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AN EXTENSION OF THE GENERALISED SCHUR INEQUALITY

B. MOND AND J.E. PECARIC

The well-known Schur inequality relates the sum of the squares of the absolute
values of the eigenvalues of A to the elements of A. This was recently generalised
to powers between one and two. Here we show that the inequality holds for powers
between zero and two.

Let A be an nxn matrix, real or complex, with eigenvalues Ai, . . . , An. The Schur
inequality

is well-known [2, p.133].
Petri and Ikramov [3] generalised the Schur inequality to

(2)

where 1 ^ p ^ 2.
Ikramov [1] proved, for any nxn matrix A with singular values Si, S2,... , sn, the

following result:

(3)

where 1 ^ p < 2.
Now (2) is a simple consequence of (3) by the well-known Weyl inequality:
We assume that the singular values of A constitute a non-increasing sequence
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and that the eigenvalues of A are numbered in accordance with their magnitudes

Then for 1 ^ k ^ n and 0 < p < oo

(4)

We now have

THEOREM 1 . For any nxn matrix A with singular values si,..., sn , inequality

(3) is valid for 0 < p ^ 2 . For p ^ 2, the reverse inequality holds.

PROOF: The proof follows closely that of Theorem 1 of [1]. Let T\ ,..., r n denote
the £2 norms of the row vectors {an, di2, • • •, o,{n) numbered so that they form the
non-increasing sequence

n ^ r2 ^ . . . ^ rn.

It is well-known [3] that the sequence Tj2,. . . ,r^ is majorised by s\,... , s ^ , that is,

So if / is a concave function, we have

(5)
t = l

and the reverse inequality holds in (5) if / is a convex function.

In particular, the function f(x) = xp/2 is concave for s ; > 0 i f 0 < p ^ 2 and

convex for p ^ 2. Therefore

holds for 0 < p ^ 2 and the reverse inequality holds for p ^ 2.

On the other hand, for £p norms of any row vector, we have

(
1/2 , ^ l/p

|>2j
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for 0 < p ^ 2 and the reverse inequality for p ^ 2.

Taking the p th power of both sides in (7) and adding the inequalities for i —

1 , . . . ,n, we obtain

(8) i

for 0 < p ^ 2, and the reverse inequality for p ^ 2.

The assertion of the theorem now follows from (6) and (8) and their reversals. D

THEOREM 2 . Let A be an n X n matrix, real or complex, with eigenvalues

A i , . . . , An. Then (2) is valid for 0 < p < 2.

PROOF: This is a simple consequence of Theorem 1 and Weyl's inequalities (4). D
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