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The deformation of fluid elements governs many processes in porous media, including
the transport, dispersion and mixing of solutes, chemical reactions and colloidal particles.
Recently, it has been shown that even in strongly heterogeneous porous media, steady
three-dimensional (3-D) Darcy flow with isotropic hydraulic conductivity admits only
constrained kinematics. This is due to its inherently helicity-free nature, as the velocity
is everywhere orthogonal to the vorticity. This property precludes braided streamlines and
instead admits a pair of coherent 3-D streamfunctions, and the streamlines cannot wander
freely throughout the flow domain. In this study, we consider the impact of these kinematic
constraints upon fluid deformation at the Darcy scale. We show that the helicity-free
condition corresponds to an orthogonal 3-D streamline coordinate system, which we use
to derive an ab initio continuous time random walk framework for fluid deformation. We
find that the helicity-free condition combined with the intermittent nature of shear events
leads to fluid deformation that is limited to algebraic growth, with stretching ranging
from sublinear to superlinear behaviour. Fluid deformation in 3-D isotropic Darcy flow
is remarkably similar to that of two-dimensional (2-D) Darcy flow, and the structure of
3-D Darcy flow is fundamentally the same as two superposed 2-D Darcy flows. These
results have implications for understanding flow and transport in heterogeneous porous
media, and provide a basis for quantification of mixing and dispersion in isotropic 3-D
Darcy flow.
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1. Introduction

Mixing, dispersion and transport of diffusive solutes, colloids and heat in heterogeneous
porous media are central to a myriad of processes in the natural environment and
engineered applications (Bear 1972; Dagan 1989). These processes include chemical
and biological reactions in geological substrates, pollution transport and remediation in
groundwater flows, drug delivery in biological tissues, and electron transport in fuel
cell applications (Cushman 2013). These processes all involve the interplay of molecular
diffusion and hydrodynamic advection, where advection acts to organise the arrangement
of fluid elements in a structured and deterministic manner (even if the porous medium
is highly heterogeneous), and Brownian motion, which manifests as diffusion, acts to
randomise solute molecules and colloidal particles. In particular, the deformation of fluid
elements due to hydrodynamic advection plays a critical role with respect to solute mixing
and dispersion processes, and indeed the characteristic rates of fluid deformation serve as
input parameters to models (Villermaux & Duplat 2003; Le Borgne, Dentz & Villermaux
2013, 2015; Dentz et al. 2016b; Lester, Dentz & Le Borgne 2016b; Lester et al. 2018) of
mixing and dispersion.

These quantitative measures describe the Lagrangian kinematics of the flow (Ottino
1989), which define the evolution, deformation and distribution of fluid elements from the
Eulerian flow properties; the link between the Lagrangian kinematics and the Eulerian
description of the flow can be complex and often non-intuitive (Aref 1984; Ottino 1989).
Quantification of these kinematics and subsequent coupling with molecular or thermal
diffusion then provides a means to predict the mixing (Villermaux 2012), dispersion
(Dentz et al. 2018) and reaction of solutes (Engdahl, Benson & Bolster 2014) and
colloids.

Over the past five decades, the interplay of these advection and diffusion processes has
been well studied in the context of steady two-dimensional (2-D) flows at the Darcy scale
(Dentz et al. 2000, 2018; Attinger, Dentz & Kinzelbach 2004; Beaudoin, de Dreuzy &
Erhel 2010; Bijeljic, Mostaghimi & Blunt 2011; Cirpka et al. 2011; Chiogna et al. 2012;
Villermaux 2012; De Anna et al. 2013; De Anna et al. 2014; Le Borgne et al. 2013),
leading to important insights linking the nature, rate and extent of mixing, dispersion
and transport to the underlying flow properties and ultimately, properties of the porous
medium. However, such steady 2-D flows exhibit strongly constrained flow kinematics
as streamlines are confined to the 2-D flow domain and cannot cross or diverge in an
unbounded manner.

Conversely, while there are many studies of mixing, dispersion and transport in steady
three-dimensional (3-D) flows (Gelhar & Axness 1983; Janković, Fiori & Dagan 2003;
Englert, Vanderborght & Vereecken 2006; Janković et al. 2009; Beaudoin & de Dreuzy
2013; Chiogna et al. 2014; Ye et al. 2015), the impact of possible kinematic constraints
has received much less attention than its 2-D counterpart, and there is ongoing debate
as to the nature of some transport processes (such as transverse macro-dispersion; Lowe
& Frenkel 1996; Janković et al. 2009) in these flows. In general, extension to steady 3-D
flows relaxes the kinematic constraints associated with steady 2-D flow, so streamlines may
wander freely throughout the flow domain, and so can undergo braiding motions associated
with chaotic advection (where exponential stretching of fluid elements rapidly accelerates
diffusive mixing), diverge without bound (rapidly enhancing transverse dispersion), and
generally exhibit a much richer array of Lagrangian kinematics (Aref et al. 2017). Hence
solute mixing, dispersion and transport can be augmented significantly in steady 3-D flows
in general.
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Despite this potential for significantly augmented Lagrangian kinematics and solute
mixing and transport dynamics, it has recently been shown (Lester et al. 2021) that steady
3-D Darcy flow in heterogeneous porous media with an isotropic hydraulic conductivity
field admits highly constrained Lagrangian kinematics, similar to that of steady 2-D flow.
These constraints arise as these flows all have vorticity that is everywhere orthogonal to
their velocity, leading to zero helicity (an invariant measure of the topological complexity
of a flow) across the entire class of isotropic Darcy flows. Lester et al. (2021) show that
these helicity-free flows admit a pair of coherent streamfunctions that are topologically
planar (although they may be highly convoluted in highly heterogeneous porous media),
and the streamlines formed by intersections of the level sets (2-D streamsurfaces) of
these streamfunctions are open and topologically equivalent to straight lines. Thus the
confinement of streamlines to coherent 2-D streamsurfaces imposes kinematic constraints
to steady 3-D isotropic Darcy flow that are very similar to those of steady 2-D flows.

While the study of Lester et al. (2021) generates insights into the Lagrangian kinematics
of steady 3-D isotropic Darcy flow, an outstanding question is the quantitative impact
of these kinematic constraints upon fluid deformation, which in turn govern mixing,
dispersion and transport of diffusive solutes. In this study, we address this question by
developing an orthogonal streamfunction coordinate system that inherently enforces the
kinematic constraints of these flows. This coordinate system is then used to derive an
ab initio coupled continuous time random walk (CTRW) model for fluid deformation
that is in essence a 3-D extension of the fluid stretching model derived by Dentz et al.
(2016b) for 2-D Darcy flow. When compared to general steady 3-D flows, we find that
the kinematic constraints associated with steady 3-D isotropic Darcy flow severely retard
fluid deformation, and so invite questions as to the suitability of isotropic Darcy flow
as a representative model of flow and transport in highly heterogeneous porous media.
These quantitative predictions of fluid deformation will be used in future studies to develop
predictions of solute mixing and dispersion in isotropic 3-D Darcy flow.

We limit scope to steady 3-D isotropic Darcy flows with smooth and finite hydraulic
conductivity fields in the absence of flow sources and sinks (and thus stagnation points)
and domain boundaries, as many of these features can violate the helicity-free condition.
Although this scenario does not arise commonly in practical applications, it does serve
as an important case for understanding these fundamental issues. An important extension
to this study is the analysis of the Lagrangian kinematics, mixing and dispersion at the
Darcy scale in anisotropic porous media. These flows are not helicity free, and so are
not subject to the same kinematic constraints as isotropic Darcy flow and are a subject
of ongoing research. While many synthetic porous materials exhibit locally isotropic
hydraulic conductivity, the majority of naturally occurring materials such as sedimentary
rocks and natural fibres exhibit strongly anisotropic hydraulic conductivity (Bear 1972).
Despite this, locally isotropic models are often employed in fundamental studies of solute
transport and dispersion, and in applied studies when full characterisation of the hydraulic
conductivity has not been performed. Hence it is important to understand the implications
of using a locally isotropic model of hydraulic conductivity upon solute transport and
mixing.

The remainder of this paper is structured as follows. In § 2, we review briefly the
kinematics of isotropic Darcy flow from the study of Lester et al. (2021), and in § 3, we use
these results to develop a streamfunction coordinate system that automatically imposes the
kinematic constraints associated with isotropic Darcy flow. In this section, we address the
long-standing question of whether helicity-free flows always give rise to a unique pair of
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mutually orthogonal streamfunctions, and provide a geometric argument in the affirmative.
In § 4, we then use these orthogonal streamfunctions as a basis for a coordinate system
to generate closed-form solutions for the components of the fluid deformation gradient
tensor. In § 5, we provide a numerical example to illustrate the deformation structure and
orthogonality of the streamfunction coordinates for a model isotropic 3-D Darcy flow.
An ab initio CTRW framework for the evolution of the deformation tensor in statistically
stationary random flows is developed in § 6, and measures of transverse and longitudinal
fluid deformation are introduced. Finally, conclusions are made in § 7.

2. The kinematics of 3-D isotropic Darcy flow

2.1. Governing equations and kinematics
To uncover the impact of kinematic constraints imposed by steady 3-D Darcy flow upon
diffusive transport and mixing, in this section we briefly review the results of Lester
et al. (2021) that the helicity- and stagnation-free nature of these flows admits a dual
streamfunction representation. Steady 3-D Darcy flow in a heterogeneous porous medium
with a scalar hydraulic conductivity field (henceforth described as isotropic Darcy flow) is
described by the Darcy equation

v(x) = −(k(x)/θ)∇φ(x), (2.1)

where x = (x1, x2, x3) denotes physical space in Cartesian coordinates, v(x) is the fluid
velocity, k(x) is the scalar hydraulic conductivity (which is positive and finite), θ is the
porosity (henceforth assumed to be constant), and φ(x) is the pressure (or flow potential).
As the velocity field v is divergence-free, from (2.1) the flow potential φ satisfies the
advection–diffusion equation

∇ · v = ∇2φ + ∇f · ∇φ = 0, (2.2)

where f ≡ ln(k/θ). Two key properties of (2.1) significantly constrain the Lagrangian
kinematics of isotropic Darcy flow. The first defining characteristic of Darcy flow is that
it does not admit stagnation points in the flow (Bear 1972) in the absence of sources
and sinks, and away from domain boundaries. This constrains the streamline topology,
as recirculation regions cannot occur in the flow, so streamlines are open. The second
defining characteristic of Darcy flow is that the helicity density h(x) (defined as the dot
product of velocity and vorticity) is everywhere zero (Moffatt 1969). This is shown by the
vector identity

h ≡ v · ω = (k/θ)∇φ · (∇φ × ∇(k/θ)) = 0, (2.3)

where ω ≡ ∇ × v = ∇φ × ∇k is the vorticity vector. The volume integral of the helicity
density h over the flow domain Ω is defined as total helicity H (Moffatt 1969),

H =
∫
Ω

h dΩ, (2.4)

which is an invariant measure of the topological complexity of the flow. Sposito (1994,
1997, 2001) recognised that the helicity-free nature of isotropic Darcy flow means that
they have simple flow topology, and so proposed that these flows admit a lamellar set
of non-intersecting Lamb surfaces (Lamb 1932) throughout the flow domain. These
coherent material surfaces are spanned by streamlines and vorticity lines, and so
organise streamlines of the flow and impose constraints on the Lagrangian kinematics.
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These surfaces were then used in Lester et al. (2018) as a coordinate basis for a stochastic
model of fluid deformation in isotropic 3-D Darcy flow. However, it was determined
subsequently (Lester et al. 2019) that Lamb surfaces exist only for trivial isotropic 3-D
Darcy flows, invalidating this stochastic model.

Subsequently, Lester et al. (2021) established that isotropic Darcy flows admit a pair
of coherent 3-D streamfunctions. In this study, we use these streamfunctions as the basis
for quantification of fluid deformation in isotropic Darcy flow, and so briefly review the
basis for the existence of these streamfunctions as follows. Stagnation-free flows with
zero helicity density are recognised to have integrable (Arnol’d 1965; Hénon 1966; Holm
& Kimura 1991) particle trajectories, in the dynamical systems sense. This integrability
condition (Arnol’d 1997) means that the 3-D advection equation

dv

dx
= v[x(t, t0; X )], x(t0, t0; X ) = X , (2.5)

for the fluid tracer position x(t, t0; X ) (where X gives the Lagrangian coordinates of the
initial particle location) admits a pair of conserved quantities (invariants) denoted ψ1(x),
ψ2(x) that may be interpreted as streamfunctions of the flow. Streamsurfaces then arise as
level sets of these streamfunctions, and as the flow is stagnation free and helicity free (i.e.
it does not possess knotted or closed flow paths), these streamsurfaces are topologically
planar. Streamlines of the flow then arise at the intersection of ψ1 and ψ2 streamsurfaces,
so these streamfunctions are constant along a streamline:

ψ1(x(t, t0; X )) = ψ1(X ), ψ2(x(t, t0; X )) = ψ2(X ). (2.6a,b)

The invariants (ψ1, ψ2) allow the 3-D advection ordinary differential equation (2.5)
to be simplified to the one-dimensional (1-D) definite integral (hence the terminology
‘integrable’)

ds
dt

= v(s;ψ1, ψ2) ⇒ t(s) =
∫ s

0

1
v(s;ψ1, ψ2)

ds, (2.7)

where s is the distance travelled by a fluid particle along its trajectory, and v(s;ψ1, ψ2) is
the magnitude of the fluid velocity at distance s. The integrable nature of 3-D isotropic
Darcy flow also means that chaotic advection is not possible in these flows as the
braiding of streamlines is not possible, even if the hydraulic conductivity field is strongly
heterogeneous.

This is in direct contrast to random pore-scale flows that have been shown (Lester, Trefry
& Metcalfe 2016a; Lester et al. 2016b; Turuban et al. 2018, 2019; Heyman et al. 2020;
Souzy et al. 2020; Heyman, Lester & Le Borgne 2021) to be inherently chaotic, even if the
porous media is homogeneous at the pore scale. As stated by the Poincaré–Bendixson
theorem, only continuous systems with three or more degrees of freedom can admit
chaotic dynamics. Consequently, chaotic behaviour (even weakly so) is the norm rather
than the exception in random systems with sufficient degrees of freedom. Conversely, the
kinematic constraints associated with the helicity-free condition (2.3) in isotropic Darcy
flow effectively reduce this three degrees of freedom system (associated with the three
spatial dimensions) to a two degrees of freedom system that is not chaotic.
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2.2. Streamfunction representation
An inherently divergence-free representation for the velocity field v is given by the Euler
representation

v = −k ∇φ = ∇ψ1 × ∇ψ2, (2.8)

where the fluid velocity v is orthogonal to the streamfunction gradients ∇ψ1 and ∇ψ2. The
stagnation-free condition (v /= 0) for isotropic Darcy flow ensures that the streamfunctions
is single-valued, i.e. ∇ψ1 /= 0 and ∇ψ2 /= 0. The helicity-free condition (2.3) has been
used by several authors (Zijl 1986; Lester et al. 2021) to derive the following governing
equations for the streamfunctions ψ1 and ψ2:

∇2ψ1 − ∇f · ∇ψ1 = (B × ∇ψ2) · (∇ψ1 × ∇ψ2)

‖∇ψ1 × ∇ψ2‖ , (2.9)

∇2ψ2 − ∇f · ∇ψ2 = (B × ∇ψ1) · (∇ψ1 × ∇ψ2)

‖∇ψ1 × ∇ψ2‖ , (2.10)

where

B ≡ (∇ψ1 · ∇)∇ψ2 − (∇ψ2 · ∇)∇ψ1. (2.11)

Lester et al. (2021) showed that, to within numerical precision, solution of (2.9) and
(2.10) yields the same velocity field v as the solution of (2.2) for Darcy flow. In that
study, it was shown that the integrable nature of isotropic Darcy flow implies that fluid
deformation is limited to algebraic-in-time deformation, and that streamlines in porous
media with statistically stationary hydraulic conductivity cannot converge or diverge
without bound, leading to zero macroscopic transverse dispersion in the absence of
diffusion. As such, the existence of the streamfunction pair (ψ1, ψ2) imposes significant
constraints on the Lagrangian kinematics of isotropic Darcy flow. In this study, we quantify
how these kinematics impact macroscopic mixing, dispersion and transport in the presence
of local-scale dispersion. To quantify these impacts, in the next section we introduce a
streamfunction coordinate system that automatically imposes the kinematic constraints
inherent to heterogeneous isotropic Darcy flow.

3. Streamfunction coordinates

3.1. Uniqueness and orthogonality of streamfunction coordinates
In this section, we introduce a coordinate system for quantification of transport processes
in 3-D isotropic Darcy flow. The existence of the streamfunction pair (ψ1, ψ2) generates
a natural coordinate system that provides a convenient basis for the study of fluid
deformation, mixing and dispersion in steady Darcy flows. Along with the flow potential
φ, these streamfunctions form the curvilinear coordinate system (φ, ψ1, ψ2) that we term
streamfunction coordinates. From (2.8), the streamfunction gradients are orthogonal to
the potential gradient, but the streamfunction gradients are not mutually orthogonal as
in general ∇ψ1 · ∇ψ2 /= 0. In Lester et al. (2021), it was shown that non-orthogonality
between ∇ψ1 and ∇ψ2 significantly complicates the expression of spatial derivatives
in the streamfunction coordinate system (φ, ψ1, ψ2) due to the presence off-diagonal
terms in the metric tensor. However, the streamfunctions (ψ1, ψ2) are not unique, as
demonstrated (Peymirat & Fontaine 1999) by the functions ψ ′

1(ψ1, ψ2) and ψ ′
2(ψ1, ψ2),
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where

∇ψ ′
1 × ∇ψ ′

2 =
(
∂ψ ′

1
∂ψ1

∂ψ ′
2

∂ψ2
− ∂ψ ′

2
∂ψ1

∂ψ ′
1

∂ψ2

)
(∇ψ1 × ∇ψ2), (3.1)

hence ψ ′
1 and ψ ′

2 are also streamfunctions if and only if

∂ψ ′
1

∂ψ1

∂ψ ′
2

∂ψ2
− ∂ψ ′

2
∂ψ1

∂ψ ′
1

∂ψ2
= 1. (3.2)

So there is an infinite set of streamfunctions that satisfy (2.8). The question of whether
there exists a pair of mutually orthogonal streamfunctions (where ∇ψ ′

1 · ∇ψ ′
2 = 0)

amongst this set has been considered previously in the field of magnetic field topology,
where the magnetic field vector B0 is represented in terms of the Euler potentials α and β
as B0 = ∇α × ∇β. Rankin, Kabin & Marchand (2006) show that these potentials, along
with the direction of the magnetic field, form an orthogonal coordinate system if and only
if there exist no field-aligned magnetic currents. In the context of fluid mechanics, this
corresponds to the zero helicity density condition (2.3). Similarly, Hui & Kudriakov (2001)
and Hui & He (1997) argue that orthogonal streamline coordinates exist for helicity-free
flows but do not provide an explicit proof per se.

Indeed, the general problem regarding the existence of a triply orthogonal system of
surfaces (corresponding to the level sets of φ, ψ1 and ψ2) has a rich history dating back to
the early nineteenth century, and has been addressed by many mathematicians, including
Gauss, Lamé, Bonnet, Cayley and Darboux. Weatherburn (1926) shows that the so-called
Lamé equations for the existence of triply orthogonal coordinates can be expressed in
terms of a second-order differential equation for the unit normal n projecting from one
family of surfaces. In recent years, several studies have established a direct relationship
between specific integrable systems and triply orthogonal coordinates (Terng & Uhlenbeck
1998), and there exist strong connections between classes of integrable systems and triply
orthogonal coordinates (Zakharov 1998). Despite these advances, an explicit proof that
helicity-free flows yield a triply orthogonal coordinate system is an outstanding problem.

In the following, we provide a geometric argument for the sufficient condition that
helicity-free flows admit a pair of orthogonal streamfunctions, and in § 5, we show that
this argument is satisfied for a numerically computed steady 3-D Darcy flow. In §§ 3.3
and 2 of the supplementary material (available at https://doi.org/10.1017/jfm.2022.556),
we also prove the associated necessary condition that orthogonal streamline coordinates
can yield only helicity-free flows. We begin by considering a 2-D isopotential surface
Sφ∗ that corresponds to φ = φ∗ = const. Weatherburn (1926) shows that a family of
non-intersecting surfaces exists in 3-D space if and only if the unit normal n to one of
the surfaces satisfies the condition of normality

n · (∇ × n) = 0, (3.3)

where the unit normal vector to Sφ∗ is given explicitly as n = ∇φ/|∇φ| = v/v, and
so (3.3) is satisfied directly by the helicity-free condition (2.3). Dupin’s theorem states
that ‘orthogonal coordinate surfaces intersect along lines of principal curvature’, so from
the gauge freedom associated with the streamfunction coordinates (3.2), there exist two
families of orthogonal curves (denoted respectively (ψ∗

1 = const., φ∗), (ψ∗
2 = const., φ∗))

that may be identified as streamfunctions that foliate this isosurface via the lines of
principal curvature and thus form a local 2-D orthogonal coordinate system on this surface.
Thus, although two families of orthogonal curves can be easily constructed that foliate Sφ∗ ,
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the question remains as to whether the curves (ψ∗
1 , φ

∗), (ψ∗
2 , φ

∗) can be extended off Sφ∗
to form the pair of stream surfaces (ψ∗

1 , ψ∗
2 ) that are both mutually orthogonal and normal

to all other isopotential surfaces Sφ .
This persistence of orthogonality of ψ∗

1 , ψ∗
2 corresponds to an angle-preserving

transform between the curves (ψ∗
1 , φ

∗), (ψ∗
2 , φ

∗) on Sφ∗ and the corresponding curves
(ψ∗

1 , φ
∗∗), (ψ∗

2 , φ
∗∗) on another arbitrary isopotential surface Sφ∗∗ (where φ∗∗ = const.).

As the streamsurfaces ψ∗
1 , ψ∗

2 are invariant (material) surfaces, this angle-preserving
(conformal) transform corresponds to irrotational flow (zero vorticity) within each
isopotential surface Sφ . Hence the helicity-free condition (2.3) may be interpreted as
an angle-preserving transform from one isopotential surface to another (as the flow
is irrotational in the plane normal to the flow direction, i.e. v · ω = 0). Hence if the
streamfunctionsψ1,ψ2 manifest as orthogonal curves on one isopotential surface, thenψ1,
ψ2 are mutually orthogonal for all isopotential surfaces. This angle-preserving property of
helicity-free flows was also identified by Hui & Kudriakov (2001) and Hui & He (1997) in
developing the argument that helicity-free flows admit orthogonal streamline coordinates.

In §§ 3.3 and 2 of the supplementary material, we develop the necessary proof that all
orthogonal streamline coordinate systems of the form (φ, ψ1, ψ2), where

∇φ1 · ∇ψ = 0, ∇φ2 · ∇ψ = 0, ∇ψ1 · ∇ψ2 = 0, (3.4a–c)

render the helicity density to be zero. Whilst this necessary condition does not prove
the sufficient condition that helicity-free flows guarantee the existence of an orthogonal
streamfunction pair, we then assume the sufficient condition to hold based on the
geometric argument above and those of Rankin et al. (2006), Hui & Kudriakov (2001)
and Hui & He (1997). In § 5, we use a numerical example explicitly to show how a unique
pair of orthogonal streamfunction coordinates arises in isotropic 3-D Darcy flow.

As the magnitude of the Darcy velocity |v| (and the pressure gradient |∇φ|) must
be positive and finite, from (2.8) the magnitude of the streamfunction gradients |∇ψ1|,
|∇ψ2| must also be everywhere positive and finite. In conjunction with the orthogonality
condition (3.4a–c), this condition means that any point x0 in isotropic Darcy flow is
defined uniquely by the local values of the fluid pressure and streamfunctions as ξ0 ≡
(φ(x0), ψ1(x0), ψ2(x0)). Hence this set of scalar functions represents the orthogonal
curvilinear streamfunction coordinate system

(ξ1, ξ2, ξ3) ≡ (φ, ψ1, ψ2), ∇ξ i · ∇ξ j = 0 for i /= j, (3.5a,b)

which is invertible as the Jacobian J ≡ det[J ] (where J = ∂ξ i/∂xj is the Jacobian matrix)
is everywhere non-zero as |∇φ| /= 0, |∇ψ1| /= 0, |∇ψ2| /= 0 everywhere.

In § 3 of the supplementary material, we use the orthogonality condition (3.4a–c) to
simplify the streamfunction governing equations (2.9) and (2.10) to the coupled equations

∇2ψ1 − ∇( f − ln |∇ψ2|2) · ∇ψ1 = 0, (3.6)

∇2ψ2 − ∇( f − ln |∇ψ1|2) · ∇ψ2 = 0. (3.7)

In § 4 of the supplementary material, it is shown that these governing equations enforce
mutually orthogonal streamfunctions, ∇ψ1 · ∇ψ2 = 0.

3.2. Scale factors and basis vectors
This coordinate system forms a convenient basis for studying the kinematics of isotropic
Darcy flow as it naturally encodes the kinematic constraints of these flows, as will be
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Fluid deformation in isotropic Darcy flow

shown below. The mapping from Cartesian coordinates x ≡ (x1, x2, x3) to streamfunction
coordinates ξ ≡ (ξ1, ξ2, ξ3) defines the metric tensor gαβ , the elements of which
determine the scale factors hα of the transformation, such that the differential arc length
ds in the coordinate system (ξ1, ξ2, ξ3) is then given by ds2 = gαβ dξα dξβ . As the
streamfunction and isopotential surfaces are orthogonal (3.4a–c), the covariant metric
tensor is diagonal,

gαβ =
⎛
⎝ h2

1 0 0
0 h2

2 0
0 0 h2

3

⎞
⎠ , (3.8)

and the components of the covariant gαβ and contravariant gαβ metric tensors are related
as g−1

αα = gαα . The scale factors hα of the streamfunction coordinate system are simply the
spatial gradients of the fluid pressure φ and streamfunctions ψ1, ψ2,

hα =
√√√√∑

i

(
∂xi

∂ξα

)2

= 1
|∇ξα| , α = 1, 2, 3, (3.9)

so

h1 =
∣∣∣∣ 1
∇φ

∣∣∣∣ = ds
dφ
, h2 =

∣∣∣∣ 1
∇ψ1

∣∣∣∣ = dr
dψ1

, h3 =
∣∣∣∣ 1
∇ψ2

∣∣∣∣ = dq
dψ2

, (3.10a–c)

where s, r, q, respectively, are the distances along a streamline, a vector line normal to aψ1
streamsurface, and that for aψ2 streamsurface. From (2.8), (3.10a–c) and the orthogonality
condition (3.4a–c), these scale factors are related to the velocity and hydraulic conductivity
k as 1/(h2h3) = |∇ψ1| |∇ψ2| = v, h1/(h2h3) = |∇ψ1| |∇ψ2|/|∇φ| = k. Using (2.1) and
(3.9), the scale factors hα can be expressed without loss of generality as

h1 = k
v
, h2 =

√
m
v
, h3 = 1√

mv
, (3.11a–c)

where m ≡ |∇ψ2|/|∇ψ1| is an arbitrary scalar function that quantifies the relative local
spacing of the ψ1 and ψ2 streamsurfaces. In the streamfunction coordinate system, the
covariant basis vectors gα are then

gα =
(
∂x1

∂ξα
,
∂x2

∂ξα
,
∂x3

∂ξα

)
, α = 1, 2, 3, (3.12)

which are related to the unit covariant basis vectors ĝi and contravariant vectors gi via the
scale factors hα as

ĝα = 1
hα

gα = hαgα. (3.13)

An arbitrary vector a may be represented in terms of these basis vectors as a = aigi =
a〈i〉ĝi = aigi, with a〈i〉 = hiai = ai/hi. The Jacobian J of the transform between Cartesian
and streamfunction coordinates is then related to the determinant of the covariant metric
tensor as J = √

det gαβ = h1h2h3 = k/v2, and so is spatially variable. In § 1 of the
supplementary material, we use the above results to derive the divergence, gradient and
curl operators in the streamfunction coordinate system.
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3.3. Orthogonality of streamfunction coordinates
This orthogonal coordinate system automatically recovers the helicity-free condition as
the velocity field is given as

v = ∇ψ1 × ∇ψ2 = 1
h2h3

ĝ2 ⊗ ĝ3 = vĝ1, (3.14)

where v = |v|, and from § 1 of the supplementary material, the vorticity is then

ω = ∇ × v = 1
h1h2h3

{
∂(vh1)

∂ψ2
h2ĝ2 − ∂(vh1)

∂ψ1
h3ĝ3

}
. (3.15)

Hence the helicity h = ω · v is zero as the basis vectors ĝi are mutually orthogonal. As
such, only helicity-free flows admit a pair of streamfunctions that are mutually orthogonal,
and hence an orthogonal streamfunction coordinate system.

4. Fluid deformation in isotropic Darcy flow

4.1. Fluid deformation in Cartesian coordinates
As fluid mixing and dispersion arise from the interplay of diffusion and fluid deformation,
in this section we develop expressions for the deformation of fluid elements in isotropic
Darcy flow. The streamfunction coordinate system developed in § 2 forms a convenient
basis for investigation of deformation of fluid elements in isotropic Darcy flow as the
kinematic constraints associated with these flows are imposed automatically by the
coordinate system. For simplicity of exposition, we first consider the deformation of fluid
elements in the Cartesian coordinate system x before extending this to the streamfunction
coordinates ξ , which as will be shown, presents significant simplification for the
computation of fluid deformation. Such deformation is quantified by the fluid deformation
gradient tensor F (X , t), which quantifies how the infinitesimal vector dx(t; X ) in the
Eulerian frame deforms from its reference state dX (t = 0; X ) = dX in the Lagrangian
frame as

dx = F (X , t) · dX , (4.1)

and equivalently,

Fij ≡ ∂xi(t; X )
∂Xj

, F (X , t) = ∂xi(t; X )
∂Xj

ei ⊗ e j, (4.2a,b)

where êi = ei = ei respectively are the ith unit, covariant and contravariant vectors (which
are all equal) in the Cartesian coordinate system. If we consider Φ t(X ) as the flow (in
the dynamical systems sense of Arnol’d 1997) that maps the initial position X of a fluid
particle at time t = 0 to its current position x at time t, then this flow is given as a solution
of the advection equation (2.5), such that x(t, 0,X ) = Φ t(X ) and so X = Φ t=0(X ). From
this definition, the deformation gradient tensor may also be defined by the derivative of
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Fluid deformation in isotropic Darcy flow

the flow with respect to the Lagrangian coordinate as

F (X , t) = ∂Φ i
t (X )
∂X j ei ⊗ e j. (4.3)

Following this definition, the deformation gradient tensor F (t) evolves with travel time t
along a Lagrangian trajectory (streamline) as

dF (X , t)
dt

= ε(t) · F (X , t), F (X , 0) = 1, (4.4)

where ε(t) is the transpose of the velocity gradient tensor:

ε(t) ≡ ∇v(x(t; X ))T = εij(t) ei ⊗ e j. (4.5)

4.2. Fluid deformation in streamfunction coordinates
Solution of the deformation gradient evolution equation (4.4) is simplified greatly
in the streamfunction coordinates, where we denote the Eulerian frame via the
streamfunction coordinates ξ = {ξ1, ξ2, ξ3}, and the corresponding Lagrangian frame
in the streamfunction coordinates, Ξ = {Ξ1, Ξ2, Ξ3} (where ξ = Ξ at t = 0). The
corresponding flow in streamfunction coordinates is then denoted as ξ = χ t(Ξ) (where
Ξ = χ t=0(Ξ)), so the various frames are related as

Ξ i ξ i=χ i
t (Ξ

j)−−−−−−→ ξ i

Ξ i(X j)

�⏐⏐⏐
⏐⏐⏐� xi(ξ j)

Xi xi=Φ i
t (X

j)−−−−−−→ xi

, (4.6)

where the top and bottom rows, respectively, represent the streamfunction and Cartesian
frames, and the left and right columns, respectively, represent the reference and current
frames. In the streamfunction coordinate frame, the streamfunction deformation tensor
F (Ξ , t) relates the differential reference vector dΞ to its current configuration dξ as

F (Ξ , t) = ∂ξi(t;Ξ)

∂Ξj
gi ⊗ G j, (4.7)

where G j is the jth contravariant vector of the streamfunction coordinate system in the
Lagrangian frame (i.e. at t = 0). This deformation tensor may also be expressed in terms
of the corresponding flow ξ = χ t(Ξ) in streamfunction coordinates as

F (Ξ , t) = ∂χ i
t (Ξ)

∂Ξ j gi ⊗ G j. (4.8)

To render the components of the streamfunction deformation tensor physically meaningful,
we express it in terms of the physical components F̂ij(Ξ , t) as

F (Ξ , t) = ∂χ i
t (Ξ)

∂Ξ j
hi

Hj
ĝi ⊗ Ĝ j ≡ F̂ij(Ξ , t) ĝi ⊗ Ĝ, (4.9)

where ĝi, Ĝj are the respective unit vectors in the current and reference frames, and
the corresponding scale factors are hi, Hj. Following Marsden & Hughes (1994), the
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streamfunction deformation gradient tensor can be translated into the Cartesian frame as

F (Ξ , t) = ∂χ i
t (Ξ)

∂Ξ j gi ⊗ G j = ∂xm

∂ξ i
∂χ i

t (Ξ)

∂Ξ j
∂Ξ j

∂Xn em ⊗ en

= J−1
mi (t)

∂χ i
t (Ξ)

∂Ξ j Jkn(0) em ⊗ en = ∂Φ i
t (X )
∂X j em ⊗ en = F (X , t), (4.10)

where Jij(t) is the ijth element of the Jacobian matrix at position x(t; X ). Hence, as
expected, the deformation gradient tensor is frame-indifferent. However, the elements
of the physical deformation tensor transform between the Cartesian and streamfunction
frames as

Fmn(X , t) = hi J−1
mi (t) F̂ij(Ξ , t)H−1

J Jjn(0) = Ĵ−1
mi (t) F̂ij(Ξ , t) Ĵjn(0), (4.11)

where Ĵij(t) = ∇iξj/hj represents the normalised Jacobian matrix that transforms physical
vector components from the Cartesian to the streamfunction frame:

dξ = dξ̂i ĝi, dξ̂i = Ĵijxj. (4.12)

As det[Ĵij(t)] = 1 and Ĵij(t) Ĵji(t) = δij, the normalised Jacobian represents a proper
orthogonal transform that takes the form of a rotation matrix between the physical
Cartesian and streamfunction frames. Correspondingly, differential vector elements in the
four physical frames are then related as

dΞ̂ i dξ̂ i=F̂ij(Ξ ,t) dΞ̂ j

−−−−−−−−−−→ dξ̂ i

dΞ i = Ĵij(0) dX j
�⏐⏐⏐

⏐⏐⏐� dxi = Ĵij(t)−1 dξ̂ j

dXi dxi=Fij(X ,t) dX j

−−−−−−−−−→ dxi

. (4.13)

Using (4.11), elements of the Cartesian deformation tensor can be determined by
transforming the corresponding elements of the streamfunction deformation tensor via
the Jacobian matrix in the reference and current frames. As indicated above, mapping of
the differential element dX to dx is equivalent to first transforming dX to dΞ via the
Jacobian matrix at t = 0, then using the streamfunction deformation tensor to map to dΞ ,
and finally mapping back to dx via the inverse of the Jacobian matrix at t = t. Although
this approach appears to be somewhat convoluted, the major advantage is that the Jacobian
matrix is known everywhere and the deformation tensor F has an analytic solution in
streamfunction coordinates, as will become clear in the following.

4.3. Solution of fluid deformation in streamfunction coordinates
Following (4.4), the physical components of the streamfunction deformation tensor evolve
with time according to

dF (Ξ , t)
dt

= ε(t) · F (Ξ , t)
dF̂ij(Ξ , t)

dt
= ε̂ij(t) F̂ij(Ξ , t), F̂ij(Ξ , 0) = δij, (4.14a,b)

where ε(t) is the velocity gradient tensor in streamfunction coordinates: ε(t) = εij(t) gi⊗
g j = ε̂ij(t) ĝi ⊗ ĝ j, where ε̂ij(t) = hi/hj εij(t). From (1.12) in the supplementary material,
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Fluid deformation in isotropic Darcy flow

the gradient of a contravariant vector v may be expressed in terms of the Christoffel
symbols Γ i

jk (Aris 1956; Nguyen-Schfer & Schmidt 2014) as

∇v = ∇(vigi) =
(
∂vi

∂ξ j + v jΓ k
ij

)
gi ⊗ g j = hi

hj

(
∂vi

∂ξ j + v jΓ k
ij

)
ĝi ⊗ ĝ j, (4.15)

and from (1.1) in the supplementary material, the fluid velocity v in streamfunction
coordinates simplifies to

v(φ, ψ1, ψ2) = k ∇φ = k
h1

ĝ1 = vĝ1,

= ∇ψ1 × ∇ψ2 = 1
h2

ĝ2 × 1
h3

ĝ3 = 1
h2h3

ĝ1 = vĝ1. (4.16)

In § 5 of the supplementary material, (4.15) and (4.16) are used to derive the streamfunction
velocity gradient tensor, which has non-zero physical components

ε̂11(t) = ∂v

∂s
, ε̂22(t) = −1

2
∂v

∂s
+ v

2
∂ ln m
∂s

, ε̂33(t) = −1
2
∂v

∂s
− v

2
∂ ln m
∂s

, (4.17a–c)

ε̂12(t) = 2γ̇r − ωr ≡ σr, ε̂13(t) = 2γ̇q − ωq ≡ σq, (4.18a,b)

where γ̇ and ω represent shear deformation and vorticity:

γ̇α ≡ ∂v

∂α
, ωα ≡ v

∂ ln k
∂α

, α = r, q. (4.19a,b)

In streamfunction coordinates, the velocity gradient ε(t) has a simple upper triangular
structure

ε(t) =
⎛
⎝ ε̂11(t) ε̂12(t) ε̂13(t)

0 ε̂22(t) 0
0 0 ε̂33(t)

⎞
⎠ , (4.20)

where the diagonal components εii(t) (with
∑

i εii = 0 due to incompressibility)
correspond to normal fluid strains due to changes in velocity v and lateral
expansion/contraction (as quantified by m) with distance s along a streamline. Conversely,
the non-zero off-diagonal components σ1, σ2 are associated with shear γ̇α and vorticity
ωα (with α = r, q) within the ψ1 and ψ2 streamsurfaces. Note that ε̂23 = 0 due to the
helicity-free nature of the flow, hence there is no fluid shear in the direction orthogonal
to the flow direction, and fluid deformation is decoupled between the (1, 2) and (1, 3)
surfaces. As such, 3-D isotropic Darcy flow behaves as two superposed 2-D flows, and
the kinematics of these flows is overwhelmingly 2-D in nature. We will show that this
restriction has significant implications for fluid deformation, dispersion and mixing.

Several studies (Dentz et al. 2016b; Adachi 1986; Winter 1982) have shown that steady
2-D flows also admit an upper triangular velocity gradient tensor in streamline coordinates.
Lester et al. (2018) also show that steady 3-D helicity-free flows have an upper triangular
velocity gradient tensor in an orthogonal coordinate system comprised of velocity v,
vorticity ω and the Lamb vector � ≡ v × ω. However, it was shown subsequently (Lester
et al. 2019) that the Lamb surfaces associated with the Lamb vector (where Lamb
surfaces are level sets of the scalar potential field H, and � = ∇H) proposed by Sposito
(1997, 2001) do not exist for general steady 3-D helicity-free flows, so the orthogonal
vectors (v,ω, �) do not form a holonomic (coordinate) basis, and thus a coherent

945 A18-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

55
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.556


D.R. Lester, M. Dentz, A. Bandopadhyay and T. Le Borgne

coordinate system. Hence (4.20) is the first valid exposition that the velocity gradient
tensor in 3-D isotropic Darcy flow (and indeed all helicity-free flows) is upper triangular
and the coupling component ε̂23 is zero.

The upper triangular structure of the velocity gradient tensor in (4.20) admits
a particularly simple solution for the fluid deformation equation (4.4), in that the
deformation gradient tensor is also upper triangular:

F (Ξ , t) =
⎛
⎝ F̂11 F̂12 F̂13

0 F̂22 0
0 0 F̂33

⎞
⎠ , (4.21)

with det F (Ξ , t) = ∏
i F̂ii(Ξ , t) = 1 due to incompressibility. The diagonal components

of F (Ξ , t) are given by (4.4) as

F̂ii(Ξ , t) = exp
[∫ t

0
dt′εii(t′)

]
, i = 1, 2, 3, (4.22)

which can be solved explicitly via the change of variable dt = ds/v to yield

F̂11(Ξ , t) = v(t)
v(0)

, F̂22(Ξ , t) =
√
v(0)
v(t)

m(t)
m(0)

, F̂33(Ξ , t) =
√
v(0)
v(t)

m(0)
m(t)

,

(4.23a–c)

where v(t) = |v(ξ(t;Ξ))| and m(t) = m(ξ(t;Ξ)). In statistically stationary and isotropic
media, v(t) and m(t) fluctuate in a random and uncorrelated manner, hence the principal
strains Fii also fluctuate around a unit mean value due to local fluctuations in the fluid
velocity field. As such, the ensemble average for the principal strains are all unity,

〈F̂ii(Ξ , t)〉 = 1, i = 1, 2, 3, (4.24)

which is also reflected by the fact that all zero helicity density flows are non-chaotic
(Arnol’d 1965), hence the infinite-time Lyapunov exponent is identically zero:

λ = 〈ln F̂22(Ξ , t)〉 = −〈ln F̂33(Ξ , t)〉 = 0. (4.25)

In contrast, the magnitude of the non-zero shear strains F̂12, F̂13 grow without bound as

F̂12(Ξ , t) = v(t)
∫ t

0
dt′
ε12(t′) F̂22(Ξ , t′)

v(t′)
= v(t)

√
v(0)
m(0)

∫ t

0
dt′
σr(t′)

√
m(t′)

v(t′)3/2
, (4.26)

F̂13(Ξ , t) = v(t)
∫ t

0
dt′
ε13(t′) F̂33(Ξ , t′)

v(t′)
= v(t)

√
v(0)m(0)

∫ t

0
dt′

σq(t′)
v(t′)3/2

√
m(t′)

,

(4.27)

where the shear rates are σr(t) = σr(ξ(t;Ξ)) and σq(t) = σq(ξ(t;Ξ)). As particle
advection along a streamline is governed by the advection equation (2.5), these integrals
may be reformulated according to dt = ds/v(s), where s is the distance along a streamline,

945 A18-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

55
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.556


Fluid deformation in isotropic Darcy flow

leading to the spatial integrals

F̂12(s) = v(s)

√
v(0)
m(0)

∫ s

0
ds′ σr(s′)

√
m(s′)

v(s′)5/2
, (4.28)

F̂13(s) = v(s)
√
v(0)m(0)

∫ s

0
ds′ σq(s′)

v(s′)5/2
√

m(s′)
. (4.29)

Thus persistent fluid deformation in 3-D isotropic Darcy flows is due solely to the fluid
shears σr(s), σq(s) that are oriented in the orthogonal (1, 2) and (1, 3) surfaces that
are both parallel to the streamwise direction. An expression similar to (4.28) has been
derived by Dentz et al. (2016b) for the deformation of material elements in 2-D steady
heterogeneous flow in streamline coordinates. In the case of 2-D steady flow considered
by Dentz et al. (2016b), the stretching factor m(s) in (4.28) is omitted, and the denominator
of the integral contains a factor v3 rather than v5/2. Note that fluid deformation in
(1, 3) surfaces of 3-D isotropic Darcy flow (given by (4.29)) is very similar to that
of (1, 2) deformation (given by (4.28)), with the only differences that m(t) → 1/m(t)
and σr(t) → σq(t). Hence the extension from steady 2-D flow to steady isotropic 3-D
Darcy flow involves additional shear deformation in the (1, 3)-plane (which is absent
in 2-D), and a scaling factor

√
m(t)/m(0) that reflects the fact that whilst the overall

flow is volume-preserving, the (1, 2) and (1, 3) surfaces themselves are not necessarily
area-preserving.

In random stationary 2-D flows, the shear rate σ(s) has been shown (Dentz et al. 2016b)
to fluctuate around a mean value of zero, whilst the inverse velocity magnitude 1/v (which
corresponds to the waiting time distribution in a finite region of the flow) often follows a
heavy-tailed distribution for heterogeneous porous media. Dentz et al. (2016b) show that
for 2-D steady random flows, the correlation between fluid shear (σ) and velocity (as 1/v3)
processes leads to persistent elongation of material elements despite the zero mean nature
of the shear rate σ . For 2-D steady flows, the factors driving this 1/v3 = (1/v)(1/v)(1/v)
velocity dependence are as follows: (i) one factor 1/v arises from the increased residence
time of fluid elements in low-velocity regions; (ii) a second factor 1/v arises from the
compression of fluid elements in the streamwise direction while shear is being applied; and
(iii) the third factor 1/v is associated with the divergence of streamlines in low-velocity
regions. Hence episodes of low velocity (where the velocity can become vanishingly small)
in 2-D steady random flows can lead to a significant amplification of shear deformation
and persistent elongation of material elements in the streamwise direction.

The same basic mechanisms are at play in 3-D isotropic Darcy flow, with the exception
that the third factor above has a different scaling, 1/v5/2 = (1/v)(1/v)(1/v1/2), where
the third factor associated with streamline divergence in low-velocity regions has changed
from 1/v to 1/v1/2 due to the introduction of the third spatial dimension. In the case of 3-D
isotropic Darcy flow, there exist pairs of 2-D streamfunctions that diverge with changes
in the local velocity (rather than divergence of 1-D streamlines in steady 2-D flow),
as reflected by the scaling |∇ψ1| |∇ψ2| = v in (3.10a–c), so each set of streamsurfaces
diverges with respect to v as 1/v1/2. Quantitative differences in the divergence of each
set of streamsurfaces is quantified by the scalar function m = |∇ψ2|/|∇ψ1| introduced in
(3.10a–c). Thus, rather than 1/v for the third factor above for 2-D flows, the divergence of
streamsurfaces leads to a factor

√
m/v, 1/(

√
mv), respectively in the integrals of (4.28),

(4.29). Similar to the 2-D case, for random stationary flows, the longitudinal shears σr,
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σq have zero mean (as the ensemble-averaged or spatially averaged flow is a translation
flow with zero shear), and both the scale factor m and the fluid velocity v fluctuate in
a stationary manner. However, the net result of the interactions above is that for 3-D
isotropic Darcy flow, fluid stretching due to the shears σr, σq is amplified nonlinearly in
low-velocity regions (by the term v5/2 in (4.28), (4.29)), leading to persistent growth of
material elements.

5. Fluid deformation and streamline structure: numerical example

These dynamics and the structure of isotropic Darcy flow are illustrated in figure 1, which
depicts isotropic Darcy flow in a triply periodic unit cube (3-torus) T

3 : x ≡ (x1, x2, x3) =
[0, 1] × [0, 1] × [0, 1], with the spatially periodic hydraulic log-conductivity field

f (x) = 2.3 sin(2π(x1 + 0.34)) sin(4π(x2 − 0.14))

+ 0.9 sin(2π(x1 − 0.26)) sin(2π(x3 + 0.44))

− 1.5 sin(4π(x3 − 0.86)) sin(2π(x3 − 0.24)), (5.1)

shown in figure 1(a). Darcy flow in this porous medium is driven by the unit mean
potential gradient φ̄(x) = −x1, and the potential fluctuation φ̃(x) that results from spatial
heterogeneity of the hydraulic log-conductivity field f (x) (where φ(x) = φ̄(x)+ φ̃(x)) is
given by the Darcy equation (2.2) as

∇2φ̃ + ∇f · ∇φ̃ = ∂f
∂x1

, (5.2)

subject to periodic boundary conditions on T
3. Equation (5.2) is solved on a regular 2563

finite difference grid (corresponding to a resolution of 64 grid points per correlation length
of f (x)) via an iterative Krylov sparse method to precision 10−16, and the corresponding
potential field φ(x) is shown in figure 1(b). This grid resolution is required to generate a
high-precision continuous potential field φ(x) via cubic interpolation from the grid values,
and the velocity field is then given by (2.1). The corresponding relative divergence error
d(x) ≡ ∇ · v/‖∇v‖ from a sample of 105 random points in the domain is found to have
average error 0.05 %, and the helicity is identically zero.

Although this flow is solved numerically in terms of the flow potential φ rather than
the orthogonal streamfunctions ψ1, ψ2, the orthogonal structure of these streamfunctions
can be visualised via the deformation structure of the flow. Equation (4.21) shows that
in streamfunction coordinates, projection of the fluid deformation tensor F (Ξ , t) onto an
isopotential surface normal to the flow simply involves principal stretches in the ψ1, ψ2
directions,

F 2-D(Ξ , t) =
(

F̂22 0
0 F̂33

)
, (5.3)

as the helicity-free condition precludes transverse shear (as quantified by F̂23, F̂32).
These principal stretches can be used to identify the unique orthogonal streamfunction
coordinates in the computed Darcy flow. By computing the Cartesian deformation tensor
F (X , t) along a Lagrangian trajectory (reference streamline) of the flow shown as the black
line in figure 1(c), this deformation tensor can be rotated to align with the velocity vector,
and the projection into the 2-D isosurface is taken (see § 6 of the supplementary material
for details). The principal axes dr(t), dq(t) associated with the resultant 2-D transverse
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0 0

t = 0.6
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dq(t)
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Figure 1. Isosurfaces of (a) the log-conductivity field f (x) and (b) isopotential φ(x) surfaces for 3-D isotropic
Darcy flow in a triply periodic unit cube. The streamline and deformation structure of this flow is shown in
(c), where the reference streamline (black) is shadowed by two neighbouring streamlines that are offset in the
ψ1 (red) and ψ2 (blue) directions. Note that the scale transverse to the black streamline has been amplified
by a factor of 106 to aid visualisation, and the area of the ellipses scales inversely with fluid velocity v. The
black ellipses depict transverse fluid deformation at different time intervals from the reference state (circle)
at the start (leftmost end) of the streamlines, and the principal axes of these ellipses (which define the ψ1
and ψ2 coordinate directions) are given by the deformation tensor components F̂22(t), F̂33(t). As shown, the
red and blue streamlines always coincide with the principal axes of the deformation ellipses, thus maintaining
orthogonality of the streamline coordinates throughout the flow domain. The green line in (c) depicts the
evolution of a material line of length lr(t) that is initially oriented in the ψ1 direction.
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deformation tensor then identify the coordinate directions ψ1, ψ2, and are related to the
streamfunction deformation tensor components as

F̂22(t) = |dr(t)|
|dr(0)| , F̂33(t) = |dq(t)|

|dq(0)| , (5.4a,b)

As shown in figure 1(c), these principal axes dr(t), dq(t) coincide with (red, blue)
streamlines of the flow that are seeded at a distance of δ = 10−6 from the reference
streamline (black) in the ψ1, ψ2 directions. As the principal axes dr(t), dq(t) of the
deformation ellipse are always orthogonal, orthogonality of the streamfunctions ψ1, ψ2
arises throughout the flow domain.

Figure 1 shows clearly the basis for the existence and persistence of mutually orthogonal
streamfunctions in zero helicity flows. Here, the deformation transverse to the flow
direction consists of only fluid stretching and/or contraction via the principal axes, so these
principal axes form a continuous 2-D orthogonal coordinate system over an isopotential
surface normal to the flow. The absence of rotation associated with vortical motion in
these isopotential surfaces means that this 2-D orthogonal coordinate system then extends
in the streamwise direction, thus forming a continuous 3-D orthogonal coordinate system
that consists of the two families of streamsurfaces and the isopotential surfaces of the
flow. However, unlike the case for non-orthogonal streamfunctions (Lester et al. 2021; Zijl
1986), presently there is no known set of partial differential equations to generate these
orthogonal streamfunctions. The non-orthogonal streamfunctions (obtained by solution
of (2.9), (2.10)) of a similar Darcy flow are shown in Figure 5(b) of (Lester et al.
2021), and the associated orthogonal streamfunctions are expected to have a similar
structure. Fortunately, many of the theoretical results derived in this study in orthogonal
streamfunction coordinates can be translated into the Cartesian frame and so can be used
to understand and quantify the deformation structure of these flows.

Figures 2(a)–2(c) show the distribution of velocity magnitude v(t), shear rates σr(t),
σq(t), and relative streamfunction gradients

|∇ψ1(0)|
|∇ψ1(t)| =

√
v(0)m(t)
v(t)m(0)

= 1
δ

|dr(t)|, |∇ψ2(0)|
|∇ψ2(t)| =

√
v(0)m(0)
v(t)m(t)

= 1
δ

|dq(t)|,
(5.5a,b)

along the reference streamline shown in figure 1(c). Figure 2(d) shows the evolution of
the lengths lr(t) and lq(t) of two material lines of initial length δ = 10−6 and respective
orientation in the the ψ1 and ψ2 directions. As shown in figure 1(c), the lengths of these
material lines evolve with changes in the streamline spacing (as quantified by F̂22, F̂33)
and shear parallel to the streamwise direction (as quantified by F̂12, F̂13), and so are given
explicitly as

lr(t) = |F (X , t) · dr(t)| = δ

√
F̂12(t)2 + F̂22(t)2, (5.6)

lq(t) = |F (X , t) · dq(t)| = δ

√
F̂13(t)2 + F̂33(t)2, (5.7)

where the initial persistent growth of lr(t) and lq(t) arises through F̂12, F̂13. Figure 2 shows
clearly how fluid velocity, shear and streamline spacing control the growth of material
lines as described by (4.26), (4.27). For example, the rapid growth of lr(t) and lq(t) over
the time period t ∈ [2, 3] corresponds to the low-velocity region in figure 2(a), and the
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Figure 2. (a–c) Distributions along the black streamline shown in figure 1(c). (a) Distribution of velocity
magnitude v(t). (b) Distributions of shear rates: red line, σr(t); blue line, σq(t). (c) Distributions of
streamfunction gradients: red line, |∇ψ1(t)|/|∇ψ1(0)|; blue line, |∇ψ2(t)|/|∇ψ2(0)|. (d) Evolution of the
relative length l(t)/l(0) of a differential line element oriented initially along the ψ1 (red dashed line) and ψ2
(blue dashed line) coordinates computed from (5.6), (5.7). These relative lengths very closely match those
computed from both direct particle tracking (black lines) and the Cartesian deformation tensor (not shown,
indistinguishable).

growth of lr(t) is more pronounced than that of lq(t) due to the larger streamfunction
spacing in figure 2(c). Conversely, the low-velocity region in figure 2(a) over the period
t ∈ [6, 8] does not significantly alter lr(t) and lq(t) as the corresponding shear rates in
figure 2(b) are both small. Figure 2(d) shows that the calculation of lr(t) and lq(t) agrees
via: (i) computation of the Cartesian deformation tensor F (X , t); (ii) computation of
F̂12(t), F̂13(t), respectively, in (4.26), (4.27); and (iii) numerical calculation via particle
tracking. Hence this agreement validates derivation of the evolution of the deformation
gradient tensor in streamfunction coordinates in § 4. Note that although the flow field in
this example is not random (due to the deterministic nature of the hydraulic conductivity
field in (5.1)), the fluid velocity, shear rate and elongations along streamlines exhibit
intermittent behaviour similar to that observed for steady random 3-D flows (Lester et al.
2018). For such random flows, intermittency of fluid velocity, shear rate and material
deformation is due to the persistence of the flow velocity over the correlation scale of the
hydraulic conductivity field and decorrelation over longer length scales. Such observations
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form the basis for a stochastic model of fluid deformation in random isotropic 3-D Darcy
flow that will be developed in the next section.

6. Fluid deformation as a continuous time random walk

For steady 3-D isotropic Darcy flow with a random stationary hydraulic conductivity field,
the evolution of fluid velocity may be placed in a CTRW framework (Berkowitz et al.
2006). As fluid deformation is driven by the velocity gradient ∇v along streamlines, these
processes may also be described by a CTRW process. In this section, we use the CTRW
framework to develop closed-form predictions of fluid deformation in heterogeneous
isotropic Darcy flow from the deformation evolution equations (4.28) and (4.29). At both
the pore and Darcy scales, it is well established that the fluid velocity along a streamline
in heterogeneous porous media follows a spatial Markov process (Le Borgne, Dentz &
Carrera 2008a,b; De Anna et al. 2013; Edery et al. 2014; Kang et al. 2011; Hakoun,
Comolli & Dentz 2019; Comolli, Hakoun & Dentz 2019). Coarse-graining particle motion
on the order of the streamwise correlation length �, the advection equation (2.5) may be
described by the CTRW

sn+1 = sn + �, tn+1 = tn + �

vn
≡ tn + τn, (6.1a,b)

where sn is the spatial distance along a streamline at time tn, vn is the corresponding fluid
velocity, and � is the correlation length of the hydraulic conductivity field. Due to statistical
stationarity of the conductivity field and Markovianity of the velocity distribution over
distance �, the velocities vn ≡ v(sn) are identical independently distributed random
variables distributed according to the probability density function (PDF) pv(v), which
is related to the Eulerian velocity PDF pe(v) as pv(v) ∝ vpe(v) (Dentz et al. 2016a).
For strongly heterogeneous media, the Eulerian velocity distribution shows algebraic
behaviour for small velocities (Hakoun et al. 2019; Comolli et al. 2019). This implies that
the PDF ψ(t) of the temporal increment τn in (6.1a,b) is broadly distributed as

ψ(t) = �

t2
pv

(
�

t

)
. (6.2)

6.1. Deformation evolution as a coupled continuous-time random walk
The coarse-grained equations of motion (6.1a,b) of a particle in the CTRW framework
can also be used to coarse-grain the deformation evolution equations (4.28) and (4.29),
resulting in

F̂12(sn) ≡ F̂12,n = vn
√
v0m0 I12,n, F̂13(sn) ≡ F̂13,n = vn

√
v0

m0
I13,n, (6.3a,b)

where the coarse-grained integrals I12,n and I13,n in (4.28) and (4.29) are approximated as

I12,n ≈
n∑

i=1

ρr,n�, ρr,n ≡ σr,n

σc

(
vc

vn

)5/2 √
mn

mc
, (6.4a,b)

I13,n ≈
n∑

i=1

ρq,n�, ρq,n ≡ σq,n

σc

(
vc

vn

)5/2 √
mc

mn
. (6.5a,b)
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Thus I12,n and I13,n satisfy the recursion relations

I12,n+1 = I12,n + ρr,n�, tn+1 = tn + �

vn
= tn + τn, (6.6a,b)

I13,n+1 = I13,n + ρq,n�, tn+1 = tn + �

vn
= tn + τn, (6.7a,b)

where the subscripts c and n on v, σ , m respectively denote characteristic values of these
variables and their values at position sn. Equations (6.6a,b) and (6.7a,b) are coupled
CTRWs in the sense that the process increments ρr,n and ρq,n and the time increments
τn are fully coupled via the local velocity vn. Dentz et al. (2016b) assume that for steady
2-D flows, the absolute value of the shear rate σn is correlated strongly with the velocity
magnitude vn. For statistically isotropic Darcy flow, σr and σq have the same probability
distribution. Indeed, for the model Darcy flow considered in § 5, σr and σq have the same
distribution, and figure 3(a) indicates that both |σr| and |σq| are correlated strongly with
the square of the velocity magnitude as |σr,n|, |σq,n| ∝ v2

n . In general, the shear rate may
be correlated with the velocity magnitude as

|σi,n| = ζnσc

(
vn

vc

)α̂
, i = (r, q), (6.8)

where α̂ ≈ 2, 1 for 3-D and 2-D flows, respectively, and ζn is a random variable equal
to ±1 with equal probability. Equation (6.8) is a general power-law correlation between
the local shear rate σi,n and velocity vn. Several studies (Dentz et al. 2016b; Lester et al.
2018) have found such a correlation to hold for steady random 2-D and 3-D flows. For
statistically isotropic Darcy flows, the logarithm of the streamfunction relative gradient
ln mn is distributed symmetrically about ln m = 0, so in conjunction with the equivalence
of the distribution of |σr| and |σq|, the increments ρr, ρq and thus the integrals I12, I13
respectively have the same distributions. Indeed, figure 3(b) shows that for the model
Darcy flow in § 5, the logarithm of the streamfunction relative gradient ln mn follows
a normal distribution with zero mean and variance σ 2

ln m = 6.533 and is found to be
uncorrelated to velocity or shear rate. From (6.8), (6.4a,b) and (6.5a,b), the process
increments ρi,n in the coupled CTRWs (6.6a,b) and (6.7a,b) are related to the transition
times τn = �/vn as

ρi,n = ζn

(
τn

τv

)α
, α = 5

2
− α̂, i = (r, q), (6.9)

where τv ≡ �/vc, 〈ρ〉 = 0 and |ρi,n| = (τn/τv)
α . In contrast to (6.9), for 2-D flows the

index for the elongation increments is related to α̂ as α = 3 − α̂ (Dentz et al. 2016b),
reflecting the stronger coupling between low-velocity regions and fluid deformation in
these flows. The joint PDF ψ(ρ, τ) of the process increments and transition times is then

ψ(ρ, τ) = 1
2
δ

[
|ρ| −

(
τ

τv

)α]
ψ(τ). (6.10)

Thus the index α can differ significantly between 2-D and 3-D flows: for 2-D flow, Dentz
et al. (2016b) finds α = 3 − α̂ = 2, whereas for steady 3-D Darcy flow, α = 5/2 − α̂. For
the specific Darcy flow considered in § 5, it is observed in figure 3(a) that α̂ = 2, hence
α = 5/2 − α̂ = 1/2, but different values of α are possible for other steady isotropic 3-D
Darcy flows. These differences in α can result in qualitative differences in the deformation
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Figure 3. (a) Correlation between absolute shear rate |σ(t)| and velocity v(t), showing α̂ = 2.
(b) Distribution of relative streamfunction gradient m(t) = |∇ψ1|/|∇ψ2| for the model 3-D Darcy flow
considered in § 5.

behaviour in these flows. Many porous media flows, including heterogeneous Darcy flow
(Hakoun et al. 2019), are characterised by a power-law velocity distribution pv(v) ∝
(v/vc)

β−1 for velocities smaller than a characteristic velocity vc, where β decreases with
increasing heterogeneity of the hydraulic conductivity field. The corresponding transition
time PDF scales as ψ(τ) ∝ (τ/τv)

−1−β for τ > τv . Under these conditions, the CTRWs
(6.6a,b) and (6.7a,b) describe a coupled Lévy walk (Dentz et al. 2015) for each of the
deformation tensor components F̂12, F̂13 that is parametrised by α and β.

The dynamics of this class of coupled Lévy walk has been considered previously in
detail by Dentz et al. (2015), so these results can be applied directly to the CTRWs (6.6a,b)
and (6.7a,b). Dentz et al. (2015) derive a range of algebraic scaling behaviours for the
moments of In that depend upon the parameters α and β, which have also been used by
Dentz et al. (2016b) to quantify fluid deformation in steady 2-D flow. For the case of
fluid deformation in steady isotropic 3-D Darcy flow, the results from Dentz et al. (2015)
indicate that for α � 1, the growth of the absolute value of the deformation components
〈|F̂1i(t)|〉 ranges from diffusive (〈|F̂1i(t)|〉 ∼ t1/2) to superlinear (〈|F̂1i(t)|〉 ∼ t1+α−β )
growth depending upon the relative magnitudes of α and β. For cases where α < 1,
Dentz et al. (2015) show that growth of the deformation components ranges from diffusive
for β > 2α to dispersive for 1 < β < 2α to weakly anomalous for 0 < β < 1, where the
deformation components evolve as 〈|F̂1i(t)|〉 ∼ tr, with

r =

⎧⎪⎨
⎪⎩
α, 0 < β < 1,
1
2 + α − β

2 , 1 < β < 2α,
1
2 , 2α < β.

(6.11)

These scalings are tested by comparison with numerical evaluation of the CTRWs (6.4a,b),
(6.5a,b) for various values of α and β, and the results are shown in figure 4. As expected,
(6.11) recovers the correct scaling behaviour of the absolute values of the integrals
|I12|, |I13| at long times, and the PDFs of |I12|, |I13| at t = 103 are well described by a
half-normal distribution. Thus fluid deformation in random stationary 3-D isotropic Darcy
flows can admit a diverse range of behaviour ranging from diffusive to superlinear growth,
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Figure 4. (a) Evolution of integrals 〈|I(t)|〉 = 〈|I12(t)|〉 = 〈|I13(t)|〉 from numerical solution of the CTRWs
(6.6a,b), (6.7a,b) (solid lines) and comparison with scalings given by (6.11) (dashed lines) for various values
of α and β. (b) PDF of |I(t)| (points) and fitted half-normal distribution (lines) from numerical solution of
(6.6a,b), (6.7a,b) for various values of α and β at t = 103.

depending upon the correlation between fluid shear and velocity (as characterised by α)
and scaling of the velocity PDF in the small velocity regime (as characterised by β). This
coupling leads to algebraic growth of the transverse deformation components as

〈|F̂12(t)|〉 ∼ tr2, 〈|F̂13(t)|〉 ∼ tr3, (6.12a,b)

where the power-law indices 0 < r2, r3 < 2 exhibit different scaling regimes (quantified
by (Dentz et al. 2015)) that depend upon the specific values of α and β. It is useful to
note that α appears to vary minimally from one medium to the next, whereas β decreases
with increasing medium heterogeneity (Dentz et al. 2016b), hence it may be possible to
approximate these parameters from field studies. Although there exist minor differences in
values of these exponents for 2-D and 3-D isotropic Darcy flows, the basic mechanism of
persistent deformation in 3-D Darcy flows is remarkably similar to that of 2-D flow, where
intermittency of low-velocity regions can amplify fluid stretching nonlinearly due to shear
oriented parallel to the streamwise direction. The power-law growth of F̂12(t) and F̂13(t)
in (6.12a,b) is consistent with the theory (Arnol’d 1965; Ottino 1989) that all non-chaotic
helicity-free steady flows involve fluid deformation that scales algebraically in time. The
novelty of the CTRW framework is that it quantifies the scaling laws for fluid deformation,
and facilitates identification of the mechanisms that govern the various scaling regimes.

6.2. Longitudinal and transverse deformation
To illustrate how the deformation tensor controls longitudinal and transverse deformation
of fluid elements, we decompose F (Ξ , t) into longitudinal and transverse components,
respectively, as F (Ξ , t) = F l(Ξ , t)+ F t(Ξ , t), where

F l(Ξ , t) ≡ diag(ĝ1) · F (Ξ , t) =
⎛
⎝ F̂11 F̂12 F̂13

0 0 0
0 0 0

⎞
⎠ , (6.13)
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F t(Ξ , t) ≡ diag(ĝ2 + ĝ3) · F (Ξ , t) =
⎛
⎝ 0 0 0

0 F̂22 0
0 0 F̂33

⎞
⎠ , (6.14)

where diag(a) is a diagonal matrix comprised of the vector a along the diagonal. From
(4.1), a differential line element δl(Ξ , t) at Lagrangian position Ξ at time t = 0 evolves
with time as

δl(Ξ , t) = F (Ξ , t) · δl(Ξ , 0) = F l(Ξ , t) · δl(Ξ , 0)+ F t(Ξ , t) · δl(Ξ , 0)

≡ δll(Ξ , t)+ δlt(Ξ , t), (6.15)

and so may be decomposed into its longitudinal δll(Ξ , t) and transverse δlt(Ξ , t)
components. Similarly, the length δl(t) of these line elements can also be decomposed
as δl(t)2 = δll(t)2 + δlt(t)2 via

δl(t) ≡ |δl(Ξ , t)| =
√
δl(Ξ , 0) · (F T

l (Ξ , t) · F l(Ξ , t)+ F T
t (Ξ , t) · F t(Ξ , t)) · δl(Ξ , 0)

≡
√
δll(t)2 + δlt(t)2. (6.16)

From (6.15), we characterise longitudinal and transverse fluid deformation respectively in
terms of the metrics Λl(t), Λt(t) as

Λl(t) ≡
〈
δll(t)
δll(0)

〉
= 〈‖F l(Ξ , t)‖〉 = 〈

√
F̂11(Ξ , t)2 + F̂12(Ξ , t)2 + F̂13(Ξ , t)2〉, (6.17)

Λt(t) ≡
〈
δlt(t)
δlt(0)

〉
= 〈‖F t(Ξ , t)‖〉 = 〈

√
F̂22(Ξ , t)2 + F̂33(Ξ , t)2〉, (6.18)

where Λl(t) characterises the longitudinal stretching of fluid elements along streamlines
due to shear and vorticity, whereas Λt(t) characterises the transverse deformation due
to the separation of streamlines. In Lester et al. (2018), we show that the growth rates
of these differential deformation metrics are important for different applications. For the
pulsed injection of a tracer, growth of the longitudinal metric Λl(t) governs longitudinal
mixing and dispersion of the resultant solute plume. For steady 2-D Darcy flow, the mean
and variance of the growth of Λl(t) act as inputs (along with the Péclet number Pe) for
predictive models (Le Borgne et al. 2013, 2015) of mixing and dispersion in 2-D Darcy
flow. Conversely, for continuous injection of a tracer, the growth rate of the transverse
element Λt(t) characterises the transverse mixing and dispersion of the plume. Along
with the Péclet number Pe, the mean and variance of the growth rate of Λt(t) are used
by Lester et al. (2016b) to predict mixing of a continuously injected source in steady 3-D
pore-scale flow. From (4.24) and (6.12a,b), we find that for 3-D steady isotropic Darcy
flow, the longitudinal deformation of fluid elements can grow algebraically, whereas the
transverse deformation of fluid elements is zero:

Λl(t) ∼ tr, Λt(t) ∼ 1. (6.19a,b)

In conjunction with molecular diffusion, these deformation rates control the dispersion
and mixing of solutes and colloids in isotropic Darcy flow.

7. Conclusions

We have considered the impacts of the Lagrangian kinematics of steady 3-D isotropic
Darcy flow upon fluid deformation in isotropic heterogeneous porous media. These flows
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are characterised by the fact that they are helicity free in that the velocity is everywhere
orthogonal to the vorticity, which severely constrains their kinematics. These flows admit
a pair of coherent streamfunctions. The intersection of their corresponding streamsurfaces
forms highly constrained streamlines that cannot be knotted or braided. Furthermore,
as pairs of streamlines cannot diverge, there is zero transverse macro-dispersion. This
behaviour arises as streamlines of isotropic Darcy flow are confined to coherent 2-D
streamsurfaces that are topologically planar, hence many of the kinematic constraints of
2-D steady flows apply to steady isotropic 3-D Darcy flow. To quantify the impact of
these kinematic constraints upon fluid deformation, solute mixing and dispersion, we have
used the properties of isotropic Darcy flows to develop an orthogonal coordinate system
(comprised of the two streamfunctions and fluid pressure) that imposes automatically
the kinematic constraints of these flows. We use this coordinate system to solve the
fluid deformation evolution equations in 3-D isotropic Darcy flow, and find that it is
remarkably similar to 2-D Darcy flow in that fluid elements do not persistently deform
transversely (consistent with zero transverse macro-dispersion), and deform longitudinally
only due to shear flow parallel to the flow direction. We develop a coupled continuous
time random walk (CTRW) framework to describe the evolution of fluid deformation
in the streamfunction coordinates, and show how the structure of these flows controls
this process. We introduce measures of ensemble-averaged longitudinal (Λl(t)) and
transverse (Λt(t)) fluid deformation, and show that although transverse deformation is zero
(Λl(t) ∼ 1), longitudinal deformation grows algebraically at a rate that can range from
sub-diffusive to ballistic (Λl(t) ∼ tr, r ∈ [0, 2]), and the various scalings match direct
numerical calculations of the stretching CTRW. Similar to steady 2-D flow (Dentz et al.
2016b), the stretching index r is controlled by intermittency of the fluid velocity and its
correlation with the local shear field. These findings shed light onto the deformation
dynamics of steady 3-D isotropic Darcy flows, and provide a basis for quantitative
prediction of solute mixing, dispersion and transport in strongly heterogeneous porous
media.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.556.
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