A family of supplementary difference sets

Emma Lehmer

Abstract

This note exhibits a family of $m-(v, k, \lambda)$ supplementary difference sets with parameters $v=2 m f+1$, where $v=p$ is a prime and f is odd, $k=m f$ and $\lambda=m(m f-1) / 2$. These sets are composed of a union of cosets of $2 m$-th power residues of p.

A supplementary difference set $m-(v, k, \lambda)$ is a system of m sets of k elements each such that if the differences between the elements of each set are taken modulo v then each non-zero difference appears λ times in the whole system; [2].

The difference set $2-\left(p, \frac{p-1}{2}, \frac{p-3}{2}\right)$ was discussed by Szekeres [1], who proved that if $C_{0}, C_{1}, C_{2}, C_{3}$ are the four cosets of quartic residues, then the sets

$$
S_{0} \vdots\left\{C_{0}, C_{1}\right\} \text { and } S_{1}:\left\{C_{0}, C_{3}\right\}
$$

are a pair of supplementary sets if $p \equiv 3(\bmod 8)$.
Wallis and Whiteman [3] proved a similar theorem for cosets of octic residues which states that the sets
$s_{0}:\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}, S_{1}:\left\{C_{0}, C_{1}, C_{2}, C_{7}\right\}$

$$
s_{2}:\left\{c_{0}, C_{1}, C_{6}, C_{7}\right\}, S_{3}:\left\{C_{0}, c_{5}, c_{6}, C_{7}\right\}
$$

form a supplementary difference set $4-\left(p, \frac{p-1}{2}, p-3\right)$ provided $p \equiv 9(\bmod 16)$ 。

Received 19 February 1974.

It is the purpose of this note to show that these two results generalize into the following theorem.

THEOREM. Let $p=2 m f+1$ be a prime. Let f be odd and let g be a primitive root moduzo p. Define the cosets of $2 m$-th power residues by

$$
C_{i}=\left\{g^{2 m \nu+i}(\bmod p)\right\}, \quad i=0,1, \ldots, 2 m-1, \quad v=0,1, \ldots, f-1
$$

Let

$$
i_{j}=j+m \varepsilon_{j}, \text { where } \varepsilon_{0}=0, \quad \varepsilon_{j}=0 \text { or } 1 \text {. }
$$

Then for every choice of ε_{j} the system of m sets

$$
S_{n}:\left\{C_{i_{0}-i_{n}}, C_{i_{1}-i_{n}}, \ldots, C_{i_{m-1}-i_{n}}\right\}, n=0,1, \ldots, m-1
$$

is a supplementary difference set $m-(v, k, \lambda)$, where

$$
v=p=2 m f+1, \quad k=(p-1) / 2=m f, \quad \lambda=m(m f-1) / 2 \quad(f \text { odd })
$$

Proof. Denote as usual by (u, v) the number of solutions (ν, μ) of the congruence

$$
g^{2 m \mu+u}+1 \equiv g^{2 m \nu+v}(\bmod p)
$$

Since f is odd we have

$$
\begin{equation*}
(u, v)=(v+m, u+m) \tag{1}
\end{equation*}
$$

Let $\delta_{t}=g^{2 m \tau+t}$ be an element of the set C_{t}. The number of times that δ_{t} is the difference between elements of two cosets of the set S_{n} is the number of solutions (μ, ν) of the congruence

$$
g^{2 m \mu+i-n+m\left(\varepsilon_{i}-\varepsilon_{n}\right)}-g^{2 m \nu+j-n+m\left(\varepsilon_{j}-\varepsilon_{n}\right)} \equiv g^{2 m \tau+t}(\bmod p)
$$

which by (1) is

$$
\left(j-n-t+m\left(\varepsilon_{j}-\varepsilon_{n}\right), i-n-t+m\left(\varepsilon_{i}-\varepsilon_{n}\right)\right)
$$

Therefore the number of times $N_{n}\left(\delta_{t}\right)$ that δ_{t} is the difference between elements of S_{n} is

$$
\begin{equation*}
N_{n}\left(\delta_{t}\right)=\sum_{i=0}^{m-1} \sum_{j=0}^{m-1}\left(j-n-t+m\left(\varepsilon_{j}-\varepsilon_{n}\right), i-n-t+m\left(\varepsilon_{i}-\varepsilon_{n}\right)\right)=N_{n+m}\left(\delta_{t}\right) \tag{2}
\end{equation*}
$$

by (1). Similarly, since the sum is symmetric in i and j, it remains unaltered if ε_{n} is changed and is therefore a function of $n+t$. Hence

$$
\begin{equation*}
N_{n}\left(\delta_{t}\right)=N_{n+r}\left(\delta_{t-r}\right), r=0,1, \ldots, 2 m-1 \tag{3}
\end{equation*}
$$

Hence the total number of times $N\left(\delta_{t}\right)$ that δ_{t} is a difference in all the m sets S_{n} is

$$
N\left(\delta_{t}\right)=\sum_{n=0}^{m-1} N_{n}\left(\delta_{t}\right)=\sum_{n=0}^{m-1} N_{n+r}\left(\delta_{t-r}\right)=\sum_{v=r}^{m-1+r} N_{v}\left(\delta_{t-r}\right)=\sum_{n=0}^{m-1} N_{n}\left(\delta_{t-r}\right)
$$

by (2) and is therefore not a function of t, which proves the theorem.
Putting $n=2$ and $n=4$ gives the theorems of Szekeres and Wallis and Whiteman. For $n=1$ we get the well known result that the $(p-1) / 2$ quadratic residues modulo $p \equiv 3(\bmod 4)$ form an ordinary difference set with $\lambda=(p-3) / 4$.

For $m=3$ the theorem seems to give a new result, [2], namely:
COROLLARY 1. If $p \equiv 7(\bmod 12)$ is a prime then a $3-\left(p, \frac{p-1}{2}, \frac{3(p-3)}{4}\right)$ supplementary difference set is given by

$$
s_{0}:\left\{c_{0}, c_{1}, c_{2}\right\}, s_{1}:\left\{c_{0}, c_{1}, c_{5}\right\}, s_{2}:\left\{c_{0}, c_{4}, c_{5}\right\}
$$

where c_{i} are the cosets of sextic residues.
For $m=3$ the only other set S which satisfies the conditions of the theorem is $S:\left\{C_{0}, C_{2}, C_{4}\right\}$, which is the ordinary difference set of quadratic residues modulo p.

In general there are 2^{m-1} choices of the ε_{i} and hence of possible sets S. If m is a prime, then $2^{m-1} \equiv 1(\bmod m)$ and we have an ordinary difference set and $\left(2^{m-1}-1\right) / m$ supplementary difference sets. Thus the number $n(m)$ of supplementary difference sets covered by the theorem increases very rapidly. In fact

$$
\begin{array}{lrrrrrrrrrrrrrrr}
m & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
n(m) & 1 & 1 & 1 & 2 & 3 & 5 & 9 & 16 & 29 & 51 & 93 & 170 & 315 & 585 & 1092
\end{array}
$$

We note that $n(4)=2$, but the second set obtained by the theorem can be transformed into the Wallis-Whiteman set by a change of primitive root. Also $n(8)$ can be reduced from 16 to 4 if changes of primitive root are allowed. For m a prime there is at least one supplementary difference set which is independent of the primitive root. Simply choose for S_{0} the union of C_{0} with those cosets C_{i} for which i is prime to $2 m$. Since all the primitive roots must be in these cosets, S_{0} does not depend on the primitive root and therefore the other sets of the system must permute among themselves with a change of primitive root. This singles out an invariant set from the $n(m)$ sets when m is a prime.

It is obvious that every element of C_{0} is a multiplier of every supplementary difference set made up of cosets as it leaves every S_{n} unaltered. A broader definition of multipliers which permute the sets might be useful.

References

[1] G. Szekeres, "Cyclotomy and complementary difference sets", Acta Arith. 18 (1971), 349-353.
[2] Jennifer Wallis, "On supplementary difference sets", Aequationes Math. 8 (1972), 242-257.
[3] Jennifer Wallis and Albert Leon Whiteman, "Some classes of Hadamard matrices with constant diagonal", BuZl. Austral. Math. Soc. '7 (1972), 233-249.

Berkeley, California, USA.

