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THE DOUBLE 5-DUAL OF AN INNER PRODUCT 
MODULE OVER A C*-ALGEBRA B 

WILLIAM L. PASCHKE 

1. Introduction. The principal result of this paper states that if X is a 
pre-Hilbert ^-module over an arbitrary C*-algebra B, then the ^-valued inner 
product on X can be lifted to a ^-valued inner product on X" (the ^-dual of the 
.B-dual X' of X). Appropriate identifications allow us to regard X as a submodule 
of X" and the latter in turn as a submodule of X'. In this sense, the inner product 
on X" is an extension of that on X. As an example (and application) of this 
result, we consider the special case in which X is a right ideal of B and give a 
topological description of X" when in addition B is commutative. 

We begin by recalling some definitions and facts from [3]. Let B be a C*-
algebra and X a right ^-module. We denote the right action of b £ B on x £ X 
by x • b ; it is assumed that X has a vector space structure compatible with that 
of B in the sense that \(x • b) = (\x) • b = x • (\b) for all x 6 X, fr G B, X G C 
(the complex field). A B-valued inner product on X is a conjugate-bilinear map 
(• , • ) :X X X —> B satisfying : 

(i) (x,x) ^ 0; 
(ii) (x, x) = 0 only if x = 0; 

(hi) (x,y) = (y,x)*-, 
(iv) (x - b,y) = (x, y)b for x, y £ X, b £ B. 

A pre-Hilbert B-module is a right ^-module equipped with a ^-valued inner 
product. Any pre-Hilbert ^-module X has a natural norm ||-||x defined by 
I Mix = ||(x, x)||1/2(x G X) with respect to which X is a normed ^-module 
(i.e. the map (x, b) —> x - b oî X X B into X is jointly continuous) [3, 2.3]. 

If F is a normed 5-module, we let Y' (the B-dual of Y) denote the set of all 
bounded module maps (i.e. ^-linear maps) of Y into B. Y' becomes a vector 
space if we define scalar multiplication on Y' by (\F)(y) = \F(y) (X £ C, 
F G Y', y G F) and add maps elementwise. We make Y' into a right ^-module 
by setting (F • &)(?) = b*F(y) (F € Y',b £ B,y £ F). For F G F r , | | F | | r , will 
denote the norm of F as a bounded linear map from Y to B. 

If X is a pre-Hilbert ^-module, then by [3, 2.8] X' is precisely the set of 
(complex) linear maps r\X -+ B such that for some real K ^ 0, T(X)*T(X) S 
K(x, x) for all x G X. Moreover, | |r| |x' for such a map r is the infimum of the 
square roots of all such constants K. Each x G X gives rise to a map x ^ X' 
defined by x{y) = (y, x)(y Ç X). The map x —» x is an isometric module map 
of X into X' . We may thus regard X as a submodule of X ' by identifying X 
with X. 
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In case B = C (so X is a pre-Hilbert space), Xf is of course jus t the Hilbert 
space completion of X , bu t in general the relationship between X and X' is 
less simple. For example, let X denote the set of all sequences b = (61, Ô2, • • •) 
of elements of B such t ha t Y^n=i bn*bn converges in norm. X is a r ight ^ -modu le 
under coordinatewise right multiplication by elements of B. For a, b G X, it is 
easy to see t h a t ]C/T=i K*an converges in norm ; if we set 

(a, b) = £ ) bn*an, 
n=l 

then (• , • ) is a ^ -va lued inner product on X. One checks t h a t X is a Hilbert 
^ -modu le , i.e. is complete with respect to ||*||x- I t also turns out , however, t h a t 
X' may be identified with the right ^ -modu le of all sequences b such t h a t the 
sequence {£*=i bk*bk}™=i is norm-bounded, normed by sett ing | | b | | X ' = 
s u p { | l l ^ = i bk*bk\\

1/2 : n = 1, 2, . . . } . In general, then, X' may be quite a bit 
larger than X even when X is complete. 

I t was shown in [3] t ha t if B is a IF*-algebra, then the .£>-valued inner product 
on any pre-Hilbert ^ -modu le X lifts to a ^ -va lued inner product on X' 
satisfying (x, r) = r(x) for all x G X, r G X'. T h e proposition below shows 
t h a t this extension cannot be carried out for even the simplest sort of pre-
Hilber t 5-module unless B is a t least an A W*-algebra. (Notice t ha t any right 
ideal / of B is a pre-Hilbert ^ -modu le with ^ -va lued inner product given by 
(x, y) = y*x(x, y G / ) . ) 

1.1 PROPOSITION. Let B be a C*-algebra with the property that for every right 
ideal J of B, there is a B-valued inner product (• , • ) on J' satisfying (x, T ) = T(X) 
for all x £ J, T £ J'. Then B is an AW*-algebra. 

Proof. Let J be a right ideal of B. I t will suffice to show t h a t L(J) = Bp for 
some projection p £ B, where L(J) is the left annihilator of / . For a G B, 
define à G / ' by à(x) = a*x(x G J) and let rt G Jf denote the inclusion map of 
/ i n t o B. Notice r* • a = a for a G B and t ha t x = x for x £ J. Set q = (r*, rt). 
Then q = q* and, for x £ J, qx = q{x) = (r* • x, r*) = {x, T<) = (x, rt) = 
Ti(x) = x. (In the case J = B, this reasoning shows t h a t B necessarily has 1.) 
We thus have q = ru so q2 = (r* • q, rt) = {q, rt) = {ru Tt) = q, i.e., g is a 
projection. Set p = 1 — q, so p is a projection in L(J). For a G L(J)*, we have 
a = 0, so qa = (rz- - a, rt) = (a, r*) = 0, which shows t h a t ap = a for all 
a G £ ( / ) • Hence L{J) = i>£, as required. 

For an arb i t rary C*-algebra B and an arbi t rary pre-Hilbert 5-module X, 
then, we cannot expect to be able to extend the inner product on X to an inner 
product on X'. T h e next best thing would be to lift the inner product to the 
right ^ -modu le X" (the J3-dual of the normed I?-module X'). We will show in the 
next section t h a t this can be done in general. 

Before embarking on the construction of the lifted inner product , we es­
tablish some more notat ion. For x G X , define x G X"byx(r) = T(X)*(T G Xf). 
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T h e m a p x —» x is an isometric module m a p of X into X". For T G X", define 
r G X' by T(x) = T(x) (x G X ) . If we identify X with X , T is jus t the restric­
tion of T to X. Notice t h a t (x)~ = x for all x G X . I t is clear t h a t the m a p T —» f 
is a module m a p of X " into X ' and t h a t \\V\\X' ^ | | r | | ^ / for T G X". We will 
show among other things t h a t this m a p is in fact an isometry. After making all 
permissible identifications, we can then a r ray the modules X , X ' , and X" as 
X c X" ç X'. 

2. T h e i n n e r p r o d u c t o n X " . Th roughou t this section, B will denote an 
a rb i t ra ry C*-algebra (not assumed to possess a un i t ) , and X an a rb i t ra ry pre-
Hilber t J3-module. Our candidate for a ^ -va lued inner p roduc t on X" is a fairly 
obvious one ; we define (• , - } : X " X X" -> B by <I\ $> = $ ( f ) ( I \ $ G X " ) . 
This m a p is conjugate-bilinear and satisfies ( r •&,<£) = ( r , $)& for T, 
$ G X " , b £ B. For x, y G X , we have (x,y) = y((x)~) = y(#) = x(;y)* = 
{x, y), so (• , • ) is an extension of the original inner p roduc t on X in the appro­
pr ia te sense. Our problem is to show t h a t ( r , T) ^ 0 for all T G X" and t h a t 
( r , r ) = Oonly if r = 0. ( I t will follow easily from this t h a t <I\ $ ) * = < $ , r ) 
for all T, $ G X".) 

Consider the r ight .S-module B X X . This module possesses a na tura l i>-
valued inner product {• , •} defined by {(a, x) , (b,y)} = b*a + (x, y) 
(a, ô G B, x, y G X ) . I t will be useful for us to define some other inner products 
on B X X in the following manner . T a k e r ^ I ' ( r ^ 0) and t > | | T | | X ' . For 
(a,x), (b,y) G B X X , set 

[(a, * ) , (b, y))Ttt = /26*a + 6*r(x) + r(^)*a + <*, y). 

T h e m a p [• , -]T>t:(B X X ) X CB X X ) —> B is clearly conjugate-bilinear and 
satisfies (iii) and (iv) of the definition of a ^ -va lued inner product . T o check 
t h a t (i) and (ii) hold also, take (a, x) G B X X and observe t h a t 

[(a, x), (a, x)]Ttt = t2a*a + a*r(x) + r(x)*a + (x, x) 

^ /2a*a + a*r(*) + r(x)*a + \\T\\X-2T(X)*T(X) 

^ t2a*a + a*r(x) + r(x)*a + r 2 r ( x ) * r ( x ) 

= (to + 1rlT(x))*(ta + t-xT{x)) ^ 0, 

where we have used the fact t h a t T(X)*T(X) S | |T | |X / 2 (#> a;) to obtain the first 
inequali ty. Hence, (i) holds. If [(a, x) , (a, #)],-,* = 0, then we have equal i ty a t 
each step above and in part icular (||r||X'~~2 — £ _ 2 )T(X)*T(X) = 0, so r(x) = 0, so 
t2a*a + (x, x) = 0, so a = 0 and x = 0, which establishes (ii). T h e m a p [• , -]T,t 
is thus a ^ -va lued inner product on X . 

Let ||-||T,« be the norm o n ^ X l got ten from this inner product . Observe 
t h a t \\x\\x = 11CO, x)\\r,t for all x G X . For x, y G X , 6 G -B, we have 

| | ( T . & + 4>)(*)|| = ||&*r(*) + <*,y>ll 
= l |[(0,x),(6,;y)UI 

^ ll(0,x)|| r i l | |(6,y)llr.i 
= IWWI(6,y)llr.i, 
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the inequality holding by virtue of [3, 2.3]. We conclude that \\T • b + y\\xf Û 
| |(ft,y)llr.*forally G I . K 5 . 

This construction is the main ingredient in the proof of our next proposition. 

2.1. PROPOSITION. Let Y be a submodule of X' containing X. For any F G Y', 
we have \\F\\Y> = \\F\X\\. 

Proof. We may assume without loss of generality that | |F| |F / = 1. Define 
r G Xf by r(x) = F(x) (x f I ) . We have | |T | | X ' ^ 1 and must establish the 
reverse inequality. 

Take \f/ G Y with \\\l/\\xf < 1 and set c = T(\p). For brevity, let [• , •] denote 
the jB-valued inner product [• , -]^,i o n ^ X l denned above and let ||-|| be 
the corresponding norm on B X X. For a G B, x G X, we have 

\\ca + r(x)\\ = \\F& • a + x)| | ^ ||* • a + x\\x, ^ ||(a, x)\\, 

so the map (a, x) —> ca + T(X) of B X X into B is a bounded module map of 
norm ^ 1 with respect to the inner product [•»•]. By [3, 2.8], we have 
(ca + r(x)Y(ca + T(X)) ^ [(a, x), (a, x)] for all a G B, x G X. That is, 

a*£*ca + a*c*r(x) + r(x)*ca + T(X)*T(X) ^ a*a + a*\p(x) + \p(x)*a + (x,x). 

Setting a = — 2^(x) and collecting terms, we obtain 

fy(x)*c*c#(x) + T(X)*T(X) ^ (x} x) + 2(^(X)*C*T(X) + T(x)*cf(x)) 

for x G X. But 

\p(x)*c*r(x) + r(x)*c^(x) ^ \p(x)*c*c\f/(x) + r(x)*r(x), 

so 

2i/'(x)*c*q/'(x) ^ (x, x) + T(X)*T(X) 

S (1 + \\T\\X,*)(X,X) 

for all x e X. Hence ||^ • c*\\x> ^ 2~1/2(1 + | |T | |X ' 2 ) 1 / 2 and consequently 

IIW-OH = \\cd*\\ = |k||2 ^ 2-^(1 + ||r||x,
2)1/2. 

This holds for any \p G F with \\^\\x' < 1Î since ||<F||r' = 1, we must therefore 
have 1 S 2"1/2(1 + ||r||A-2)1/2, which forces ||r||x> ^ 1. This completes the 
proof. 

Notice that if we take Y = X', then 2.1 shows in particular that the map 
r —» r is an isometry of X" into X'. 

We will need the following lemma to show that (I\ Y) ^ 0 for V G X". 

2.2. LEMMA. Suppose c G B is such that for every a G B with a ^ 0, there is a 
state f of B such that f(aca) = ||aca||. Then c ^ 0. 

Proof. Write c = h + ik with h = A* and A = A*. We first claim that 
||aca|| = \\aha\\ for every a G B with a ^ 0. To see this, l e t / be a state of B 
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such that f(aca) = \\aca\\. Since aha and aka are self-ad joint, we must have 
f(aka) = 0, so \\aca\\ = f(aha) ^ ||a&a||. Now let g be a state of B such that 
\g(aha)\ = \\aha\\. We have 

\g(aca)\2 = \g(aha) + ig(aka)\2 

= g(aha)2 + g(aka)2 

S \\aca\\2 ^ \\aha\\2 = g(aha)2. 

This forces g(aka) = 0 and \\aca\\ = \\aha\\. 
Now write k = k+ — k~, where k+, k~ ^ 0 and k+k~ = k~k+ = 0. We claim 

that k+ = 0. For this, let g be a state of B such that \g(k+hk+)\ = \\k+hk+\\. As 
in the reasoning above, we must have g(k+kk+) = g((k+)2) = 0, so k+ belongs 
to the left kernel of g, so g(k+hk+) = 0, so k+hk+ = 0. But we know that 
\\k+hk+\\ = \\k+ck+\\, so 0 = k+ck+ = k+hk+ + ik+kk+ = i(k+)\ so k+ = 0. 

The hypothesis of the lemma is satisfied by c* = h + ik~ as well as by c, so in 
like manner we have k~ = 0, so k = 0, i.e.,c = c*. 

The lemma now follows by application of the functional calculus. If 
sp(c) P\ ( — oo,0) were non-empty, we could find a non-zero, non-negative 
continuous function F on sp(c) such that F([0, +co) P\ sp(c)) = {0}. Setting 
a = F(V), we would then have a ^ 0 and aca ^ 0, a contradiction. 

2.3 PROPOSITION, (r , T) ^ 0 and | | ( r , r ) | | = | | r | | ^ / 2 / ^ al1 r £ ^ ' / -

Proo/. Take Y £ X " (r ^ 0) and set c = r ( f ) , £> = | | r | | x „ (= ||r||A-
by 2.1). We first show that D2 £ sp(c). For / > P>, consider the ^-valued inner 
product [• , -]rtt on B X X. The map (a, x) —» r ( f • a + x) = ca + f (x) is a 
bounded module map of B X X into 5 of norm ^ D with respect to this inner 
product (since ||f • a + x\\X' S ||(a, #)||f,« for (a, x) £ B X X). Hence 

(ca + r(x))*(ca + f (x)) ^ £>2[(a, x), (a, x)]ftt 

for a ^ 5 , x G I by [3, 2.8]. This holds for every / < D, so we have 

(ca + T(x))*(ca + f (*)) S D2(D2a*a + f(x)*a + a*f(x) + <x, x)) 

for a G B, x £ X. Setting a = — D - 2 f (x), we obtain 

r(x)*(£>-2c - i)*(£>-2c - l)r(x) ^ P2(-£-2r(x)*r(x) + <x, x)) 

and hence 

f (x)*((D-2c - l)*{D~2c - 1) + l)T(x) ^ £>2(x, x) , x e X. 

Now if D2 g sp(c), we can find a 5> 0 such that 

r(x)*((D"2c - l)*(£>"2c - l ) ) f (x) ^ <5f (x)*r(x), x G X. 

We would then have 

f (x)*r(x) ^ D2(i + Ô)-1^, x), x e x, 
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forcing 

D2 = \\T\\X>2 ^ D2(l + ô)~\ 

a contradiction. Hence D2 G sp(c). 

ButlkH = ||r(D|| ^ | | r | | x ^ | r | | x ^^so |k | | =^,i.e.,| |(r,r)|| = l|r|U-2 

and | | (r , r ) | | G s p « r , r » . For a G 5 , a ^ 0, we have 

||aca|| = | | a* r ( r - a ) | | = | | ( r • a, T • a ) | | G s p « r • a, T • a)) = sp(aca), 

so c ^ 0 by 2.2. This completes the proof. 

We have shown in 2.3 that the map (• , • ) satisfies (i) and (ii) of the definition 
of a ^-valued inner product. Property (iii) now follows routinely from the fact 
that <r + $, T + $> ^ Oand (r + i$, T + i$) ^ 0 for all T, $ G X " . X " i s a 
Hilbert ^-module with respect to the inner product we have introduced since 
(by 2.3) the norm on X" gotten from this inner product coincides with the 
operator norm ||-||X". For F G (X")' , define rF G X' by rF{x) = F(x) (x G X) 
and for r G X' define FT G (X")' by Fr(T) = r ( r )* (r G X") . The maps 
F -^ rF and r —> FT are module maps ; using 2.1, one checks that they are isom-
etries and inverses of each other. We thus have (X")' = X' and (X")" = X". 
We summarize the results of this section in the theorem below. 

2.4. THEOREM. The map (• , -)\X" X X" - • B defined by (I\ $ ) = $ ( r ) 
(r, <î> G X") 5̂ a B-valued inner product on X". The norm obtained from this 
inner product coincides with the operator norm on X". The map Y —> T is an 
isometry of X" into X'. 

3. Right ideals of B. In this section we investigate the double B-dua\ of a 
right ideal J of a C*-algebra B, where J is considered as a pre-Hilbert 5-module 
with 5-valued inner product defined by (x, y) = y*x(x, y G / ) . 

Let n G J' denote the inclusion map of J into B and set 

J = {r(r,)*:r G / " } . 
/ i s clearly a linear subspace of B and in fact a right ideal, since for b G B,T G J", 
we haveJ(Ti)*& = (&*r(Ti))* = ((r • b)(Ti))*. For x G / , we have * (T , )* = *, 
so / C J. 

3.1. PROPOSITION. J is closed. J" and J are isomorphic as Hilbert B-modules via 
the map V —> r(T<)*. 

Proof. We have observed that the map in question is a module map ; it is 
contractive since | |T*| |J ' = 1. Observe that for x, y £ J, we have (r* • x)(y) = 
x*Ti(j) = %*y = x(y)> so n • x = x (x G / ) . Hence 

| | r | | , „ = ||r|U- = s u p { | | r ( * ) | | : * G / , | | x | | 1 1 ) 

= sup{ | | r (T , -*) | | :*€ / , ||*|| ^ 1} 
= sup{||r(T<)*||:a: 6 / , ||x|| ^ 1} 

^ I|r(r0|| = l|r(r4)*|| 
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for ail T G J"> The map r —> T(n)* is thus an isometry of J" onto J. By 
[3, 2.8], applied to this map and its inverse, we have (I\ Y ) = (r(r*)*> r(r*)* } = 
r(r<)r(ri)*, r G J". It now follows (just as for an isometry between Hilbert 
spaces) that (I\ $ ) = $(T*)r(r*)*, for I\ <ï> G / " . / is closed because / " is 
complete with respect to ||-||./". 

If X is a pre-Hilbert ^-module, every map in X' lifts to a unique map in 
(X"Y, so in particular every map in / ' extends uniquely to a map in J'. 
Suppose K is a right ideal of B containing / such that each r f 7 ' extends 
uniquely to a map r G i£'. Given a £ K, define V G / " by T(T) = r(a)*. By 
uniqueness, r< is the inclusion map of K into 13, so for this V we have 
r(r*)* = fj(a) = a, and we conclude that K Ç. J. We may thus describe J as 
the unique largest right ideal K of B such that every bounded module map of / 
into B extends uniquely to a bounded module map of K into B. 

Since (X")" = X" for any pre-Hilbert ^-module X, we have (J)~ = J for 
any right ideal J oî B. If J and K are two right ideals of B with J" C Ky then 
for any V G J" , the map ^ —> r(^|.,) of Kf into 5 belongs to K", whence it 
follows that J Ç1 K. J might thus be thought of as a "closure" of / , albeit in a 
rather restricted sense. In fact, if B is a l^*-algebra, J is precisely the ultraweak 
closure of / . (This follows from the fact that every map in Jf can be realized as 
right multiplication by a unique element 6*, where b belongs to the ultraweak 
closure of /-which fact in turn is easily proved by making use of a bounded 
left approximate unit for J.) 

We will shortly examine the topological relationship between / and / in the 
commutative case. When B is not assumed to be commutative, we can at least 
obtain some rudimentary information about the relationship between the open 
projections in B** corresponding to / and / . (See [1] for a discussion of open 
and closed projections in the second dual of a C*-algebra. For a projection 
p Ç 13**, p denotes the smallest closed projection in B** majorizing p.) 

Let p be an open projection in 5** and set J = pB** P\ B (so J is the unique 
norm-closed right ideal of B whose w**-closure in 5** is pB**). Let p be the 
(open) projection in B** which generates the w**-closure of J. 

3.2. PROPOSITION, p ^ p ^ p and \\pa\\ = | |^a| | /or all a G B. 

Proof. We have p S P because / C J. The projection 1 — p is open, so there 
is a net {aa} consisting of positive elements of B majorized by 1 — p and 
converging w** to 1 — p. We have paa = aap = 0 for all a and px = x, x G / . 
As before, we let r* G J' denote the inclusion map of J into B. We have 
(r* • aa)(x) = aaTi(x) = aax — aapx = 0 for all x G / , «, so r< • aa = 0 for all a. 
Thus T(Ti)aa = 0 and hence r(r<)(l - p) = 0, for T G / " . This shows that 
J Ç ££**, sop ^ p. 

For the second part of the proposition, let {ba} be a net of positive elements 
of B majorized by p (and hence belonging to J) and converging w** to p. For 
each fta let Ta G J " be such that Ta(rt) = ba. Notice that | | r«| | j / / = | |6a | | . 
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Take a G B. For each a we have 

I M I = | | r a ( r , . a ) | | S 116.11 Hr^a l l ^ 
g ||r* - a\\r = sup{||a*x||:x G J, \\x\\ ^ 1} 
= sup{||a*£#||:x G / , \\x\\ ^ 1} 
^ HoVIl = IIHI-

Hence \\pa\\ ^ llMll- Since p S p, the reverse inequality holds also and we 
have \\pa\\ = \\pa\\. 

Let 12 be a locally compact space. We denote by Co (12) the algebra of all 
complex-valued continuous functions on 12 which vanish at infinity. For a 
subset S of 12, C(S) will denote the algebra of all bounded complex-valued 
continuous functions on 5, and we will write k(S) for the ideal of C0(12) con­
sisting of those functions in C0(12) which vanish identically on S. Given an open 
set W in 12, it is not hard to see that there is a unique largest open set W 
containing PFsuch that every function in C(W) extends uniquely to a function 
in C(W). (Indeed, our proof of 3.4 will show this in a roundabout fashion.) 
Clearly W C W. If 12 is a metric space, it can be shown without too much 
difficulty that W = W f̂or every open subset W oî 12. In general, though, it can 
happen that W is a proper subset of W. For instance, if 12 is a Stonian space 
and W is a dense open subset of 12, it follows from [2, 4.2] that W = 12. 

Let B = C0(12). Let £ be a closed subset of 12 and let J = k(E), U = 12\£. 
We will show in 3.4 that J = &(12\£/) but before we can do that we must 
describe J' in this setting. Let Y be the space of all bounded complex-valued 
functions on 12 which vanish identically on E and whose restrictions to U are 
continuous on £7, normed with the uniform norm. Notice that Y is naturally a 
^-module (under pointwise multiplication) and that the product of any 
function in Y with any function in J belongs to J. F o r / G Y, define rf G / ' by 
T/(X) = fx(x e J). 

3.3. PROPOSITION. Y and J' are isometrically isomorphic as normed B-modules 
via the map f' •—> 77. 

Proof. It is clear that the map in question is an isometric module map of Y 
into J'. Given r G J', we must show that r = r/for some/ G Y. For simplicity, 
we may assume that \\T\\J' ^ 1. We then have r(x)r{x) ^ xx (x G / ) , whence 
|r(x)(/)| ^ \x(t)\ for x G / , /G 12. For each t G U, select xt G / such that 
xt{t) = 1. Define g\U->C by g(t) = r(xt)(t). Notice that |g(/)| ^ 1 for all 
t G U. For any y G J, l G U, we have (yxt — y) (t) = 0, so r(yxt — y) (t) = 0. Hence 

r(y)(t) = r(yxt)(t) = r{xt){t)y{t) = g(t)y(t) , y £ J, t £ U. 

Now since r maps J into £ , gy must be continuous on U for every 3/ G /• It 
follows that g is continuous on U. L e t / be that function in Y whose restriction 
to U is g. Then r = rf and the proof is complete. 

We will thus identify J" with the space of all bounded ^-module maps of Y 
into B. Let p £ Ybe the characteristic function of U (so rP is the inclusion map 
of J into 5 ) . We then have J = {T(p):T G F'}. 
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3.4. PROPOSITION. / = k(Q\Û). 

Proof. J is a closed ideal of B, so J = k(F), where F is the intersection of the 
zero sets of all the functions Y(p)(Y G F'). Notice that F C E, since / C J. 
Set V = Q\F. It follows from 3.2 (or by a simple direct argument) that 
V C C7. We must show that F = Û, i.e. that every function in C(U) extends 
uniquely to a function in C(V), and that if W is an open set containing U such 
that every function in C(U) extends uniquely to a function in C(W), then 
WQV. 

We begin by observing that Y(f)(t) = Y(p)(t)f(t) for all, T G F' , f G F, 
t £ U. Indeed, take x G J such that x(t) = 1 and notice tha t /x G 5 . Since also 
/ * = # * , wehaver ( / ) (0 = T(f)(t)x(t) = Y(fx)(t) = Y(p(fx))(t) = Y(p)(t)(fx)(t) 
= Y(p)(t)f(t); 

Now consider <p £ C(U) ; we show that <p can be extended to a bounded 
continuous function on V. (The extension will necessarily be unique, since 
V C £7.) Let / be the function in Y whose restriction to U is <p. Let W be a 
relatively compact open set whose closure is contained in V. We can find a 
r G F such that T(p)(W) = {1} and \\T(p)\\ (= | | r | | r , by 3.1) = 1. Define <£ 
on Why <p(t) = T (f)(1) (t G W), so $ is continuous on IF and |£| ^ ||/|| = |M| . 
For any / G H^ and any net \ta) in U with /«—>/, we have Y(f)(ta) = 
Y(p)(ta)f(ta) = Y(p)(ta)<p(ta) = <p(ta) for sufficiently large a (the first equality 
holding by virtue of our observation above), so <p(ta) —» £(£)• We may therefore 
define <£(/) (/ G H )̂ unambiguously as 

lim <p(ta), 
a 

where {/«} is any net in U with ta —> /. Since every 2 G F is contained in some 
such neighborhood W, we may define îp on all of V in this way. The function cp 
is then the desired extension of <p. 

Now let W be an open set containing U such that every function in C( U) 
extends uniquely to a function in C(W). We must show that W C V. Take 
/ G W and let & G B be such that £(/) = 1 and b(Q\W) = {0}. F o r / G F, l e t / 
denote the unique bounded continuous extension off\ U to W. Define Y: Y-^B 
by setting Y(f)(s) = f(s)b(s) for 5 G W and r(f)(5) = 0 for s G W. It is 
immediate that T G F . We have Y(p)(t) = p(t)b(t) = 1, so t G J7, i.e., / G F. 
This shows that W C F, which completes the proof. 
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