AN ANALOGUE OF THE HADAMARD CONJECTURE FOR $n \times n$ MATRICES WITH $n \equiv 2(\bmod 4)$

CHARLES H. C. LITTLE

(Received 29 November 1983)
Communicated by W. Wallis

Abstract

It is known that the problem of settling the existence of an $n \times n$ Hadamard matrix, where n is divisible by 4 , is equivalent to that of finding the cardinality of a smallest set T of 4 -circuits in the complete bipartite graph $K_{n, n}$ such that T contains at least one circuit of each copy of $K_{2,3}$ in $K_{n, n}$. Here we investigate the case where $n \equiv 2(\bmod 4)$, and we show that the problem of finding the cardinality of T is equivalent to that of settling the existence of a certain kind of $n \times n$ matrix. Moreover, we show that the case where $n \equiv 2(\bmod 4)$ differs from that where $n \equiv 0(\bmod 4)$ in that the problem of finding the cardinality of T is not equivalent to that of maximising the determinant of an $n \times n(1,-1)$-matrix.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 C 50

1. Introduction

In [5], the following theorem is proved.

Theorem 1. Let S be the set of all 4-circuits of $K_{n, n}$ where n is divisible by 4. Let $S_{1}, S_{2}, \ldots, S_{k}$ be the collection of all subsets S_{i} of S, of cardinality 3 , such that the union of the three circuits of S_{i} is $K_{2,3}$. Let T be a smallest subset of S such that $T \cap S_{i} \neq \varnothing$ for each i. Then $|T| \geqslant \frac{1}{8} n^{2}(n-1)(n-2)$, and equality holds if and only if there exists an Hadamard matrix of order n.

Thus the Hadamard conjecture is equivalent to a problem about the 4-circuits of $K_{n, n}$, where $n \equiv 0(\bmod 4)$. It is also well-known to be equivalent to the

[^0]problem of maximising the determinant of an $n \times n(1,-1)$-matrix, where $n \equiv 0$ $(\bmod 4)$. In this paper we investigate the corresponding problem about the 4-circuits of $K_{n, n}$ where $n \equiv 2(\bmod 4)$. In this case, it transpires that the problem is not equivalent to the maximisation of the determinant of an $n \times n(1,-1)$ matrix, where $n \equiv 2(\bmod 4)$, although the two problems are closely related. The maximisation of such determinants has been studied by Ehlich [3] (see also [2]). For each $n \equiv 2(\bmod 4)$, let α_{n} denote the maximum value of the determinant of an $n \times n(1,-1)$-matrix. Then Ehlich's paper shows that $\alpha_{n} \leqslant$ $2(n-1)(n-2)^{n / 2-1}$ (see also [7]). Moreover for each n let I_{n} and J_{n} denote the $n \times n$ identity matrix and the $n \times n$ matrix (1) respectively. Suppose there exists an $n \times n(1,-1)$-matrix A, where $n \equiv 2(\bmod 4)$, such that $A A^{T}=\operatorname{diag}[B, B]$ where $B=(n-2) I_{n / 2}+2 J_{n / 2}$. Then $\alpha_{n}=|A|=2(n-1)(n-2)^{n / 2-1}$. A search for such matrices A has been conducted by Ehlich [3] and Yang [7]. We use A as the motivation for the following definition. Let $n \equiv 2(\bmod 4)$, and write $n=2 s$. Then an $n \times n(1,-1)$-matrix A is a generalised Ehlich matrix if $A A^{T}=B$, where $B=\left(b_{i j}\right)$ and, for each i and $j, b_{i j}$ is determined as follows:
\[

b_{i j}= $$
\begin{cases}n & \text { if } i=j, \\ \pm 2 & \text { if } i \leqslant s \text { and } j \leqslant s, \text { or if } i>s \text { and } j>s, \\ 0 & \text { otherwise. }\end{cases}
$$
\]

We then prove the following theorem.

Theorem 2. Let S be the set of all 4 -circuits of $K_{n, n}$ where $n \equiv 2(\bmod 4)$. Let $S_{1}, S_{2}, \ldots, S_{k}$ be the collection of all subsets S_{i} of S, of cardinality 3, such that the union of the three circuits of S_{i} is $K_{2,3}$. Let T be a smallest subset of S such that $T \cap S_{i} \neq \varnothing$ for each i. Then $|T| \geqslant \frac{1}{8} n(n-2)\left(n^{2}-n+2\right)$, and equality holds if and only if there exists a generalised Ehlich matrix of order n.

2. Proof of Theorem 2

We begin with a lemma.
Lemma. Let S be a set with $|S|=n$ for some $n \equiv 2(\bmod 4)$. Suppose there exist subsets $T_{1}, T_{2}, \ldots, T_{n-1}$ of S such that
(i) $n / 2-1 \leqslant\left|T_{i}\right| \leqslant n / 2+1$ for each i,
(ii) $\left|T_{i}\right|=n / 2$ for exactly $n / 2$ values of i, and
(iii) $n / 2-1 \leqslant\left|T_{i}-T_{j}\right|+\left|T_{j}-T_{i}\right| \leqslant n / 2+1$ whenever $i \neq j$.

Then there exists a generalised Ehlich matrix of order n.

Proof. Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$. Define $E=\left(e_{i j}\right)$, where $e_{1_{j}}=1$ for all $j \in$ $\{1, \ldots, n\}$ and, for all $i \in\{2,3, \ldots, n\}$,

$$
e_{i j}= \begin{cases}1 & \text { if } s_{j} \in T_{i-1} \\ -1 & \text { otherwise }\end{cases}
$$

For each i, let $\bar{T}_{i}=S-T_{i}$. Let $J_{1}=\{1,2, \ldots, n / 2-1\}$ and $J_{2}=\{n / 2, n / 2+$ $1, \ldots, n-1\}$. By condition (ii) we may assume without loss of generality that $\left|T_{i}\right|=n / 2$ if and only if $i \in J_{2}$.

Condition (i) shows that the inner product of any row $j>1$ with row 1 is $-2,0$ or 2 , and the assumption above shows that this inner product is 0 if and only if $j>n / 2$.

Now choose i and j so that $i \geqslant 1, j \geqslant 1$ and $i \neq j$. Let $a=\left|T_{i} \cap T_{j}\right|$, $b=\left|\bar{T}_{i} \cap T_{j}\right|, c=\left|\bar{T}_{i} \cap \bar{T}_{j}\right|$ and $d=\left|T_{i} \cap \bar{T}_{j}\right|$. Observe that the inner product of rows $i+1$ and $j+1$ is $a+c-b-d$. There are various possibilities.

Case 1. Suppose $\left|T_{i}\right|=\left|T_{j}\right|$. Thus $a+d=a+b$ so that $b=d$. Hence $\left|T_{i}-T_{j}\right|$ $+\left|T_{j}-T_{i}\right|=d+b=2 d$. Since n is not divisible by 4 , condition (iii) shows that $2 d \in\{n / 2-1, n / 2+1\}$. If $2 d=n / 2-1$, then $a+c=n / 2+1$, since $a+b$ $+c+d=n$. If $2 d=n / 2+1$, then $a+c=n / 2-1$. Hence $a+c-b-d=$ ± 2.

We may now suppose without loss of generality that $\left|T_{i}\right|<\left|T_{j}\right|$.
Case 2. Suppose $\left|T_{i}\right|=n / 2-1$ and $\left|T_{j}\right|=n / 2+1$. Then $a+b=a+d+2$ so that $b=d+2$; hence $\left|T_{i}-T_{j}\right|+\left|T_{j}-T_{i}\right|=2 d+2$. It follows that $2 d+2 \in$ $\{n / 2-1, n / 2+1\}$ and we deduce as before that $a+b-c-d= \pm 2$.

Case 3. We may now assume that $\left|T_{j}\right|=\left|T_{i}\right|+1$. Now $b=d+1$. Since $n \equiv 2$ $(\bmod 4)$ we deduce that $2 d+1=n / 2$; hence $a+b-c-d=0$.

In summary, if $i \geqslant 1$ and $j \geqslant 1$ then rows $i+1$ and $j+1$ are orthogonal if and only if $\left|\{i, j\} \cap J_{1}\right|=1$. In all other cases where i and j are distinct and greater than 1 , the inner product of rows i and j is ± 2. Hence E is a generalised Ehlich matrix.

The proof of Theorem 2 requires the application of the following special case of a well-known theorem of Turán [6].

Theorem 3. The maximum number of edges in a graph with n vertices and no triangles is $\left[\frac{1}{4} n^{2}\right]$. Moreover, the only such graphs with $\left[\frac{1}{4} n^{2}\right]$ edges are $K_{n / 2, n / 2}$ (if n is even) and $K_{(n+1) / 2,(n-1) / 2}$ (if n is odd).

Proof. In outline the proof of Theorem 2 is similar to the proof of Theorem 1 in [5], but we present the whole argument here for the sake of completeness and clarity. Let A be an $n \times n(1,-1)$-matrix $\left(a_{i j}\right)$. Let $K_{n, n}$ be the complete
bipartite graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n}\right\}$, where v_{i} and w_{j} are adjacent for each i and j. Furthermore, for each i and j let the edge joining v_{i} to w_{j} be directed from v_{i} to w_{j} if $a_{i j}=1$ and from w_{j} to v_{i} otherwise.
Note that a pair of rows and a pair of columns of A corresponds in an obvious way to an undirected 4-circuit in $K_{n, n}$. We say that this 4-circuit is clockwise even if the number of edges directed in the clockwise sense is even, and clockwise odd otherwise. Let C be a 4 -circuit of $K_{n, n}$ with vertex set $\left\{v_{h}, v_{i}, w_{j}, w_{k}\right\}$. If $a_{h j}=a_{i j}$, then exactly one of the two edges of C incident on w_{j} is directed in the clockwise sense. If $a_{h j} \neq a_{i j}$, then those edges are directed in the same sense on C. Analogous results hold for $a_{h k}$ and $a_{i k}$. It follows that C is clockwise odd if and only if exactly one of the equations $a_{h j}=a_{i j}$ and $a_{h k}=a_{i k}$ holds.
Let $X_{h i}$ be the set of columns j of A for which $a_{h j}=a_{i j}$ and let $Y_{h i}$ be the set of all the remaining columns of A. It follows from the above paragraph that the number of clockwise odd 4-circuits containing v_{h} and v_{i} is $\left|X_{h i} \| Y_{h i}\right|$. This product is a maximum if $\left|X_{h i}\right|=\left|Y_{h i}\right|$, and this condition holds if and only if rows h and i of A are orthogonal. If rows h and i are not orthogonal, then the product $\left|X_{h i} \| Y_{h i}\right|$ is maximised if and only if $\left\|X_{h i}|-| Y_{h i}\right\|=2$, and this condition holds if and only if the inner product of rows h and i is ± 2. Thus the number of clockwise odd 4-circuits of $K_{n, n}$ is maximised if as many pairs of rows as possible are orthogonal and the remaining pairs have ± 2 as their inner product. Observe that since n is not divisible by 4 , no three rows can be mutually orthogonal, and therefore the maximum number of pairs of orthogonal rows is no greater than the maximum number of edges in a simple graph with n vertices and no triangles. By Theorem 3, this number is $\frac{1}{4} n^{2}$. Let us assume then that this is the number of pairs of orthogonal rows. (Clearly this is the case for a generalised Ehlich matrix.) If rows h and i are orthogonal, then $\left|X_{h i}\right|=\left|Y_{h i}\right|=n / 2$, so that such pairs of rows contribute $\frac{1}{4} n^{2}$ clockwise odd 4 -circuits each, yielding a total of $\frac{1}{16} n^{4}$ clockwise odd circuits. For rows h and i which are not orthogonal, we have $\left\{\left|X_{h i}\right|,\left|Y_{h i}\right|\right\}=\{n / 2-1, n / 2+1\}$, so that such pairs of rows contribute $\frac{1}{4} n^{2}-1$ clockwise odd 4 -circuits each, for a total of $2 \cdot \frac{1}{2} \cdot(n / 2)(n / 2-1)$. $\left(\frac{1}{4} n^{2}-1\right)=\frac{1}{16} n^{4}-\frac{1}{8} n^{3}-\frac{1}{4} n^{2}+n / 2$ clockwise odd circuits. Therefore the maximum number of clockwise odd circuits is $\frac{1}{8} n^{4}-\frac{1}{8} n^{3}-\frac{1}{4} n^{2}+n / 2$. Since there are $\binom{n}{2}^{2} 4$-circuits in all, the minimum number of clockwise even circuits is

$$
\binom{n}{2}^{2}-\left(\frac{n^{4}}{8}-\frac{n^{3}}{8}-\frac{n^{2}}{4}+\frac{n}{2}\right)=\frac{n(n-2)\left(n^{2}-n+2\right)}{8}
$$

Let T_{0} be the set of all clockwise even 4-circuits of $K_{n, n}$. If $K_{2,3}$ is oriented so that the vertices of degree 3 are sources or sinks, then all three circuits are clockwise even. Since every edge of $K_{2,3}$ belongs to exactly two circuits of $K_{2,3}$, it follows that for any orientation of $K_{2,3}$ there are an odd number of clockwise even circuits. Hence $T_{0} \cap S_{i} \neq \varnothing$ for all i. Thus we have proved that if there
exists a generalised Ehlich matrix of order n, then $|T| \leqslant \frac{1}{8} n(n-2)\left(n^{2}-n+2\right)$. We prove next that in fact $|T| \geqslant \frac{1}{8} n(n-2)\left(n^{2}-n+2\right)$. The existence of an $n \times n$ generalised Ehlich matrix will then imply that $|T|=\frac{1}{8} n(n-2)\left(n^{2}-n+\right.$ 2). We will then prove the converse.

Suppose therefore that $T \cap S_{i} \neq \varnothing$ for all i. Consider first those copies of $K_{2,3}$ in $K_{n, n}$ which contain exactly three vertices of $\left\{v_{1}, \ldots, v_{n}\right\}$. Let C_{1} and C_{2} be the components of the complement of $K_{n, n}$, where $V\left(C_{1}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$. The complement (in K_{5}) of a copy of $K_{2,3}$ containing three vertices of $\left\{v_{1}, \ldots, v_{n}\right\}$ is $P_{1} \cup P_{2}$, where P_{1} is a triangle of C_{1} and P_{2} an edge of C_{2}. The complement (in K_{4}) of a circuit in $K_{2,3}$ is then the union of P_{2} with an edge of P_{1}. If we fix P_{2} and let P_{1} run through all triangles in C_{1}, then in order to contain at least one circuit in each of the corresponding copies of $K_{2,3}, T$ must contain at least as many circuits as the cardinality of the smallest set of edges whose deletion from K_{n} yields a graph with no triangles. Moreover each such circuit contains both end-vertices of P_{2}. By Theorem 3, the largest subgraph of K_{n} having no triangles is $K_{n / 2, n / 2}$. Since K_{n} has $\binom{n}{2}$ edges and $K_{n / 2, n / 2}$ has $\frac{1}{4} n^{2}$ edges, T must contain at least $\binom{n}{2}-\frac{1}{4} n^{2}$ circuits which include the end-vertices of P_{2}.

Let us suppose that there exists a triangle Q_{2} such that, for each choice of P_{2} in Q_{2}, T contains only $\binom{n}{2}-\frac{1}{4} n^{4}$ circuits that include the end-vertices of P_{2}. Consider the copies of $K_{2,3}$ in $K_{n, n}$ which contain the three vertices of Q_{2} and two vertices of $\left\{v_{1}, \ldots, v_{n}\right\}$. The complement (in K_{5}) of such a copy of $K_{2,3}$ is $Q_{1} \cup Q_{2}$ where Q_{1} is an edge of C_{1}. The complement (in K_{4}) of any circuit in such a copy Z of $K_{2,3}$ is the union of Q_{1} with an edge e of Q_{2}. We have already seen that in order to include at least one circuit of each copy of $K_{2,3}$ that includes the end-vertices of e and three vertices of $\left\{v_{1}, \ldots, v_{n}\right\}, T$ must contain all the 4-circuits whose complements in K_{4} are pairs of edges where one edge of the pair is e and the other is chosen from the complement, $2 K_{n / 2}$, in C_{1} of a fixed copy of $K_{n / 2, n / 2}$. In order to ensure that T contains a circuit of Z, the copies of $K_{n / 2, n / 2}$ in C_{1} corresponding to the edges of Q_{2} must be chosen in such a way that the edge Q_{1} appears in the complement of at least one of them. Since Q_{1} is any edge of C_{1}, we find that C_{1} must be the union of three copies of $2 K_{n / 2}$, each copy being the complement in C_{1} of a copy of $K_{n / 2, n / 2}$ chosen to correspond to an edge of Q_{2}. For any edge e of Q_{2}, let us denote by $V_{1}(e)$ and $V_{2}(e)$ the vertex sets of the copies of $K_{n / 2}$ in the subgraph $2 K_{n / 2}$ of C_{1} corresponding to e. Thus $\left|V_{1}(e)\right|=\left|V_{2}(e)\right|=n / 2$ for each e.

Let e_{1}, e_{2}, e_{3} be the edges of Q_{2}. Since C_{1} is the union of the corresponding copies of $2 K_{n / 2}$, each pair of vertices of C_{1} must be contained in at least one of the sets $V_{1}\left(e_{j}\right)$ where $i \in\{1,2\}$ and $j \in\{1,2,3\}$. It follows that

$$
\begin{aligned}
&\left\{V_{1}\left(e_{3}\right), V_{2}\left(e_{3}\right)\right\}=\left\{\left[V_{1}\left(e_{1}\right) \cap V_{1}\left(e_{2}\right)\right] \cup\left[V_{2}\left(e_{1}\right) \cap V_{2}\left(e_{2}\right)\right]\right. \\
& {\left.\left[V_{1}\left(e_{1}\right) \cap V_{2}\left(e_{2}\right)\right] \cup\left[V_{2}\left(e_{1}\right) \cap V_{1}\left(e_{2}\right)\right]\right\} }
\end{aligned}
$$

Note that

$$
\left|V_{1}\left(e_{1}\right) \cap V_{1}\left(e_{2}\right)\right|=\left|V_{2}\left(e_{1}\right) \cap V_{2}\left(e_{2}\right)\right|,
$$

since $\left|V_{1}\left(e_{1}\right)\right|=\left|V_{2}\left(e_{2}\right)\right|, \quad\left|V_{1}\left(e_{1}\right)\right|=\left|V_{1}\left(e_{1}\right) \cap V_{1}\left(e_{2}\right)\right|+\left|V_{1}\left(e_{1}\right) \cap V_{2}\left(e_{2}\right)\right|$ and $\left|V_{2}\left(e_{2}\right)\right|=\left|V_{1}\left(e_{1}\right) \cap V_{2}\left(e_{2}\right)\right|+\left|V_{2}\left(e_{1}\right) \cap V_{2}\left(e_{2}\right)\right|$. Since $\left|V_{1}\left(e_{1}\right) \cap V_{1}\left(e_{2}\right)\right|+$ $\left|V_{2}\left(e_{1}\right) \cap V_{2}\left(e_{2}\right)\right|=\left|V_{1}\left(e_{3}\right)\right|=\left|V_{2}\left(e_{3}\right)\right|=n / 2$, it follows that $\left|V_{1}\left(e_{1}\right) \cap V_{1}\left(e_{2}\right)\right|$ $=n / 4$ and so n is divisible by 4 .

This contradiction shows that for at least one edge e in each triangle Q_{2} of C_{2}, T contains at least $\binom{n}{2}-\frac{1}{4} n^{2}+1$ circuits that include the end vertices of e. Let R be the set of edges of C_{2} with this property. Then by Theorem $3,|R| \geqslant 2 \cdot \frac{1}{2}$. $(n / 2)(n / 2-1)=\frac{1}{4} n(n-2)$ since that is the size of the smallest set of edges in K_{n} which meets every triangle. The remaining edges of C_{2} are $\frac{1}{4} n^{2}$ in number. Therefore

$$
|T| \geqslant \frac{n(n-2)}{4}\left[\binom{n}{2}-\frac{n^{2}}{4}+1\right]+\frac{n^{2}}{4}\left[\binom{n}{2}-\frac{n^{2}}{4}\right]=\frac{n(n-2)\left(n^{2}-n+2\right)}{8}
$$

Let us now assume that $|T|=\frac{1}{8} n(n-2)\left(n^{2}-n+2\right)$ and prove the existence of an $n \times n$ generalised Ehlich matrix. Let e be an edge of C_{2}. If T contains just $\binom{n}{2}-\frac{1}{4} n^{2}$ circuits that include the end-vertices of e, then T contains all the 4-circuits whose complements in K_{4} are pairs of edges where one edge of the pair is e and the other is chosen from the complement, $2 K_{n / 2}$, in C_{1} of a fixed copy of $K_{n / 2, n / 2}$. Suppose T has $\binom{n}{2}-\frac{1}{4} n^{2}+1$ circuits that include the end-vertices of e. Then $e \in R$ and T contains all the 4 -circuits whose complements in K_{4} are pairs of edges where one edge of the pair is e and the other is chosen from the complement in C_{1} of a fixed copy of some subgraph X of C_{1} that has exactly $\frac{1}{4} n^{2}-1$ edges but no triangles. By a theorem of Erdös [4] (see also p. 109 of [1]), X is degree-majorised by some complete bipartite graph H. Because X has n vertices and $\frac{1}{4} n^{2}-1$ edges, the only candidates for H are $K_{n / 2, n / 2}$ and $K_{n / 2-1, n / 2+1}$. Suppose H is isomorphic to $K_{n / 2, n / 2}$. Because R is the smallest set of edges which meets every triangle of C_{2}, there must be a triangle Q of C_{2} in which e is the only edge that belongs to R. Let $E(Q)=\left\{e, e_{1}, e_{2}\right\}$.

For each $i \in\{1,2\}, T$ contains all the 4 -circuits whose complements in K_{4} are pairs of edges where one edge of the pair is e_{i} and the other is chosen from the complement, Y_{i}, in C_{1} of a fixed copy of $K_{n / 2, n / 2}$. It also contains all the 4-circuits whose complements in K_{4} are pairs of edges where one edge of the pair is e and the other is chosen from the complement, Y, in C_{1} of a fixed copy of $K_{n / 2, n / 2}-x$ where x is an edge. In order to ensure that T contains a 4-circuit of each copy of $K_{2,3}$, we must choose Y, Y_{1}, Y_{2} so that their union is C_{1} itself. For each $i \in\{1,2\}$, let us denote by $V_{1}\left(e_{i}\right)$ and $V_{2}\left(e_{i}\right)$ the vertex sets of the copies of $K_{n / 2}$ in the subgraph $2 K_{n / 2}$ of C_{1} corresponding to e_{i}. Thus $\left|V_{1}\left(e_{i}\right)\right|=\left|V_{2}\left(e_{i}\right)\right|=$ $n / 2$.

Next, let $A=V_{1}\left(e_{1}\right) \cap V_{2}\left(e_{2}\right), \quad B=V_{1}\left(e_{1}\right) \cap V_{1}\left(e_{2}\right), C=V_{2}\left(e_{1}\right) \cap V_{1}\left(e_{2}\right)$, $D=V_{2}\left(e_{1}\right) \cap V_{2}\left(e_{2}\right), a=|A|, b=|B|, c=|C|, d=|D|$. Note that $a+b=c+$ $d=b+c=a+d=n / 2$, so that $a=c$ and $b=d$. We shall show that the graph Y must contain all the edges which join two vertices of $A \cup C$ or two vertices of $B \cup D$. Suppose not. Without loss of generality, let u, v be distinct vertices of $A \cup C$ such that the edge y joining them is not in Y. If $u \in A$ and $v \in C$ or vice versa, then we have the contradiction that $y \notin E(Y) \cup E\left(Y_{1}\right) \cup$ $E\left(Y_{2}\right)$. Suppose therefore without loss of generality that $u, v \in A$. Let J, K be complementary subsets of C_{1} such that every edge in the complement of Y joins a vertex of J to a vertex of K. Without loss of generality, let $u \in J$ and $v \in K$. Since $a=c$, there must exist distinct vertices $u^{\prime}, v^{\prime} \in C$. As Y contains only one edge joining a vertex in J to a vertex in K, there must be an edge of C_{1} joining a vertex in $\{u, v\}$ to a vertex in $\left\{u^{\prime}, v^{\prime}\right\}$ which is not in $E(Y)$ and hence not in $E(Y) \cup E\left(Y_{1}\right) \cup E\left(Y_{2}\right)$. This contradiction establishes the aforementioned property of Y.

Since the graph Y must contain all the edges which join two vertices of $A \cup C$ or two vertices of $B \cup D$, we have

$$
\begin{aligned}
\frac{n^{2}}{4}-\frac{n}{2}+1 & =|E(Y)| \geqslant\binom{ a+c}{2}+\binom{b+d}{2} \\
& =\binom{2 a}{2}+\binom{2\left(\frac{n}{2}-a\right)}{2} \\
& =4 a^{2}-2 n a+\frac{n^{2}}{2}-\frac{n}{2}
\end{aligned}
$$

This function is minimised when $n=4 a$, but n is not divisible by 4 . Therefore let $a=n / 4+z$, so that $c=n / 4+z$ and $b=d=n / 4-z$. Then

$$
\begin{aligned}
\frac{n^{2}}{4}-\frac{n}{2}+1 & \geqslant\binom{\frac{n}{2}+2 z}{2}+\binom{\frac{n}{2}-2 z}{2} \\
& =\frac{n^{2}}{4}-\frac{n}{2}+4 z^{2}
\end{aligned}
$$

and we see that $|z| \leqslant \frac{1}{2}$. Since a must be an integer, we have $|z|=\frac{1}{2}$. Hence Y must be isomorphic to $K_{n / 2+1} \cup K_{n / 2-1}$. This result shows that H, and therefore X, is isomorphic to $K_{n / 2-1, n / 2+1}$.

In summary, for every edge e in C_{2}, T contains all the 4 -circuits whose complements in K_{4} are pairs of edges where one edge of the pair is e and the other is chosen from the complement W in C_{1} of a fixed copy of $K_{n / 2, n / 2}$ or $K_{n / 2-1, n / 2+1}$. Let $V_{1}(e)$ and $V_{2}(e)$ be the vertex sets of the two components of W.

Finally we consider a subgraph $K_{1, n-1}$ of C_{2}. Any pair of the $n-1$ edges f_{1}, \ldots, f_{n-1} in this subgraph form two sides of a triangle in C_{2}. Note that the set U of all edges e for which $\left|V_{1}(e)\right|=n / 2$ is a largest set of edges of C_{2} which does not include a triangle. By Theorem 3, U is therefore of the form $E\left(K_{n / 2, n / 2}\right)$. Hence U includes exactly $n / 2$ edges of $\left\{f_{1}, \ldots, f_{n-1}\right\}$, and so condition (ii) of Lemma 1 is satisfied if we choose $T_{i}=V_{1}\left(f_{i}\right)$ for each $i \in\{1,2, \ldots, n-1\}$. For the edges $f_{i} \notin U$ we have $\left\{\left|V_{1}\left(f_{i}\right)\right|,\left|V_{2}\left(f_{i}\right)\right|\right\}=\{n / 2-1, n / 2+1\}$, so that condition (i) is satisfied. To establish condition (iii), choose distinct numbers $i, j \in\{1,2, \ldots, n-1\}$. Since f_{i} and f_{j} form two sides of a triangle in C_{2}, we may define e to be the third edge of that triangle. Certainly for each $i \in\{1,2\}$, we have $n / 2-1 \leqslant\left|V_{i}(e)\right| \leqslant n / 2+1$. Moreover, since f_{i}, f_{j} and e are the three sides of a triangle in C_{2}, the union of the complete graphs induced by the vertex sets $V_{1}\left(f_{i}\right), V_{2}\left(f_{i}\right), V_{1}\left(f_{j}\right), V_{2}\left(f_{j}\right), V_{1}(e), V_{2}(e)$ must be C_{1}. This observation shows that

$$
\begin{aligned}
\left\{V_{1}(e), V_{2}(e)\right\}=\left\{(V _ { 1 } (f _ { i }) \cap V _ { 2 } (f _ { j })) \cup \left(V_{2}\left(f_{i}\right)\right.\right. & \left.\cap V_{1}\left(f_{j}\right)\right) \\
\left(V_{1}\left(f_{i}\right)\right. & \left.\left.\cap V_{1}\left(f_{j}\right)\right) \cup\left(V_{2}\left(f_{i}\right) \cap V_{2}\left(f_{j}\right)\right)\right\} .
\end{aligned}
$$

Since $\left(V_{1}\left(f_{i}\right) \cap V_{2}\left(f_{j}\right)\right) \cup\left(V_{2}\left(f_{i}\right) \cap V_{1}\left(f_{j}\right)\right)=\left(T_{i}-T_{j}\right) \cup\left(T_{j}-T_{i}\right)$, condition (iii) follows. Hence there exists a generalised Ehlich matrix of order n, and the proof of Theorem 2 is complete.

It is interesting to note that although the problem of minimising $|T|$ is equivalent to the problem of maximising the determinant of an $n \times n(1,-1)$ matrix if $n \equiv 0(\bmod 4)$, the two problems are not equivalent if $n \equiv 2(\bmod 4)$. This point is easily checked by noting that

$$
\left(\begin{array}{cccccc}
1 & 1 & - & 1 & 1 & 1 \\
- & 1 & 1 & 1 & 1 & 1 \\
1 & - & 1 & 1 & 1 & 1 \\
- & - & - & 1 & - & 1 \\
- & - & - & 1 & 1 & - \\
- & - & - & - & 1 & 1
\end{array}\right) \text { and }\left(\begin{array}{cccccc}
1 & 1 & - & - & 1 & 1 \\
- & 1 & 1 & 1 & - & 1 \\
1 & - & 1 & 1 & 1 & - \\
1 & - & - & 1 & - & 1 \\
- & 1 & - & 1 & 1 & - \\
- & - & 1 & - & 1 & 1
\end{array}\right),
$$

for example, are 6×6 generalised Ehlich matrices with distinct determinants.
Methods similar to those employed in the proof of Theorem 2 can be used to investigate the case where n is odd. We simply quote the result.

Theorem 4. Let S be the set of all 4 -circuits of $K_{n, n}$ where n is odd. Let S_{1}, S_{2}, \ldots, S_{k} be the collection of all subsets S_{i} of S, of cardinality 3 , such that the union of the three circuits of S_{i} is $K_{2,3}$. Let T be a smallest subset of S such that $T \cap S_{i} \neq \varnothing$ for each i. Then $|T| \geqslant \frac{1}{8} n(n-1)^{3}$, and equality holds if and only if there exists an $n \times n(1,-1)$-matrix A in which the dot product of any pair of distinct rows is ± 1.

It is known, however (see [3]), that there are odd integers \boldsymbol{n} for which no such matrix A exists.

References

[1] J. A. Bondy and U. S. R. Murty, Graph theory with applications (Macmillan, London, 1976).
[2] J. Brenner and L. Cummings, 'The Hadamard maximum determinant problem', Amer. Math. Monthly 79 (1972), 626-630.
[3] H. Ehlich, 'Determinantenabschäatzungen für binäre Matrizen’, Math. Z. 83 (1964), 123-132.
[4] P. Erdös, 'On the graph-theorem of Turán' (Hungarian), Mat. Lapok 21 (1970), 249-251.
[5] C. H. C. Little and D. J. Thuente, 'The Hadamard conjecture and circuits of length four in a complete bipartite graph', J. Austral. Math. Soc. Ser. A 31 (1981), 252-256.
[6] P. Turán, 'Eine Extremalaufgabe aus der Graphentheorie', Mat. Fiz. Lapok 48 (1941), 436-452.
[7] C. H. Yang, 'Some designs for maximal $(+1,-1)$-determinant of order $n \equiv 2(\bmod 4)$ ', Math. Comp. 20 (1966), 147-148.

Department of Mathematics and Statistics
Massey University
Palmerston North
New Zealand

[^0]: © 1987 Australian Mathematical Society $0263-6115 / 87 \$$ A2.00 +0.00

