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GROUPS WITH FINITE DIMENSIONAL 
IRREDUCIBLE MULTIPLIER REPRESENTATIONS 

A. K. HOLZHERR 

1. Introduction. Let G be a locally compact group and co a normalized 
multiplier on G. Denote by V(G) (respectively by V(G, co) ) the von 
Neumann algebra generated by the regular representation (respectively 
co-regular representation) of G. Kaniuth [6] and Taylor [14] have 
characterized those G for which the maximal type / finite central 
projection in V(G) is non-zero (respectively the identity operator in 
V(G) ). 

In this paper we determine necessary and sufficient conditions on G and 
co such that the maximal type / finite central projection in V(G, co) is 
non-zero (respectively the identity operator in V(G, co) ) and construct this 
projection explicitly as a convolution operator on L2(G). As a conse­
quence we prove the following statements are equivalent, 

(i) V(G, co) is type / finite, 
(ii) all irreducible multiplier representations of G are finite dimen­

sional, 
(iii) Gw (the central extension of G) is a Moore group, that is all its 

irreducible (ordinary) representations are finite dimensional. 
A few interesting corollaries result. 
Note that in the case where the multiplier co is trivial, these results 

reduce to results about ordinary representations that are well known. 
The results presented in this paper were achieved while the author was 

working toward a Ph.D. at The University of Adelaide under the 
supervision of Professor W. Moran. The author is grateful to Professor W. 
Moran for his help, in particular for suggesting Example 5.2. This research 
is partially supported by a Commonwealth Postgraduate Research 
Award. 

2. Notation. For the basic definitions and classification of von 
Neumann algebras see [12]. Given a locally compact group G with 
normalized multiplier co ( [1] ) and subgroup i/, we adopt the following 
symbols consistently throughout the paper. 
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Go 

H~ : closure of H in G 
H' : commutator subgroup of H 
G" : central extension with Weil topology (see [8], p. 218) 
h : canonical projection Gw —» G^/T = G 
p : left co-regular representation of G 

( (P(g)/)W = " (g" 1 , x)f(g-]x), g,xeG,fe L\G) ) 

V(G, to) : von Neumann algebra generated by p 
V(G) : von Neumann algebra generated by the left regular (ordi­

nary) representation of G 

maximal type I finite central projection in V(G) 

maximal type / finite central projection in V(G, co) 

von Neumann kernel = Pi {ker m\ IT is a finite dimensional 

representation of G) 

AG : topological finite class group of G = union of conjugacy 

classes whose closure is compact. 

In the situation where it will be clear from the context which G is in 

question, the subscript G will be dropped from the symbols eG, dG and AG. 

All isomorphisms between von Neumann algebras mentioned in this paper 

are spatial. 

3. Preliminaries. Let G be a locally compact group. Kaniuth [6] and 
Taylor [14] have proved the following theorem about eG. 

THEOREM 3.1. ( [6, 14] ). For a locally compact group G, 
(i) eG ¥^ 0 implies G0 is compact and eGV(G) is spatially isomorphic to 

V(G/G0) 
(ii) eG ¥= 0 if and only if[G'AG] < oo and (A^)r is compact. 

Furthermore, the results of Kaniuth [6] and Robertson [11] combine to 
yield the following result. 

THEOREM 3.2. ( [6, 11] ). The following statements are equivalent: 
(i) eG = / (the identity operator) 

(ii) [G:AG] < oo, (A^y - is compact and G0 = {e} 
(iii) G is a Moore group, that is all its irreducible (ordinary) representa­

tions are finite dimensional. 

For the remainder of this section we shall fix a locally compact group G 
with normalized multiplier co. 

LEMMA 3.3. Let A be a subset of Cf3, then 
(i) A~ is compact if and only if h(A)~ is compact 

(ii) if A is compact, then h(A) = h(A ). 
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The proof of this result is straightforward. 

COROLLARY 3.4. (i) (àGf = A^. 

(ii) If one of (AG)'~ and ( A ^ ) ' - is compact, then so is the other and 

(A c y =M(A<r)'"]. 
Proof For (i), let A equal the conjugacy class of some (X, x) G G^ and in 

(ii), let A = (AG^)'. Now use Lemma 3.3. 

Combining 3.1 and 3.4 gives eG =£ 0 if and only if eG^ ¥= 0. But this 
follows already from [14, Proposition 5.2]. 

Let En, n G Z be the maps on L2(G") given by 

for almost all (/*, je) G G", / G L2(G"). (Compare this with [7, page 563]. ) 
Clearly EnL

2(G0)) consists of all those functions/ G L2(G") such that 

/(/I, x) = /iw/(/, x) for almost all (/i, JC) G G". 

It follows that the 2sn, AI G Z are mutally orthogonal idempotents. For 
« G Z, En is just convolution by the measure obtained, if you multiply the 
measure on Gw supported on T which restricts to Haar measure on T, with 
the character xn of T given by 

Xn(X) = À", n G Z, X G T. 

It is easy to check that En commutes with the right and left regular 
representation of Gw, so by [13, Theorem 3] En is in the centre of V(Gi0). 

THEOREM 3.5. With the above notation, the En> n G Z are mutually 
orthogonal central projections in V(G0)) and 

(i) The three von Neumann algebras EnV(Gu), V(G, <ow), V(x~n TT°) 
(the non Neumann algebra generated by the induced representation 
X-n Tx ) are spatially isomorphic. 

(ii) 2 En = I (the identity operator). 

Proof (i) Let r denote the left regular representation of Gw and 
pn, n G Z, the left regular (-/-representation of G. Fix n. Observe that 
the representation space of x-„ TT is just EnL

2(G") and that 

V = x-„ î f • 
It follows that 

EnV(G") = V(X-n î f ). 

The map 

4>:£„L2(G") -» L2(G) 
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defined by <j>(f)(x) = / ( l , x) is an isometry (see [3] ). 
The spatial monomorphism 

EnV(Ga) -> B(L\G))\T -> <j> • T- <j>~] 

is weakly continuous and maps Enr(\, x)(x e G) to p„(.x). Observe that the 
von Neumann algebra generated by {Enr(\, x):x e G) is precisely 
EflV(Gœ), thus the range of <j> is contained in V(G, con). Furthermore 
this range is weakly closed ([12, 1.16.2]) and contains the operators 
Pn(x), x e G and thus must be equal to K(G, co'2). 

(ii) Since © \n
 ls t n e regular representation of T, we infer that 

„ tz^^) = (ezx„)îf 
is the regular representation of Gw, hence 

V(G") = ®zV(x„ | f ), 

hence the result. 

LEMMA 3.6. Suppose eG ¥* 0 (or equivalently eG* ¥" 0) and that G has a 
finite dimensional co-representation IT, then K = h( (Gw)0) is compact and co 
is similar to a multiplier which is lifted from G IK. 

Proof. That AT is compact follows from 3.1. Suppose (X, k) e (G W ) 0 , then 
since (/A, g) —> jU77(g), (/A, g) e Gw is a finite dimensional (ordinary) rep­
resentation of G*0, we have / = Xir{k), that is k e /?-ker m. The result now 
follows from [1, Lemma 1.3]. 

4. The main theorems. 

THEOREM 4.1. Let G be a locally compact group with normalized Borel 
multiplier co. Adopt the notation of Section 2, then the following three 
conditions are equivalent. 

(i) eG T̂  0 (or equivalently e^ ¥= 0) and there exists a finite dimensional 
co-representation TT of G. 

(ii) dG*0. 
(iii) [GiA^] < oo, (AG)r is compact and G has a finite dimensional 

co-representation m. 

Note if co is a trivial multiplier then co is of the form 

oo(x,y) = y(x)y(y)/y(xy) 

and thus there automatically exists a finite dimensional co-representation 
of G. In this case the theorem reduces to 3.1 (ii). See also the comments 
preceding Example 5.1. 
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Proof, (i) and (iii) are obviously equivalent using 3.1 (ii). Suppose (ii) is 
true and let 77' be a non-degenerate finite dimensional algebra representa­
tion of dV(G, w), then 

is a finite dimensional co-representation of G. By Theorem 3.5, eG* + 0. 
This shows (ii) implies (i); that (i) implies (ii) will be proved together with 
Theorem 4.3. 

LEMMA 4.2. Suppose K is a compact normal subgroup of G and o) is lifted 
from a multiplier co' on G/K, then K is also a compact normal subgroup of 
Gw and Gœ/K is topologically isomorphic to (G/Kf. 

The proof of this result follows easily from the definition of group 
extensions. 

THEOREM 4.3. Suppose G is a locally compact group and dG is non-zero. 
We assume {using Lemma 3.6) that <o is lifted from a multiplier to' of Gl Ky 

where K is the compact normal subgroup K = h( (Gw)0). Then dG is the 
operator L2(G) —» L2(G) defined by 

dGf(x) = jKf(k~xx)d\(k), almost all x e G , / e L2(G), 

where X is Haar measure on G normalized such that X(K) = 1. Furthermore, 
for each n e Z, dG is the maximal type I finite central projection in V(G , co") 
and 

dGV(G, u") ^ V(G/K, (a/)"). 

Proof. First we give a proof, as promised, of the statement '(i) implies 
(ii)' of Theorem 4.1. Let a\L2(G) -» L2(G) be defined by 

af(x) = JKf(k~]x)d\(k), almost all x e G J e L?(G). 

The proof that a is a central idempotent in V(G, o)n) = EnV(G") (and 
hence in V(GU) ) and that aV(G, u") and V(G/K, (<*')") are spatially 
isomorphic is similar to the proof of the corresponding facts about En in 
Theorem 3.5. Since 

V(G9 co") c~ V(G/K, (coT) © V(G/K, (<o')n)± 

(where _L denotes orthogonal complement), we have by Theorem 3.5, 

V(GU) ~ V( (G/Kf) e V( (G/Kf'f 

but (G/Kf and G"/(G")0 are topologically isomorphic and V(GU/(GU)Q) 
is isomorphic to the maximal type / finite direct summand in V(GU) (3.1 
(i) ), it follows that V(G/K, (/)w) is isomorphic to the maximal type / direct 
summand of V(G, con). In particular we have dG = a ¥= 0. 

Now assume dG ¥= 0, then by '(ii) implies (i)' of Theorem 4.1, eG- ¥= 0, 
thus by the same argument as above, we reach the desired conclusion. 
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COROLLARY 4.4. Suppose dG ¥= 0 and let n G Z, then the following 
equations obtain 

GQ = h[ (Gœ)0] = h[ Pi {ker 77: 77 w a finite dimensional representation of 
G" swc/z f/rcf TT|T(/) = t") ] 

= {g G G: //zere emta y(g) G T SMC/J ///«/ 77(g) = y(g) / / o r a// 
/i'w'te dimensional co"-representations of G). 

Proof Let K = h[ (G"°)0] and denote the last two sets in the above 
equality by H and L respectively. That K Q H Q L is clear from the 
definitions and the property that an co^-representation 77 of G extends to an 
ordinary representation 77' of G" such that 

" ' IT« = f-
Using the proof of Lemma 3.6, we assume that co is lifted from a multiplier 
on GIL. The non-degenerate finite dimensional representations of 
dGV(G, con) separate the points of dGV(G, con), hence 7r°(g) = / if and only 
if 

<x(dGp(g-1))* = *(dGr 

for all such representations 77, where 770 denotes the ^-representation 

g^7T(dGp(g~
])r 

and p is the left regular ^-representation of G. This happens if and only if 
p(g)dG = dG and using the previous Theorem, this occurs if and only 
if g G AT. This shows 

K = n {ker 770: 77 is a finite dimensional non-degenerate 
representation of dGV(G, con) } 3 L. 

If we let n = 0, we obtain the remainder of the corollary: G0 = L. 

THEOREM 4.5. Let G be a locally compact group and co a normalised Borel 
multiplier on G. The following conditions are equivalent. 

(a) V(G, co) is type I finite. 
(b) All irreducible co-representations of G are finite dimensional. 
(c) The following conditions hold: 

(i) [GAG] < 00 
(ii) (A^y is compact 

(iii) G admits a finite dimensional co-representation 
(iv) G0 = {e} 
(d) G03 is a Moore group, that is all irreducible ordinary representations of 

Gw are finite dimensional. 

Proof. To obtain (a) is eqivalent to (c) combine 4.1, 4.3 and 4.4. To 
prove (b) implies (a), apply [2, 4.2.1 and 5.5.2] and the proof of Moore [10, 
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Lemma 4.1] to the twisted group C*-algebra C*(G, co). Assume (c). If TT 
is a finite dimensional ^-representation of G, then the «-fold tensor 
product IT ® . . . ® IT is a finite dimensional ^-representation of G, hence 
V(G, co'7) is type / finite and by Theorem 3.5 (ii), V(GiC) is type / finite. It 
follows from Theorem 3.2 that Gw is a Moore group. 

5. Examples. The condition in 4.1 (iii) that G possess a finite di­
mensional co-representation cannot be replaced by the weaker property 
that co" is trivial for some integer n (even in the case where G is discrete) as 
the following example shows. 

Example. 5.1. Let G = H X H' with the discrete topology, where 

H = I I Z2 and W = © Z2 

and define 

[ . OO -I 

2̂ WW • 
(a-, b)(a', ft ') e G. Since G is abelian, Theorem 1.1 and Theorem 4.3 of [4] 
show that F(G, co) is either type / or type II]m But we know from 
[4, Example 4.4] that it is not type 7, thus V(G, co) is type IIv This occurs 
despite the fact that (G, co) satisfies [G:AG] < oo, (AG)'~ is compact and 
co2 = 1. We observe in passing that G has no finite dimensional 
co-representation (use Theorem 4.1). 

Example 5.2. For each X = e27Tia e T, (a e [0, 2TT[ ), we obtain a 
multiplier cox on Z X Z defined by 

coA( (/w, w), (m', n') ) - Am"', 

(ra, n), (m\ ri) e Z X Z. Mackey [9, Theorem 8.6] shows that (up to 
similarity) all multipliers on Z X Z are of this form. We say that X is 
rational (respectively irrational) if a is rational (respectively irrational). It 
follows from [4] that V(Z X Z, cox) is type 77, if X is irrational and if X is 
rational, say X = exp Irniplq, where/? and q are relatively prime integers, 
then V(Z X Z, coA) is type / (finite) and according to Hannabuss 
[5, Theorem 4.1], the irreducible coA representations of Z X Z are all 
dimension q. 

Let A (/7-prime) be the group of /7-adic integers and G be the group 
Z X Z X Â  with multiplication 

(a, ft, x)(a', ft', x') = (a + a', 6 + ft', JC + JC' + %ft ' ) ), 

(a, ft, JC)(Û', ft', JC') e G, 
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where 6:Z —> A is the canonical injection of Z into a dense subgroup of 
A We topologize G so that A becomes a compact open subgroup; with 
this topology, G becomes a locally compact separable topological group. 
For each À G T, we define a multiplier o^ on G as follows, 

°\ = "\ o /c, 

where /c:G —> Z X Z is the canonical homomorphism 

/c(m, «, x) = (m, AÏ). 

Given an irreducible (^-representation IT of Z X Z, denote by 77' the a^ 
representation of G obtained by composing m with k. 

Since A is a compact normal subgroup of G, we can apply the Mackey 
analysis [9] to construct all (^-representations of G. 

Identify the abelian group dual A of A with the subgroup 

A = {x e T:X = exp[27n£//], k, n e Z} 

of T using the correspondence 

A X Â  -» T:(X, JC) -> X*, 

where * —> x*, X Œ A is the continuous extension from Z to A of the 
homomorphism Z —» A:« —» x" 

Let À G T, x e A. Then the irreducible o^-representations of G which 
reduce to a multiple of x on A are of the form x'fl"', where x' 1S the 
extension 

of the character x of A and 77 is a coXx~\-representation of Z X Z. As x 
ranges through A, we obtain all irreducible (^-representations of G. 

Note that Xx_1 is rational if and only if X is rational. Hence the 
irreducible ^-representations of G, X e T are all infinite dimensional if X 
is irrational and are all finite dimensional (but of arbitrarily high 
dimension) if X is rational. It follows from Theorem 4.1 and 4.5 that 
V(G, ox) is type / finite if and only if X is rational and the type / finite part 
of F(G, ox) is zero if X is irrational. 

REMARK 5.3. As pointed out in [4], combining Theorem 1.1 of [4] with the 
proofs of Taylor [14, Theorem 2] and Moore [10, Theorem 1] yields the 
equivalence of the following statements'. 

(i) F(G, co) is type I^k, that is non-zero maximal type In central pro­
jections occur in V(G, co) only if n ^ k. 

(ii) G has an open abelian subgroup A of finite index in G such that co\j y A 
is trivial. 

(iii) The irreducible co-representations of G are of dimension at most k. 
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Thus in Example 5.2 we see that for X rational, V(G, ox) admits a 
non-zero maximal type In part of arbitrary large n. This phenomenon does 
not occur in the case where G is discrete. 
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