
Problème de la section de raison par C. A. Laisant, Docteur ès Sciences

La question est la suivante:

On donne deux droites OA, OB; un point (A, B) sur chacune d'elles; un point P dans le plan. On demande de mener par P une sécante A'B' telle que le rapport $\frac{AA'}{BB'}$ soit éyal à un rapport donné.

Le problème étant supposé résolu, considérons les deux triangles directement semblables BB'P, $AA'P_1$; les angles B'BP, $A'AP_1$ sont égaux; de plus $\frac{AP_1}{BP} = \frac{AA'}{BB'}$, qui est donné.

Donc nous pouvons construire P_1 . Ceci fait, remarquons que les deux triangles sont orientés de telle sorte qu'en faisant tourner BB'P de l'angle BOA = θ , ses côtés deviendraient parallèles à ceux de AA'P₁; l'angle de B'P avec A'P est donc θ , et par suite $PA'P_1 = \pi - \theta$. En décrivant sur PP_1 un segment capable de $\pi - \theta$ on aura donc le point A', ce qui résout le problème.

Pour abréger, je laisse de côté la discussion, qui est cependant intéressante, mais ne présente pas de difficultés fondamentales.