BULL. AUSTRAL. MATH. SOC. VOL. 11 (1974), 1-4.

A family of supplementary difference sets

Emma Lehmer

This note exhibits a family of $m - (v, k, \lambda)$ supplementary difference sets with parameters v = 2mf + 1, where v = p is a prime and f is odd, k = mf and $\lambda = m(mf-1)/2$. These sets are composed of a union of cosets of 2m-th power residues of p.

A supplementary difference set $m - (v, k, \lambda)$ is a system of m sets of k elements each such that if the differences between the elements of each set are taken modulo v then each non-zero difference appears λ times in the whole system; [2].

The difference set $2 - \left(p, \frac{p-1}{2}, \frac{p-3}{2}\right)$ was discussed by Szekeres [1], who proved that if C_0, C_1, C_2, C_3 are the four cosets of quartic residues, then the sets

 $s_0 : \{c_0, c_1\}$ and $s_1 : \{c_0, c_3\}$

are a pair of supplementary sets if $p \equiv 3 \pmod{8}$.

Wallis and Whiteman [3] proved a similar theorem for cosets of octic residues which states that the sets

$$S_{0} : \{C_{0}, C_{1}, C_{2}, C_{3}\}, S_{1} : \{C_{0}, C_{1}, C_{2}, C_{7}\}$$

$$S_{2} : \{C_{0}, C_{1}, C_{6}, C_{7}\}, S_{3} : \{C_{0}, C_{5}, C_{6}, C_{7}\}$$
form a supplementary difference set 4 - $\left(p, \frac{p-1}{2}, p-3\right)$ provided

 $p \equiv 9 \pmod{16} .$

Received 19 February 1974.

It is the purpose of this note to show that these two results generalize into the following theorem.

THEOREM. Let p = 2mf + 1 be a prime. Let f be odd and let g be a primitive root modulo p. Define the cosets of 2m-th power residues by

$$C_i = \{g^{2m\nu+i} \pmod{p}\}, i = 0, 1, \dots, 2m-1, \nu = 0, 1, \dots, f-1\}$$

Let

$$i_j = j + m\epsilon_j$$
 , where $\epsilon_0 = 0$, $\epsilon_j = 0$ or 1

Then for every choice of ε_i the system of m sets

$$S_n: \{C_{i_0}-i_n, C_{i_1}-i_n, \dots, C_{i_{m-1}}-i_n\}, n = 0, 1, \dots, m-1, \}$$

is a supplementary difference set $m - (v, k, \lambda)$, where

$$v = p = 2mf + 1$$
, $k = (p-1)/2 = mf$, $\lambda = m(mf-1)/2$ (f odd).

Proof. Denote as usual by (u, v) the number of solutions (v, μ) of the congruence

$$g^{2m\mu+u} + 1 \equiv g^{2m\nu+\nu} \pmod{p} .$$

Since f is odd we have

(1)
$$(u, v) = (v+m, u+m)$$

Let $\delta_t = g^{2m\tau + t}$ be an element of the set C_t . The number of times that δ_t is the difference between elements of two cosets of the set S_n is the number of solutions (μ, ν) of the congruence

$$g^{2m\mu+i-n+m}(\varepsilon_i - \varepsilon_n) = g^{2m\nu+j-n+m}(\varepsilon_j - \varepsilon_n) \equiv g^{2m\nu+t} \pmod{p}$$

which by (1) is

$$(j-n-t+m(\varepsilon_j-\varepsilon_n), i-n-t+m(\varepsilon_i-\varepsilon_n))$$

Therefore the number of times $N_n(\delta_t)$ that δ_t is the difference between elements of S_n is

2

(2)
$$N_{n}(\delta_{t}) = \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} (j-n-t+m(\varepsilon_{j}-\varepsilon_{n}), i-n-t+m(\varepsilon_{i}-\varepsilon_{n})) = N_{n+m}(\delta_{t})$$

by (1). Similarly, since the sum is symmetric in i and j, it remains unaltered if ε_n is changed and is therefore a function of n + t. Hence (3) $N_n(\delta_t) = N_{n+r}(\delta_{t-r})$, r = 0, 1, ..., 2m-1.

Hence the total number of times $N(\delta_t)$ that δ_t is a difference in all the *m* sets S_n is

$$N(\delta_{t}) = \sum_{n=0}^{m-1} N_{n}(\delta_{t}) = \sum_{n=0}^{m-1} N_{n+r}(\delta_{t-r}) = \sum_{v=r}^{m-1+r} N_{v}(\delta_{t-r}) = \sum_{n=0}^{m-1} N_{n}(\delta_{t-r})$$

by (2) and is therefore not a function of t, which proves the theorem.

Putting n = 2 and n = 4 gives the theorems of Szekeres and Wallis and Whiteman. For n = 1 we get the well known result that the (p-1)/2quadratic residues modulo $p \equiv 3 \pmod{4}$ form an ordinary difference set with $\lambda = (p-3)/4$.

For m = 3 the theorem seems to give a new result, [2], namely:

COROLLARY 1. If $p \equiv 7 \pmod{12}$ is a prime then a 3 - $\left(p, \frac{p-1}{2}, \frac{3(p-3)}{4}\right)$ supplementary difference set is given by $S_0 : \{C_0, C_1, C_2\}, S_1 : \{C_0, C_1, C_5\}, S_2 : \{C_0, C_4, C_5\}$

where C; are the cosets of sextic residues.

For $m \approx 3$ the only other set S which satisfies the conditions of the theorem is $S : \{C_0, C_2, C_1\}$, which is the ordinary difference set of quadratic residues modulo p.

In general there are 2^{m-1} choices of the ε_i and hence of possible sets S. If m is a prime, then $2^{m-1} \equiv 1 \pmod{m}$ and we have an ordinary difference set and $(2^{m-1}-1)/m$ supplementary difference sets. Thus the number n(m) of supplementary difference sets covered by the theorem increases very rapidly. In fact

Emma Lehmer

m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n(m)	1	l	l	2	3	5	9	16	29	51	93	170	315	585	1092

We note that n(4) = 2, but the second set obtained by the theorem can be transformed into the Wallis-Whiteman set by a change of primitive root. Also n(8) can be reduced from 16 to 4 if changes of primitive root are allowed. For m a prime there is at least one supplementary difference set which is independent of the primitive root. Simply choose for S_0 the union of C_0 with those cosets C_i for which i is prime to 2m. Since all the primitive roots must be in these cosets, S_0 does not depend on the primitive root and therefore the other sets of the system must permute among themselves with a change of primitive root. This singles out an invariant set from the n(m) sets when m is a prime.

It is obvious that every element of C_0 is a multiplier of every supplementary difference set made up of cosets as it leaves every S_n unaltered. A broader definition of multipliers which permute the sets might be useful.

References

- G. Szekeres, "Cyclotomy and complementary difference sets", Acta Arith. 18 (1971), 349-353.
- [2] Jennifer Wallis, "On supplementary difference sets", Aequationes Math. 8 (1972), 242-257.
- [3] Jennifer Wallis and Albert Leon Whiteman, "Some classes of Hadamard matrices with constant diagonal", Bull. Austral. Math. Soc. 7 (1972), 233-249.

Berkeley, California, USA.

4