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From the perspective of a muscle physiologist, adipose tissue has long been perceived
predominantly as a fuel reservoir that provides muscle and other tissues with NEFA when
exogenous nutrients are insufficient for their energy needs. Recently, studies have established
that adipose tissue is also an endocrine organ. Among the hormones it releases are adiponectin
and leptin, both of which can activate AMP-activated protein kinase and increase fatty acid
oxidation in skeletal muscle and probably other tissues. Deficiencies of leptin or leptin receptor,
adiponectin and IL-6 are associated with obesity, insulin resistance and a propensity to type 2
diabetes. In addition, a lack of adiponectin has been linked to atherosclerosis. Whether this
pathology reflects a deficient activation of AMP-activated protein kinase in peripheral tissues
remains to be determined. Finally, recent studies have suggested that skeletal muscle may also
function as an endocrine organ when it releases the cytokine IL-6 into the circulation during
sustained exercise. Interestingly, one of the apparent effects of IL-6 is to stimulate lipolysis,
causing the release of NEFA from the adipocyte. Thus, hormonal communications exist
between the adipocyte and muscle that could enable them to talk to each other. The
physiological relevance of this cross talk clearly warrants further study.

Adiponectin: IL-6: AMP-activated protein kinase: Malonyl-CoA:
Energy homeostasis: Insulin resistance

For much of the past 50 years adipose tissue has been
principally viewed as a fuel reservoir that supplies NEFA
for the energy requirements of other tissues and skeletal
muscle as a more or less passive recipient of this largesse.
From the perspective of a muscle physiologist, the adipo-
cyte has been considered to play a particularly important
role during starvation and exercise (Fig. 1(a)) when it
increases the release of NEFA in keeping with the fuel
needs of the muscle cell. These perceptions have slowly
begun to change following the discovery that adipose
tissue also functions as an endocrine organ (Spiegelman &
Flier, 2001) and, more recently, the realization that skeletal
muscle may assume a similar role during exercise (Keller
et al. 2001).

Adipose tissue releases over twenty substances into the
circulation (Gong et al. 2003), which perhaps makes it
the champion endocrine organ, at least for the present. Of

these hormones, leptin and adiponectin have been the most
intensively studied (Fig. 1(b)). In the present review, the
following questions will be addressed: (1) do leptin and
adiponectin act on skeletal muscle and if so, how; (2) what
happens to muscle and other tissues when these hormones
are deficient; (3) does muscle also function as an endocrine
organ. The emphasis will be on known factors released
by adipose tissue and skeletal muscle and their effect on
the fuel-sensing enzyme AMP-activated protein kinase
(AMPK).

Leptin

It has been appreciated since its discovery (Halaas et al.
1995) that leptin diminishes adiposity both by depressing
food intake and increasing peripheral energy expenditure.
Recently, leptin has been shown to increase fatty acid

Abbreviations: AICAR, 5-amino-4-imidazolecarboxamide riboside; AMPK, AMP-activated protein kinase; gAcrp30, the globular subunit of the
adiponectin molecule.
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oxidation in skeletal muscle (Muoio et al. 1999) and to
prevent lipotoxicity (the adverse effects caused by the
ectopic deposition of lipid in liver, skeletal and cardiac
muscle and the pancreatic islets; Lee et al. 1994). In
addition, it has been shown that many obese individuals
are resistant to leptin (Gong et al. 2003). In the past year
studies by Kahn and her co-workers (Minokoshi et al.
2002) have established that leptin may cause these effects
by activating the fuel-sensing enzyme AMPK (Fig. 2).
Thus, they have shown that infusion of leptin intra-
venously leads to a transient increase in AMPK activity
in skeletal muscle that peaks at 15 min, and a later more
sustained increase that persists for upwards of 6 h. They
have postulated that the early effect is the result of a direct
action of leptin on muscle and the later effect is a result
of a central action on the hypothalamus that increases
sympathetic nervous system activity. In keeping with
this contention, the sustained increase in AMPK activity
has been observed when leptin is administered centrally
as well as peripherally, and it is markedly diminished both
by denervating the muscle and by treating the rat with
the a adrenergic antagonist phentolamine (Minokoshi et al.
2002).

Preliminary data (X Yu, R Unger, AK Saha and NB
Ruderman, unpublished results) suggest that the effects of
leptin on AMPK may extend to tissues other than muscle.
In the Zucker diabetic rat, a rodent with obesity and
ectopic lipid deposition as a result of a genetic deficiency
of leptin receptors (Lee et al. 1994), it has been found that
treatment for 13 weeks with the AMPK activator 5-amino-
4-imidazolecarboxamide riboside (AICAR) markedly di-
minishes (80%) the accumulation of fat in liver, muscle

and the pancreatic b-cell and prevents the development of
diabetes. Presumably, AMPK activation in each of these
tissues accounts for the effects of AICAR; however, direct
evidence for this role is still lacking.

Adiponectin

Basic description

Another hormone synthesized and released by differen-
tiated adipocytes is the cytokine adiponectin, also termed
Acrp30 (Scherer et al. 1995). Adiponectin circulates in
plasma predominantly as trimeric, hexameric and high-
molecular-weight species (Tsao et al. 2002). In addition,
the globular subunit of the adiponectin molecule (gAcrp30),
which is not detectable in plasma, has been shown to have
biological activity (Fruebis et al. 2001). Early studies
have linked adiponectin to energy homeostasis, since the
expression of its mRNA is decreased in adipose tissue of
obese mice (Hu et al. 1996; Arita et al. 1999) and human
subjects (Hotta et al. 2000). In addition, a negative correl-
ation between plasma adiponectin levels, insulin resistance,
obesity and a predisposition to diabetes has been repeat-
edly observed (Hotta et al. 2000; Arner, 2003). More
recently, it has been shown that adiponectin knock-out
mice show delayed clearance of NEFA in plasma, low
levels of fatty acid transport protein 1 mRNA in muscle,
high levels of TNFa mRNA in adipose tissue and ele-
vated plasma TNFa concentrations (Maeda et al. 2002).
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Fig.1. (a) Adipocyte as a fuel reservoir for muscle during starv-

ation (insulin lack) and exercise. SNS, sympathetic nervous system;

TG, triacylglycerols; LCCoA, long-chain fatty acyl-CoA; Alb, albu-

min. (b) Adipocyte as an endocrine organ.
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Fig. 2. AMP-activated protein kinase (AMPK) activation in rat

soleus muscle after injection of leptin intrahypothalamically (a; $)

or intravenously (b; &). (m- - - -m), Saline (9 g NaCl/l). Values are

means with their standard errors represented by vertical bars.

Mean value was significantly different compared with the saline

injection: *P < 0.05. (Adapted from Minokoshi et al. 2002.)

382 E. Tomas et al.

https://doi.org/10.1079/PNS2004356 Published online by Cambridge University Press

https://doi.org/10.1079/PNS2004356


Furthermore, when placed on a high-fat high-sucrose diet
these mice develop severe insulin resistance, with increased
plasma NEFA levels and decreased insulin-stimulated
insulin receptor substrate 1-associated phosphatidylinositol
3-kinase activity in muscle and in cultured myocytes
(Maeda et al. 2002). Adiponectin has also been reported
to have anti-atherogenic properties. Thus, when either the
full-length or gAcrp30 is overexpressed, the atherosclero-
sis observed in apoE-deficient mice is markedly attenuated
(Yamauchi et al. 2001; Okamoto et al. 2002).

Which of the various forms of adiponectin mediate
these changes remains to be determined. Fruebis et al.
(2001) have demonstrated that purified gAcrp30 (bacte-
rially expressed) increases fatty acid oxidation in incubated
mouse muscle and cultured cells. They have also found
that when administrated chronically to mice gAcrp30
causes weight loss without diminishing food intake. In
contrast, they have found no effect of full-length adipo-
nectin on muscle fatty acid oxidation or plasma NEFA
levels (Fruebis et al. 2001). In contrast, in isolated hepato-
cytes, Berg et al. (2001, 2002) have reported that only

the full-length adiponectin enhances suppression of glucose
production by insulin. It is likely that the different oligo-
meric isoforms of adiponectin have different signalling
activities. Whereas gAcrp30 and the full-length trimer
can activate AMPK in muscle, the hexamer and high-
molecular-weight adiponectin can only activate NF-kB.
A similar situation may also exist in other tissue types.
Alternatively, these different actions of the two oligomers
of adiponectin could be related to the presence of different
adiponectin receptors in muscle and liver (Yamauchi et al.
2003).

Molecular signalling induced by adiponectin

As gAcrp30 has been reported to have the same effects on
glucose and lipid metabolism in muscle as exercise and the
administration of AICAR, it has been investigated whether
it also activates AMPK. Incubation of the extensor digi-
torum longus muscle with gAcrp30 (2.5mg/ml) has been
shown to lead to a 2-fold increase in the activity of a2
isoform of AMPK, with comparable increases in the
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Fig. 3. Effects of globular adiponectin (gAcrp30) on AMP-activated protein kinase (AMPK) and related

variables. (a) AMPK activity and phosphorylation (p-AMPK), acetyl-CoA carboxylase phosphorylation

(p-ACC) and malonyl-CoA concentration in rat extensor digitorum longus (EDL) muscles incubated for

30min in the presence (+) or absence (-) of gAcrp30 (2.5mg/ml). (b) Effects of gAcrp30 (75mg per

animal) injected retro-orbitally on the same variables in gastrocnemius muscle of C57BL/6J mice. In both

studies p-ACC and malonyl-CoA concentration were altered at 30min but not at 15min. Values are

means with their standard errors represented by vertical bars. Mean values were significantly different

from those incubated in the absence of gAcrp30: * P < 0.05. (Adapted from Tomas et al. 2002.)
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phosphorylation of AMPK and acetyl-CoA carboxylase
(Fig. 3) and a 30% decrease in the concentration of
malonyl-CoA (Tomas et al. 2002). Similar findings have
been observed after the in vivo administration of gAcrp30
to C57 BL/6J mice (Fig. 3). In both situations the
activation of AMPK occurs first and the phosphorylation
and inhibition of acetyl-CoA carboxylase occurs later. It
has also been shown, in the same studies, that gAcrp30
increases glucose uptake in the absence of added insulin
(Tomas et al. 2002), an effect similar to that of AICAR.
Similar effects of gAcrp30 have been described by
Yamauchi et al. (2002) in C2C12 myocytes and incubated
soleus muscle, and by Wu et al. (2003) in primary rat
adipocytes. gAcrp30 has also been shown to reverse the
inhibitory effect of TNFa on insulin-stimulated glucose
uptake (Wu et al. 2003). The effects of full-length hexa-
meric adiponectin on AMPK activity and acetyl-CoA
carboxylase phosphorylation in muscle are controversial
(Tomas et al. 2002; Yamauchi et al. 2002). Only full-
length adiponectin appears to activate AMPK in liver
(Tsao et al. 2002), consistent with the fact that full-length
adiponectin receptor is mainly expressed in liver (Yamauchi
et al. 2003).

Muscle as an endocrine organ: IL-6

There is evidence from Pedersen and her coworkers that
muscle can function as an endocrine organ (Fig. 4; see
Steensberg et al. 2002). As shown recently, the transcrip-
tion rate, mRNA level and the release of IL-6 from skeletal
muscle are dramatically increased during and after exercise,
especially when the exercise is intense and sustained and
muscle glycogen content is low (Steensberg et al. 2000;
Keller et al. 2001). In addition, further work by Pedersen’s
group has shown that IL-6, at the concentrations found
during exercise, stimulates lipolysis in adipose tissue (Van
Hall et al. 2003), and that it can diminish plasma levels of

TNFa (Starkie et al. 2003). In addition, IL-6 deficient
mice have been demonstrated to develop late-onset obesity
and glucose intolerance (Wallenius et al. 2002). Re-admin-
istration of IL-6 results in increased energy expenditure,
suggesting an important role of IL-6 in maintaining energy
homeostasis. In light of these findings and the earlier
observation that 30 min after a treadmill run AMPK
activity is increased in rat liver and adipose tissue as well
as in muscle (Park et al. 2002), the effect of IL-6 on
AMPK activity in rat tissues has been examined (M Kelly,
AK Saha, X Xiang, Z Luo, N Ruderman et al., unpub-
lished results). To date, it has been found that IL-6, at
concentrations similar to that observed in plasma during
intense exercise, causes 2- to 4-fold increases in AMPK
phosphorylation at Thr172 (an index of activation) in both
incubated rat extensor digitorum longus muscle and
cultured 443A adipocytes. Whether IL-6 exerts these
effects in vivo remains to be determined. How these find-
ings relate to the putative linkage between IL-6 and
inflammatory events in living organisms will also require
further study.

Concluding remarks

The evidence that the adipocyte hormones leptin and
adiponectin can alter fatty acid oxidation and activate
AMPK in skeletal muscle has been reviewed. Conversely,
IL-6, which is released from muscle during exercise, has
been shown to stimulate lipolysis in fat cells and it can
activate AMPK in incubated muscle and cultured adipo-
cytes. It must be emphasized, however, that the activation
of AMPK by IL-6 has only been observed in vitro. Studies
in intact animals are needed to establish whether this effect
is physiologically relevant.
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