, 1]× [L/2− 1, L/2 + 1]/LZ ⊂ C ′. Define the symplectomorphism V H : cV (S0)
⊔
cV (S1) →

cH(S0)
⊔
cH(S1) by V H = V H0

⊔
V H1, where V H0 : cV (S0) → cH(S0) and V H1 : cV (S1) →

cH(S1) are defined as follows:

V H0(x, [y]) = (−y, [x]),

V H1(x, [y]) =
(
y − L

2
,

[
− x+

L

2

])
.
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The eggbeater surface Cg, which depends on the genus g of the surface of interest, is the following
disjoint union of a surface C ′

V

⋃
V H C ′

H and possibly other annuli:

C2 = C ′
V

⋃
V H

C ′
H

⊔
C ′

1

⊔
C ′

2,

C3 = C ′
V

⋃
V H

C ′
H

⊔
C ′

1

⊔
C ′

2

⊔
C ′

3,

Cg = C ′
V

⋃
V H

C ′
H , g ≥ 4.

The eggbeater surface C3, for example, is depicted in Figure 16.
Eggbeater surfaces are symplectic manifolds with the standard symplectic form ω0 = dx ∧ dy

on each copy of C ′ (see Figure 16). Denote the natural injections of individual cylinders into Cg

by iV : C ′
V ↪→ Cg, iH : C ′

H ↪→ Cg, and in the cases g = 2, 3, also consider the natural injections
i1 : C ′

1 ↪→ Cg, i2 : C ′
2 ↪→ Cg. If g = 3, denote i3 : C ′

3 ↪→ Cg. We will identify C ′
V , C

′
H , C

′
1, C

′
2, C

′
3

with their images in Cg (g ≥ 2); this will be clear from the context.
These eggbeater surfaces Cg will, later in this section, be embedded in a closed surface of

genus g ≥ 2. A Hamiltonian function will be defined on Cg which will induce some dynamics on
it. We want to push forward this dynamical system to the closed surface of genus g, by extending
it by the identity map. In order for this map to be a Hamiltonian diffeomorphism, some condition
on the embedding and on the Hamiltonian function on Cg must be satisfied. This condition is
given in the following definition.

Definition 7.1. Let X,Y be compact topological spaces, and i : X ↪→ Y a continuous
embedding. Let f : X → R be a continuous map on X, and assume the following condition
holds.

• For any path component C of Y \ i(X), f �i−1(∂C) is constant.

Let Cy be the path component of Y that contains y ∈ Y , and denote Di =
⋃

y∈Im(i)Cy ⊆ Y . For
all y ∈ Di, denote by βi,y : [0, 1]→ Cy a continuous path with βi,y(0) = y, βi,y(1) ∈ Im(i), and
such that if βi,y(t) ∈ Im(i) for some t ∈ [0, 1], then βi,y �[t,1] is constant. Note that if y ∈ Im(i),
then βi,y ≡ y.

Denote the following, not necessarily continuous, map:

bi : Di → Im(i),

y �→ βi,y(1).

Consider the following map, the pushforward of f through i:

i∗f : Di → R,

y �→ f ◦ i−1 ◦ bi(y).

By the conditions on f and i, this is a continuous map Di → R that does not depend on the
choice of the βi,y.

We now turn to describe the dynamics on the eggbeater surface. Consider the function
u0 : [−1, 1]→ R given by u0(s) = 1− |s|. Take an even, non-negative, sufficiently C0-close
smoothing u to u0 such that u is supported away from {±1}, both u− u0 and

∫ r
−1(u(s)− u0(s)) ds

are supported in a sufficiently small neighborhood of {±1, 0}, and
∫ 1
−1(u(s)− u0(s)) ds = 0.

1288

https://doi.org/10.1112/S0010437X23007169 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007169


Hofer’s geometry and topological entropy

For k ∈ N, define the autonomous Hamiltonian function

hk : C ′ → R,

hk(x, [y]) = −1
2
k + k

∫ x

−1
u(s) ds.

The Hamiltonian hk induces the following five autonomous Hamiltonian functions:

(iV ◦ cV )∗hk, (iH ◦ cH)∗hk : C ′
V

⋃
V H

C ′
H → R,

(i1 ◦ c1)∗hk : C ′
1 → R,

(i2 ◦ c2)∗hk : C ′
2 → R,

(i3 ◦ c3)∗hk : C ′
3 → R.

Consider the following two autonomous Hamiltonian functions Cg → R. In an abuse of notation,
we will denote the two Hamiltonian functions in the same way, for all three cases g = 2, g = 3,
g ≥ 4, even though the definitions differ. For g = 2, set

hV,k = (iV ◦ cV )∗hk

⊔
−(i1 ◦ c1)∗hk

⊔
(i2 ◦ c2)∗hk,

hH,k = (iH ◦ cH)∗hk

⊔
(i1 ◦ c1)∗hk

⊔
(i2 ◦ c2)∗hk.

For g = 3, set

hV,k = (iV ◦ cV )∗hk

⊔
(i1 ◦ c1)∗hk

⊔
(i2 ◦ c2)∗hk

⊔
0 �C′

3
,

hH,k = (iH ◦ cH)∗hk

⊔
0 �C′

1

⊔
(i2 ◦ c2)∗hk

⊔
(i3 ◦ c3)∗hk.

For g ≥ 4, set

hV,k = (iV ◦ cV )∗hk,

hH,k = (iH ◦ cH)∗hk.

These Hamiltonian functions generate Hamiltonian diffeomorphisms fV,k, fH,k ∈ Hamc(Cg, ω0),
respectively.

Define a homomorphism

Ψk : F2 → Hamc(Cg, ω0),

V �→ fV,k, H �→ fH,k.

Note that the image of a word w = V N1HM1 · · ·V NrHMr ∈ F2 is fMr
H,k ◦ f

Nr
V,k ◦ · · · ◦ f

M1
H,k ◦ f

N1
V,k.

We call these images eggbeater maps in Cg.
Denote by S0, S1 ⊂ Cg the identification of the squares cV (S0), cH(S0) and cV (S1), cH(S1).

In fact, S0 ∪ S1 = C ′
V ∩ C ′

H (recall that C ′
V and C ′

H are identified with their images in Cg). Fix
two points s0 ∈ S0, s1 ∈ S1. Define four paths: two paths q1, q3 from s0 to s1, and two paths q2, q4
from s1 to s0 as shown in Figure 17; q1, q2 are paths on C ′

V , and q3, q4 are paths on C ′
H .

Note that π1(Cg, s0) � F3, the free group on three generators. The three generators a, b, c of
π1(Cg, s0) are taken to be

a = 〈q1q2〉π1(Cg,s0),

b = 〈q3q4〉π1(Cg,s0),

c = 〈q3q2〉π1(Cg,s0).
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Figure 17. The paths q1, q2, q3, q4 in Cg.

That is, a is the class of a loop going around C ′
V , positively oriented (i.e. a = [t �→ (0, Lt) ∈ C ′

V ]
as an element in π1(Cg)), and b is the class of a loop going around C ′

H , again positively oriented.

7.2 Action gaps in eggbeater maps
The next result is a consequence of the proof of Proposition 5.1 in [PS16]. Fix L > 4.

Proposition 7.2. Let w = V H ∈ F2. There exist certain ν, μ ∈ (0, 1), an unbounded subset
K ⊂ N and a family of primitive free homotopy classes αk = [aνk/Lbμk/L] ∈ π̂(Cg), for k ∈ K,
such that for large enough k ∈ K, there are exactly four non-degenerate fixed points of Ψk(w)
that are in class αk, and different such fixed points have action gaps that grow linearly with k:
that is, for such fixed points y, z,

|A(y)−A(z)| ≥ c · k +O(1),

as k →∞, for some global constant c > 0.

In order to get a similar result for eggbeater-like maps on surfaces of genus g ≥ 2, let (Σg, σg)
be a surface of genus g, equipped with symplectic form σg. In [PS16] (g ≥ 4) and [Cho22] (g =
2, 3), symplectic embeddings iΣg : (Cg, ω0) ↪→ (Σg, σg) are constructed, with the property that the
pairs iΣg , hV,k and iΣg , hH,k both satisfy the condition of Definition 7.1.5 Thus the Hamiltonian
functions (iΣg)∗hV,k, (iΣg)∗hH,k : Σg → R generate Hamiltonian diffeomorphisms on Σg denoted
by (iΣg)∗fV,k, (iΣg)∗fH,k. Similarly to the construction of Ψk in Cg, define a homomorphism

(iΣg)∗Ψk : F2 → Ham(Σg, σg),

V �→ (iΣg)∗fV,k, H �→ (iΣg)∗fH,k.

We call the diffeomorphisms in Ham(Σg, σg) that are elements in the images of (iΣg)∗Ψk eggbeater
maps in Σg. The set of eggbeaters on Σg is denoted by Eg.

We will use the following properties of the embeddings iΣg given in [Cho22].

• (iΣg)∗ : π1(Cg, s0) → π1(Σg, iΣg(s0)), g ≥ 2, are injective.
• In the case g = 2, writing π1(C2, s0) = 〈a, b, c〉, and, for a suitable choice of generators,
π1(Σ2, s0) = 〈g1, . . . , g4 | [g1, g2][g3, g4]〉, the pushforward (iΣ2)∗ : π1(C2, s0) → π1(Σ2, iΣg(s0))
is given by

(iΣ2)∗(a) = g1g3, (iΣ2)∗(b) = g3g2g
−1
1 g−1

2 , (iΣ2)∗(c) = g3. (14)

5 To find such an embedding one generally has to multiply ω0 and the Hamiltonians in the construction with a
sufficiently small δ > 0, and we implicitly assume this, since everything below will not depend on this rescaling.

1290

https://doi.org/10.1112/S0010437X23007169 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007169


Hofer’s geometry and topological entropy

• The induced maps (iΣg)∗ : π̂(Cg, s0) → π̂(Σg, iΣg(s0)) on the set of conjugacy classes of
the fundamental groups, which can be identified with free homotopy classes of loops in
C ′

V

⋃
V H C ′

H (respectively, Σg), are injective for g ≥ 3, and (iΣ2)∗ is injective up to the relations

(iΣ2)∗[c
j ] = (iΣ2)∗[(ac

−1b)j ], j ∈ Z \ {0},
(iΣ2)∗[(ac

−1)j ] = (iΣ2)∗[(b
−1c)j ], j ∈ Z \ {0}.

(15)

In [PS16, Cho22] results analogous to Proposition 7.2 for surfaces of genus g ≥ 2 are shown.
The case of genus g ≥ 4 is a consequence of Proposition 5.1 in [PS16], and the cases g = 2, 3 are
consequences of Proposition 3.9 in [Cho22]. The results are stated as follows.

Proposition 7.3. Let Σg be a surface of genus g ≥ 2, and let w = V H ∈ F2. There exist certain
ν, μ ∈ (0, 1), an unbounded subset K ⊂ N, and a family of primitive free homotopy classes αk =
(iΣg)∗[aνk/Lbμk/L] ∈ π̂(Σg), for k ∈ K, such that for large enough k ∈ K, there are exactly four
non-degenerate fixed points of (iΣg)∗Ψk(w) of class αk, and different such fixed points have action
gaps that grow linearly with k: that is, for such fixed points y, z,

|A(y)−A(z)| ≥ c · k +O(1),

as k →∞, for some global constant c > 0.

Note that the K,αk, ν, μ, c given by this proposition may not be the same as those
of Proposition 7.2. Also, for future reference, note the following key observation: if a
Hamiltonian diffeomorphism φ has an action gap of A > 0 for fixed points of class α (in the
sense of Proposition 7.3), then all the bars in the barcode of its Floer persistence module,
B(HF •∗ (φ)α), are of length greater than or equal to A.

Remark 7.4. The topological entropy of eggbeater maps φ = (iΣg)∗Ψk(a), a ∈ F2, is positive as
long as a is not of the form Hn or V n. This can, for example, be seen directly by showing the
existence of a horseshoe, as in [Dev78], or with the results in the present paper. Moreover, we
note that there is a constant c0 > 0 such that htop(φ) ≤ log((c0k)n), where n is the length of
a ∈ F2 and k is as in the definition of φ.

To see this, endow Σg with a Riemannian metric that, when restricted to iΣg(Cg) and
pulled back by iΣg , agrees with the standard Riemannian metric on Cg. Observe that both
maxΣg ‖d(iΣg)∗fV,k‖ and maxΣg ‖d(iΣg)∗fH,k‖ are bounded from above by c0k for a constant
c0 > 0, and therefore (iΣg)∗Ψk(a) is (c0k)n-Lipschitz. Hence, for any given rectifiable path γ
in Σg,

lim sup
m→∞

log lengthφm(γ)
m

≤ log((c0k)n),

where length(γ) denotes the length of the path γ. By [New88, Theorem 1] this yields the desired
upper bound on the topological entropy of φ.

7.3 Self-intersection number and T∞ for a family of free homotopy classes
We now focus our attention on the family of free homotopy classes given by Proposition 7.3,
namely (iΣg)∗[ambn] ∈ π̂(Σg), for m,n ∈ N. We first compute their geometric self-intersection
number and then compute a lower bound on their T∞-growth rate, defined in § 5.

Recall from the introduction that for a compact surface M , and a loop Γ : S1 →M in general
position, we denote by si(Γ) the total number of self-intersections of Γ, and that the (geometric)
self-intersection number siM (α) of a free homotopy class α ∈ π̂(M) is defined to be min si(Γ),
where the minimum is taken over all self-transverse loops Γ : S1 →M that represent α. This is
well defined since loops in general position in M have finitely many self-intersections.
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Figure 18. The loop Γ3,5 : S1 → Cg. This figure only shows the annuli C ′
V , C ′

H .

Definition 7.5. Let M be a closed surface, and let Γ : S1 →M be a loop. The loop Γ is said
to be in minimal position if si(Γ) = siM ([Γ]π̂(M)).

Definition 7.6. Let M be a surface, and Γ : S1 →M be a loop in general position. The loop
Γ is said to form a bigon with itself if there are subarcs A,B of S1 such that Γ identifies the
endpoints of A with those of B and the loop Γ �A∪B is null-homotopic on M . Similarly, Γ is said
to form a monogon with itself if there exists a subarc A ⊂ S1 such that Γ identifies its endpoints
and Γ �A is null-homotopic on M .

In order to check whether a given loop Γ : S1 →M is in minimal position, and to calculate
the self-intersection number of [Γ], one may use the following fact (Theorem 3.5 from [HS85]).

Fact 7.7. Let M be a surface, and Γ : S1 →M a loop in general position. If Γ does not form
any bigons or monogons then Γ is in minimal position.

Construct a loop Γ = Γm,n : S1 → Cg, whose image is a subset of iV (C ′
V )
⋃

V H iH(C ′
H) and

whose free homotopy class is the primitive free homotopy class [ambn], as follows. Γm,n starts at
s0, and performs m rounds of the annulus C ′

V , while regularly spiralling inwards. After finishing
m rounds of C ′

V , Γ starts making n rounds of the annulus C ′
H , while regularly spiralling outwards.

As Γ finishes these rounds, it reaches the square cV (S0) again, and connects back to s0, without
any further self-intersections. An example loop Γm,n can be seen in Figure 18.

By invoking Fact 7.7, one deduces that Γm,n is in minimal position. Counting self-intersections
in Γm,n, one sees that siCg([a

mbn]) = mn+ (m− 1)(n− 1), where the (m− 1)(n− 1) term comes
from the self-intersections in the square cV (S0), and themn term comes from the self-intersections
in the other square cV (S1).

However, we also want to calculate the self-intersection number siΣg((iΣg)∗[ambn]) of the
pushforward of the free homotopy class considered up to this point under iΣg , for g ≥ 2. This is
performed in the following lemma.
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Lemma 7.8. Let Σg be a closed surface of genus g ≥ 2, and consider the embedding iΣg : Cg →
Σg. Then

siΣg((iΣg)∗ [ambn]) = mn+ (m− 1)(n− 1).

Proof. Recall that in [PS16, Cho22] the embeddings iΣg are shown to induce injections
(iΣg)∗ : π1(Cg, s0) → π1(Σg, iΣg(s0)). Assume by contradiction that iΣg ◦ Γm,n : S1 → Σg is not
in minimal position. By Fact 7.7, iΣg ◦ Γm,n forms a monogon or a bigon with itself.

Let δ : S1 → Σg be the boundary of this monogon or bigon; δ is null-homotopic. Since Im δ ⊂
Im iΣg ◦ Γm,n and iΣg is injective, i−1

Σg
◦ δ : S1 → Cg is a well-defined loop in Cg, which is made

up of one or two arcs of Γm,n. Since (iΣg)∗ is injective, i−1
Σg
◦ δ is also null-homotopic. This implies

that Γm,n forms a monogon or a bigon with itself, in contradiction to the above discussion. �

We now give a lower bound on the growth rate T∞(α), where α = iΣg∗[a
mbn] ∈ π̂(Σg).

Lemma 7.9. The growth rate of α is bounded below by T∞(α) ≥ log(�mn/2�+ 1).

Proof. We use the notation from § 5, and consider

μ : π1(Σg, s0) → H =
⋃

y∈π1(Σg,s0)

Z[π1(Σg, s0)∗y]⊗ Z[π1(Σg, s0)∗y].

Here we write s0 instead of iΣg(s0), also we will write a, b, c,Γm,n instead of writ-
ing (iΣg)∗a, (iΣg)∗b, (iΣg)∗c ∈ π1(Σ, s0), iΣg ◦ Γm,n : [0, 1]→ Σg, whenever the context is clear.
We can read from the loop Γm,n that μ(ambn) has the form

μ(ambn) =
m−1∑
i=1

n−1∑
k=1

[aibk]ambn ⊗ [ambn−ka−i]ambn − [ambn−ka−i]ambn ⊗ [aibk]ambn

+
m∑

i=1

n−1∑
k=0

[ambkca−i]ambn ⊗ [aic−1bn−k]ambn − [aic−1bn−k]ambn ⊗ [ambkca−i]ambn .

(16)

In particular, if m = 1 and n = 1,

μ(ab) = [aca−1]ab ⊗ [ac−1b]ab − [ac−1b]ab ⊗ [aca−1]ab. (17)

We first claim that no terms cancel out in (16). Note first that this is the case if the expression in
(16) is considered as one in terms of the free group in a, b, c. Therefore, if the genus is g ≥ 3, no
cancellation of terms in (16) follows from the fact that (iΣg)∗ : π̂(Cg, s0) → π̂(Σg, s0) is injective.
(iΣ2)∗ : π̂(C2, s0) → π̂(Σ2, s0) is injective up to (15), so clearly one only has to check whether a
cancellation occurs for the terms in the second row of (16) with (i = 1, k = n− 1) and (i = m,
k = 0). If m ≥ 2 or n ≥ 2 one can readily check that this holds on the level of conjugacy classes.
Consider now the remaining case m = n = 1. By (14),

(iΣ2)∗(ab) = g1g
2
3g2g

−1
1 g−1

2 , (iΣ2)∗(aca
−1) = g1g3g

−1
1 , (iΣ2)∗(ac

−1b) = g1g3g2g
−1
1 g−1

2 .

So μ(ab) = 0 if and only if there is k ∈ Z such that fk = 1, where

fk := (g1g2
3g2g

−1
1 g−1

2 )kg1g3g
−1
1 (g1g2

3g2g
−1
1 g−1

2 )−kg2g1g
−1
2 g−1

3 g−1
1 . (18)

If k = 0 or k = −1, one checks that fk �= 1. If k > 0, after freely and cyclically reducing the word
on the right-hand side of (18) we obtain

(g1g2
3g2g

−1
1 g−1

2 )k−1g1g3g
−1
1 (g1g2

3g2g
−1
1 g−1

2 )−kg2g1g
−1
2 g3g2g

−1
1 g−1

2 ,
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and if k < −1, after freely and cyclically reducing this word we obtain

(g1g2
3g2g

−1
1 g−1

2 )k+1g2g1g
−1
2 g3g2g

−1
1 g−1

2 (g1g2
3g2g

−1
1 g−1

2 )−(k+2)g1g3g
−1
1 .

Since in neither case do the reduced words contain a subword of more than four elements which is
also a subword of a cyclic permutation of a relator [g1, g2][g3, g4] or its inverse, Dehn’s algorithm
shows that fk �= 1 for all k ∈ Z. Hence, the terms in (16) do not cancel out.

To estimate T∞(α), we use that Comp(μ(ambn)) ⊃ T , where

T :=
{
[ambkca−i]ambn ⊗ [aic−1bn−k]ambn | i = 1, . . . ,m; k = 0, . . . , n− 1

}
.

Hence,

Comp+(μ(ambn)) ⊃ T+ := {[ambkca−i]ambn | i = 1, . . . ,m; k = 0, . . . , n− 1}
and

Comp−(μ(ambn)) ⊃ T− := {[aic−1bn−k]ambn | i = 1, . . . ,m; k = 0, . . . , n− 1}.

We show that for any S ⊂ T+ or S ⊂ T−, and any set S ⊂ π1(Σg, s0) with [S]ambn = S, we have
that Γ(S ∪ {ambn}) ≥ log(#S + 1). This yields that

T∞(α) ≥ min± min
S

{
Γ(S ∪ [g]g, g) | S ⊂ T±,#S =

⌈
1
2#T
⌉}

≥ log
(⌈

#
T
2

⌉
+ 1
)

= log
(⌈

#
mn

2

⌉
+ 1
)
.

We argue for S ⊂ T+; the other case is analogous.
Let P = qs0p1q

s1p2 · · · pl′q
sl′ , where p1, . . . , pl′ ∈ S, l′ ∈ N, q = ambn, and s0, . . . , sl′ ∈ N,

with l′ + s0 + · · ·+ sl′ =: l. Consider P as a word w in the letters a, b, and c, and consider
the corresponding reduced word w′. It is clear, since [S]ambn ⊂ T+ and from the type of elements
in T+, that the word w′ can be written as

w′ = w0cw1cw2 · · · cwl′ ,

for some reduced, possibly empty, words w0, . . . , wl′ in a and b. Moreover, if [pj ] = [ambkca−i]ambn ,
then wj−1 ends with bk

′
such that k′ ∼ k mod n, and wj starts with a−i′ such that i′ ∼ i mod m.

Therefore, such a word w′ determines the original elements p1, . . . , pl′ ∈ S. And so, w′ also deter-
mines the original choice of s0, . . . , sl′ . Indeed, if p1 = ucv, then w0u

−1 = (ambn)s0 , etc. Moreover,
if two such words w′

1 and w′
2, coming from products P1 and P2, are equal up to cyclic permutation

and reduction as elements in F3 = 〈a, b, c〉, then so are P1, P2 as products of symbols in S ∪ {q}.
If the genus g is greater than or equal to 3, then (iΣg)∗ : π̂(Cg, s0) = 〈a, b, c〉/conj → π̂(Σg)
is injective and we obtain that N̂(l, S ∪ {ambn}) ≥

∑l
i=1((#S + 1)l/l), so Γ(S ∪ {ambn}) ≥

log(#S + 1). (iΣ2)∗ is injective up to relation (15), but for each l, only four products could
appear in those equations, and hence also in this case Γ(S ∪ {ambn}) ≥ log(#S + 1). Note that
in the case m = n = 1 clearly T∞([ab]) ≤ log(2), and hence in fact T∞([ab]) = log(2). �

7.4 Proofs of Theorems 1.4 and 1.6, and Corollary 1.5
This subsection contains, as an application of Theorem 1.3, the proofs of Theorems 1.4 and 1.6,
using Proposition 7.3 and the tools from § 6. It also contains a proof of Corollary 1.5.

In the following, for R > 0 and φ ∈ Ham(Σg, σg), we denote by BdHofer
(φ,R) ⊂ Ham(Σg, σg)

the set of ψ ∈ Ham(Σg, σg) with dHofer(ψ, φ) < R.

Proof of Theorem 1.4. Let ν, μ ∈ (0, 1), K ⊂ N, be the numbers from Proposition 7.3, and
for k ∈ K denote mk = νk/L, nk = μk/L ∈ N, and αk = (iΣg)∗

[
amkbnk

]
∈ π̂(Σg). Recall from
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Proposition 7.3 that αk are primitive classes. There is c > 0 such that the action gap for
(iΣg)∗Ψk(V H) guaranteed by Proposition 7.3 is greater than or equal to ck. Note also that
mknk ≥ (μν/L2)k2. Write the elements in K as a sequence (kl)l∈N, and let φl := (iΣg)∗Ψkl

(V H).
The Hofer norm Ml := ‖φl‖Hofer grows linearly in kl, since by construction of φl, Ml grows at
most linearly, and by the statement on the action gaps and the dynamical stability theorem at
least linearly in kl. Hence there are constants δ > 0 and C > 0 such that the action gaps for φl

are greater than or equal to 2δMl + 1, and mkl
nkl

≥ 2CM2
l .

By Lemma 7.9, T∞(αkl
) ≥ log(CM2

l ).
Let ψ ∈ BdHofer

(φl, δMl). We show that there is a fixed point z ∈ Σg of ψ in class αkl
. To

simplify notation write φ = φl, α = αkl
,M = Ml.

Recall that Proposition 7.3 guarantees that φ has an action gap greater than or equal to
2δM + 1, and that φ has at least one fixed point in class α. Thus, by definition, B(HF •∗ (φ)α)
has a bar of length at least 2δM + 1.

Let H : S1 × Σg → R be a Hamiltonian function that generates ψ. Recall that the set
{F : S1 × Σg → R |F is non-degenerate} is C∞-dense in the space of all functions S1 × Σg → R,

with the C∞ topology. Thus one can take a sequence Hj
C∞
−−→ H of non-degenerate Hamiltonian

functions. Denote by ψj the Hamiltonian diffeomorphism generated by Hj . Note that
dHofer(ψj , ψ) → 0. Since ψ ∈ BdHofer

(φ, δM), there exists an integer j0 ∈ N such that ψj ∈
BdHofer

(φ, δM) for j > j0. By Theorem 6.7, dbot(B(HF •∗ (φ)α),B(HF •∗ (ψj)α)) ≤ dHofer(φ, ψj) <
δM . Thus B(HF •∗ (ψj)α) has a bar of length at least 1. By definition of the barcode, this means
that ψj has a fixed point zj ∈ Σg in class α for j > j0. The manifold Σg is compact; take a
convergent subsequence of zj , (zj)j∈J for some infinite J ⊂ N, which converges to z ∈ Σg. Since

(Hj)j∈J
C∞
−−→ H and by the Arzelà–Ascoli theorem, z is a fixed point of ψ in class α.

Finally, by Theorem 1.3, H∞(α) ≥ T∞(α) ≥ log(CM2
l ). By a version of Ivanov’s inequality

(see [Jia96, Theorem 2.7]), we obtain that htop(ψ) ≥ H∞(α) ≥ log(CM2
l ). �

Proof of Corollary 1.5. Let δ > 0, C1 = C > 0, and φl ∈ Eg, l ∈ N, be given by applying
Theorem 1.4, and denote Ml = ‖φl‖Hofer. Let kl ∈ N be the integers given in the proof of
Theorem 1.4. In the proof, it is specified that Ml is at least linear in kl, that is, there exists
some C2 > 0 such that Ml ≥ C2kl for all l ∈ N. Recall that by construction, φl = (iΣg)∗Ψkl

(V H)
and specifically that the word V H ∈ F2 generating φl is of length 2.

Let ψ ∈ Ham(Σg, σg) with dHofer(ψ, φl) < δMl. By Remark 7.4, there is a constant C3 >√
C1C2 such that htop(φl) ≤ log((C3kl)2). Therefore, setting K = log(C2

3 )− log(C1C
2
2 ), by

Theorem 1.4,

htop(ψ) ≥ log(C1M
2
l ) ≥ log(C1C

2
2k

2
l ) = log(C2

3k
2
l )−K ≥ htop(φl)−K. �

Proof of Theorem 1.6. Let ψ ∈ Ham(Σg, σg), ε > 0. We must find χ̂ ∈ Ham(Σg, σg) with
dHofer(χ̂, ψ) < ε and which has some open neighborhood V in (Ham(Σg, σg), dHofer) on which
htop > M ; note that the union of these neighborhoods V is an open and dense set with respect
to dHofer.

Choose k so large that log(si(αk) + 1)/16 > M and that all fixed points of Ψk(V H) in class
αk are non-degenerate. Let δ be so small that there is an embedding iΣg : (Cg, δω0) → (Σg, σg)
as discussed in § 7.2. Recall that when multiplying by δ we implicitly multiply the Hamiltonians
Ψk(V H) by δ in order not to change the dynamics. Hence, we can additionally choose δ so small
that φ := (iΣg)∗Ψk(V H) satisfies ‖φ‖Hofer < ε/3. Choose a generating Hamiltonian path φt of φ,
φ0 = id and φ1 = φ. Let x ∈ Σg be a fixed point of φ that lies in class αk.
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Choose a generating Hamiltonian path ψt of ψ and choose a path of Hamiltonian diffeo-
morphisms τt, τ := τ1, with τ ◦ ψ �W = idW for a small neighborhood W of x, ‖τ‖Hofer < ε/3,
and such that τt#ψt(x) is contractible, where # denotes Hamiltonian path concatenation. Indeed,
we can construct such a path τt as follows. Let G : S1 × Σg → R be the Hamiltonian generat-
ing ψt. The Hamiltonian Q : S1 × Σg → R defined by Q(t, y) = −G(1− t, y) generates the path
ψ1−t ◦ ψ−1. Take two small enough tubular neighborhoods N1 and N2 of

{
(t, ψ1−t(x))

}
⊂ [0, 1]×

Σg with N1 ⊂ N2, such that Qt

({
p ∈ Σg | | (t, p) ∈ N2

})
⊂
(
Qt(ψ1−t(x))− ε/12, Qt(ψ1−t(x)) +

ε/12
)

for all t ∈ [0, 1]. For t ∈ [0, 1], set Ct = Qt(ψ1−t(x)), and consider the function

N1 → R,

(t, y) �→ Qt(y)− Ct.

Using a suitable cutoff function, we can extend this function to a smooth function F : [0, 1]×
Σg → R, such that F �[0,1]×Σg\N2

≡ 0 and F ({t} × Σg) ⊂
(
− ε/6, ε/6

)
for all t ∈ [0, 1]. In fact,

such a function F can be chosen to be periodic in t. Note that the Hamiltonian path τt generated
by F satisfies the above conditions, in particular ‖τ‖Hofer < ε/3.

We define χt = φt#τt#ψt, χ = φ ◦ τ ◦ ψ. Let H : S1 × Σg → R be a Hamiltonian that gen-
erates χt. Then x is a non-degenerate fixed point of χ in class αk. Let ξ(t) = χt(x). Choose
tubular neighborhoods U0, U (U0 ⊂ U) of {(t, ξ(t)) | t ∈ S1} ⊂ S1 × Σg and κ > 0 so small that
d0(χ(χ−t(z)), χ−t(z)) ≥ κ, for all (t, z) ∈ U \ U0, where d0 is some fixed metric on Σg. Such
neighborhoods exist, since x is an isolated fixed point. A standard perturbation argument
shows (see, for example, [FHS95]), that for any ε′ > 0 there are perturbations h : S1 ×M → R
with ‖h‖C2 < ε′ that are supported outside of U0 and such that all periodic orbits η(t) of the
Hamiltonian diffeomorphism χ̂ generated byH + h for which {(t, η(t)) | t ∈ S1} ∩ U = ∅, are non-
degenerate. If we choose ε′ so small that for any such χ̂ also d0(χ̂(χ̂−t(z)), χ̂−t(z)) ≥ κ/2, then
actually all orbits of χ̂ are non-degenerate. If also ε′ < ε/3, one has dHofer(χ̂, ψ) ≤ dHofer(χ̂, χ) +
dHofer(χ, τ ◦ ψ) + dHofer(τ ◦ ψ,ψ) < ε/3 + ε/3 + ε/3 = ε.

Since HF•
∗(χ̂)αk

is non-zero, its barcode has a non-zero bar, say of length σ > 0. By the
dynamical stability theorem, non-degenerate diffeomorphisms in BdHofer

(χ̂, σ′), for σ′ < σ/2, have
non-zero filtered Floer homology in class αk, and hence have a fixed point in this class. This
conclusion holds also for degenerate diffeomorphisms inBdHofer

(χ̂, σ′) with an analogous argument
as in the proof of Theorem 1.4. By Theorem 1.1, this means that htop|BdHofer

(χ̂,σ′) > M , as
desired. �

Acknowledgements

Most of the work in this paper was completed while Matthias Meiwes was a postdoctoral
researcher at the School of Mathematical Sciences of Tel Aviv University. He would like to
thank that institute and especially Lev Buhovski, Yaron Ostrover, and Leonid Polterovich for
their hospitality. He was also partially supported by the Chair for Geometry and Analysis of the
RWTH Aachen. He would like to thank Umberto Hryniewicz for his support.

We would like to especially thank Leonid Polterovich for his important suggestions and
for fruitful discussions. We would also like to thank Marcelo Alves, Umberto Hryniewicz, and
Felix Schlenk for their helpful suggestions and discussions. Finally, we would like to thank the
anonymous referees for their careful reading of the manuscript, and for some very constructive
comments and suggestions which allowed us to improve the paper.

1296

https://doi.org/10.1112/S0010437X23007169 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007169


Hofer’s geometry and topological entropy

References

AASS21 A. Abbondandolo, M. R. R. Alves, M. Saglam and F. Schlenk, Entropy collapse versus entropy
rigidity for Reeb and Finsler flows, Preprint (2021), arXiv:2103.01144.

AGK+19 D. Alvarez-Gavela, V. Kaminker, A. Kislev, K. Kliakhandler, A. Pavlichenko, L. Rigolli,
D. Rosen, O. Shabtai, B. Stevenson and J. Zhang, Embeddings of free groups into asymptotic
cones of Hamiltonian diffeomorphisms, J. Topol. Anal. 11 (2019), 467–498.

Alv16a M. R. R. Alves, Cylindrical contact homology and topological entropy, Geom. Topol. 20 (2016),
3519–3569.

Alv16b M. R. R. Alves, Positive topological entropy for Reeb flows on 3-dimensional Anosov contact
manifolds, J. Mod. Dyn. 10 (2016), 497–509.

Alv19 M. R. R. Alves, Legendrian contact homology and topological entropy, J. Topol. Anal. 11
(2019), 53–108.

ACH19 M. R. R. Alves, V. Colin and K. Honda, Topological entropy for Reeb vector fields
in dimension three via open book decompositions, J. Éc. Polytech. Math. 6 (2019),
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Publ. Math. Inst. Hautes Études Sci. 102 (2005), 1–98.
LeCT18 P. Le Calvez and F. A. Tal, Forcing theory for transverse trajectories of surface homeo-

morphisms, Invent. Math. 212 (2018), 619–729.
LeCT22 P. Le Calvez and F. A. Tal, Topological horseshoes for surface homeomorphisms, Duke

Math. J. 171 (2022), 2519–2626.
MS11 L. Macarini and F. Schlenk, Positive topological entropy of Reeb flows on spherizations, Math.

Proc. Cambridge Philos. Soc. 151 (2011), 103–128.
Mei18 M. Meiwes, Rabinowitz Floer homology, leafwise intersections, and topological entropy, PhD

thesis, Ruprecht-Karls-Universität Heidelberg (2018).
New88 S. E. Newhouse, Entropy and volume, Ergodic Theory Dynam. Systems 8 (1988), 283–299.
Nit71 Z. Nitecki, On semi-stability for diffeomorphisms, Invent. Math. 14 (1971), 83–122.
Pol01 L. Polterovich, The geometry of the group of symplectic diffeomorphisms, Lectures in
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