AN EXTENSION OF THE GENERALISED SCHUR INEQUALITY

B. MOND AND J.E. PEČARIĆ

The well-known Schur inequality relates the sum of the squares of the absolute values of the eigenvalues of A to the elements of A. This was recently generalised to powers between one and two. Here we show that the inequality holds for powers between zero and two.

Let A be an $n \times n$ matrix, real or complex, with eigenvalues $\lambda_1, \ldots, \lambda_n$. The Schur inequality

(1)
$$\sum_{i=1}^{n} |\lambda_i|^2 \leqslant \sum_{i,j=1}^{n} |a_{ij}|^2$$

is well-known [2, p.133].

Petri and Ikramov [3] generalised the Schur inequality to

(2)
$$\sum_{i=1}^{n} |\lambda_i|^p \leqslant \sum_{i,j=1}^{n} |a_{ij}|^p$$

where $1 \leq p \leq 2$.

Ikramov [1] proved, for any $n \times n$ matrix A with singular values s_1, s_2, \ldots, s_n , the following result:

(3)
$$\sum_{i=1}^n s_i^p \leqslant \sum_{i,j=1}^n |a_{ij}|^p,$$

where $1 \leq p \leq 2$.

Now (2) is a simple consequence of (3) by the well-known Weyl inequality:

We assume that the singular values of A constitute a non-increasing sequence

$$s_1 \geqslant s_2 \geqslant \ldots \geqslant s_n$$

Received 16th January, 1995

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

$$|\lambda_1| \geqslant |\lambda_2| \geqslant \ldots \geqslant |\lambda_n|$$

Then for $1 \leq k \leq n$ and 0

(4)
$$\sum_{i=1}^{k} |\lambda_i|^p \leqslant \sum_{i=1}^{k} s_i^p$$

We now have

THEOREM 1. For any $n \times n$ matrix A with singular values s_1, \ldots, s_n , inequality (3) is valid for $0 . For <math>p \geq 2$, the reverse inequality holds.

PROOF: The proof follows closely that of Theorem 1 of [1]. Let τ_1, \ldots, τ_n denote the ℓ_2 norms of the row vectors $(a_{i1}, a_{i2}, \ldots, a_{in})$ numbered so that they form the non-increasing sequence

$$au_1 \geqslant au_2 \geqslant \ldots \geqslant au_n.$$

It is well-known [3] that the sequence $\tau_1^2, \ldots, \tau_n^2$ is majorised by s_1^2, \ldots, s_n^2 , that is,

$$\sum_{i=1}^{k} \tau_i^2 \leqslant \sum_{i=1}^{k} s_i^2, \qquad 1 \leqslant k \leqslant n$$
$$\sum_{i=1}^{n} \tau_i^2 = \sum_{i=1}^{n} s_i^2.$$

So if f is a concave function, we have

(5)
$$\sum_{i=1}^{n} f(s_i^2) \leq \sum_{i=1}^{n} f(\tau_i^2)$$

and the reverse inequality holds in (5) if f is a convex function.

In particular, the function $f(x) = x^{p/2}$ is concave for x > 0 if $0 and convex for <math>p \geq 2$. Therefore

(6)
$$\sum_{i=1}^{n} s_i^p \leqslant \sum_{i=1}^{n} \tau_i^p$$

holds for $0 and the reverse inequality holds for <math>p \geq 2$.

On the other hand, for ℓ_p norms of any row vector, we have

(7)
$$\left(\sum_{j=1}^{n} |a_{ij}|^2\right)^{1/2} \leqslant \left(\sum_{j=1}^{n} |a_{ij}|^p\right)^{1/p}$$

for $0 and the reverse inequality for <math>p \geq 2$.

Taking the *p*th power of both sides in (7) and adding the inequalities for i = 1, ..., n, we obtain

(8)
$$\sum_{i=1}^{n} \tau_i^p \leqslant \sum_{i,j=1}^{n} |a_{ij}|^p$$

for $0 , and the reverse inequality for <math>p \geq 2$.

The assertion of the theorem now follows from (6) and (8) and their reversals.

THEOREM 2. Let A be an $n \times n$ matrix, real or complex, with eigenvalues $\lambda_1, \ldots, \lambda_n$. Then (2) is valid for 0 .

PROOF: This is a simple consequence of Theorem 1 and Weyl's inequalities (4).

References

- K.D. Ikramov, 'A simple proof of the generalized Schur inequality', Linear Algebra Appl. 199 (1994), 143-149.
- [2] L. Mirsky, An introduction to linear algebra (Oxford University Press, Oxford, 1955).
- [3] N.V. Petri and K.D. Ikramov, 'Extremal properties of some matrix norms', U.S.S.R. Comput. Math. and Math. Phys. 8 No. 4 (1968), 219-230.

Department of Mathematics La Trobe University Bundoora Vic 3083 Australia Faculty of Textile Technology University of Zagreb Zagreb Croatia and Department of Mathematics La Trobe University Bundoora Vic 3083 Australia