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Abstract

We prove an explicit inverse Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds of

simply laced type. By an ‘inverse Chevalley formula’ we mean a formula for the product of an equivariant scalar

with a Schubert class, expressed as a Z
[
@±1

]
-linear combination of Schubert classes twisted by equivariant line

bundles. Our formula applies to arbitrary Schubert classes in semi-infinite flag manifolds of simply laced type

and equivariant scalars 4_, where _ is an arbitrary minuscule weight. By a result of Stembridge, our formula

completely determines the inverse Chevalley formula for arbitrary weights in simply laced type except for type �8.

The combinatorics of our formula is governed by the quantum Bruhat graph, and the proof is based on a limit from

the double affine Hecke algebra. Thus our formula also provides an explicit determination of all nonsymmetric

q-Toda operators for minuscule weights in ADE type.

1. Introduction

Let Qrat
�

be the semi-infinite flag manifold. This is a reduced ind-scheme whose set of C-valued points

is � (C ((I)))/(� (C) · # (C ((I)))) (see [11] for details), where G is a simply connected simple algebraic

group overC, � = �# ⊂ � is a Borel subgroup, H is a maximal torus and N is the unipotent radical of B.

For each affine Weyl group element G ∈ ,af = , ⋉&
∨, with, = 〈B8 | 8 ∈ �〉 the (finite) Weyl group and

&∨ =
⊕

8∈� ZU
∨
8 the coroot lattice of G, one has a semi-infinite Schubert variety Q� (G) ⊂ Qrat

�
, which

is infinite-dimensional and is given as an orbit closure for the Iwahori subgroup I ⊂ � (C[[I]]). We

distinguish the semi-infinite Schubert variety Q� := Q� (4) ⊂ Qrat
�

associated to the identity element e

of the affine Weyl group, and also call it the semi-infinite flag manifold.

Our main object of study is the equivariant K-group  �×C∗ (Q�)–and that of Qrat
�

, denoted by

 �×C∗
(
Qrat
�

)
–which is a variant of the K-group  ′

Ĩ
(Q�) introduced recently in [13]. Our K-group is a

module over the equivariant scalar ring Z
[
@±1

]
[%], where P is the weight lattice of G, Z[%] = Z[4` :

` ∈ %] is the character ring of H and @ ∈ '(C∗) is the character of loop rotation. Therefore, the K-group

 �×C∗ (Q�) is a Z
[
@±1

]
[%]-submodule of an extension of scalars of the equivariant K-group  ′

Ĩ
(Q�)

of [13] with respect to the Iwahori subgroup I and loop rotation.
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A fundamental result of [13] is the combinatorial Chevalley formula for dominant weights in

the K-group  ′
Ĩ
(Q�) (and hence in  �×C∗ (Q�)). This formula describes, in terms of semi-infinite

Lakshmibai–Seshadri paths, the tensor product of the class of the line bundle
[
OQ�

(_)
]

associated to

a dominant weight _ ∈ %+ with the class of the structure sheaf
[
OQ� (G)

]
of a semi-infinite Schubert

variety Q� (G) ⊂ Q� for G = FCb ∈ , ≥0
af

:= , × &∨,+ ⊂ ,af , where &∨,+ :=
∑
8∈� Z≥0U

∨
8 ⊂ &∨. This

was followed up in [24] by another combinatorial Chevalley formula in  �×C∗ (Q�), giving the tensor

product of a Schubert class with an antidominant line bundle. The two Chevalley formulas–dominant

[13] and antidominant [24]–were unified in [19], giving the general Chevalley formula in  �×C∗ (Q�)
for arbitrary weights _ ∈ %.

The Chevalley formulas of [13, 24, 19] thus provide the complete analogue for semi-infinite flag

manifolds of their previously well-understood K-theory counterparts for the standard Kac–Moody flag

varieties [26, 22, 7, 20, 21]. In all such formulas, the objective is to expand the tensor product of

a Schubert class with an equivariant line bundle, as a linear combination of Schubert classes with

equivariant scalar coefficients. In the case of Q� , by [19], this takes the form

[
OQ� (G) (_)

]
=

∑

H∈, ≥0
af

`∈%

2
_,`
G,H · 4

` ·
[
OQ� (H)

]
, (1.1)

with G, H ∈ , ≥0
af

, _, ` ∈ % and 2
_,`
G,H ∈ Z

[
@±1

]
. We note that the sum on the right-hand side of equation

(1.1), while generally infinite, satisfies a notion of convergence introduced in [13].

In this paper, we shall study the inverse1 expansion in  �×C∗ (Q�):

4_ ·
[
OQ� (G)

]
=

∑

H∈, ≥0
af

`∈%

3
_,`
G,H ·

[
OQ� (H) (`)

]
(1.2)

for G ∈ , ≥0
af

and _ ∈ %. In contrast to equation (1.1), the expansion in equation (1.2) is finite, as

established in [25] for simply laced G–namely, 3
_,`
G,H ∈ Z

[
@±1

]
for any _, ` ∈ % and G, H ∈ , ≥0

af
, and

the right-hand side of equation (1.2) is always a finite sum. (These properties are expected to hold for

arbitrary G.)

We call any formula for the right-hand side of equation (1.2) an inverse Chevalley formula for _ ∈ %
in  �×C∗ (Q�). The analogous expansion for finite-dimensional flag manifolds �/� was studied by

Mathieu [23] in the context of filtrations of B-modules (compare [23, p. 239]). In fact, by [10, Proof of

Proposition 1.15], one has a surjective map of Z[%]-modules given by

 �×C∗ (Q�)
trunc
−→  � (�/�)

@ ↦−→ 1

[
OQ� (H)

]
↦−→

{[
O- (H)

]
if H ∈ ,,

0 otherwise,
(1.3)

where
[
O- (H)

]
for H ∈ , denotes the structure sheaf of the Schubert variety

- (H) = �HF◦�/� ⊂ �/� (1.4)

and F◦ is the longest element of W. The map trunc also respects the tensor product by equivariant

1Provided their existence, the coefficients 2
_,`
G,H , 3

_,`
G,H ∈ Z

[
@±1

]
are unique, since both

{
4_ ·

[
OQ� (G)

]}
G∈, ≥0

af
,_∈%

and
{[
OQ� (G) (_)

]}
G∈, ≥0

af
,_∈%

are (topologically) Z
[
@±1

]
-linearly independent sets in  �×C∗ (Q�) . Existence follows from

[13, 24] for equation (1.1) and [25] for equation (1.2).
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line bundles. Thus, for G ∈ , , the image of equation (1.2) under trunc produces the analogous inverse

Chevalley expansion in  � (�/�) (see also Remark 3.13). In this sense, any inverse Chevalley formula

(1.2) must incorporate the necessary ‘corrections’ in  �×C∗ (Q�) to the classical inverse Chevalley

formulas in  � (�/�).
We note that in the case of  � (�/�), there is a simple transformation to pass between ordinary and

inverse Chevalley formulas (as explained in, e.g., [23, p. 239]). The lack of such a transformation for

 �×C∗ (Q�) justifies the independent study of inverse Chevalley formulas in the semi-infinite setting.

Moreover, the finiteness of equation (1.2) offers an advantage over equation (1.1).

The purpose of this paper is to prove a completely explicit, combinatorial inverse Chevalley formula

in the equivariant K-group  �×C∗ (Q�) in the case of a simply laced group G and a minuscule weight

_ ∈ %. Before stating our results more precisely, let us discuss further motivations for this work.

1.1. Nil-DAHA and q-Heisenberg actions on  �×C∗
(
Qrat
�

)

One approach to understanding equations (1.1) and (1.2) is that they relate two actions of the group

algebra Z[%] on  �×C∗
(
Qrat
�

)
, one given by equivariant scalar multiplication (the left-hand side of

equation (1.2)) and the other by the tensor product with equivariant line bundles (the left-hand side of

equation (1.1)). These actions of Z[%] extend to that of two distinct algebras on  �×C∗
(
Qrat
�

)
: the nil

double affine Hecke algebra (nil-DAHA) and a q-Heisenberg algebra.

Multiplication by equivariant scalars extends to a left action of the nil-DAHA H0 on  �×C∗
(
Qrat
�

)
,

in a way that is conceptually similar to the action of nil-Hecke algebras on the equivariant K-theory of

Kac–Moody flag varieties [8]. On the right, however, instead of a nil-Hecke algebra, one has an action

of a q-Heisenberg algebra ℌ. This is generated by tensor products with equivariant line bundles [O(_)]
( _ ∈ %) and translations &∨

� � (C ((I)))/� (C[[I]]). The two actions commute, making  �×C∗
(
Qrat
�

)

an (H0,ℌ)-bimodule.

This bimodule structure is a fundamental tool in the study of  �×C∗
(
Qrat
�

)
, as standard methods such

as localisation are not available. Furthermore, as explained in [25], it gives a geometric realisation of

the nonsymmetric q-Toda system introduced in [4] (see [1, 2, 5] for related results on the usual q-Toda

system and [14, 15] for its (q, t)-extension given by Macdonald difference operators in type A). For

us, the fact that the H0-action on  �×C∗
(
Qrat
�

)
includes the operators of multiplication by equivariant

scalars is key. We use the limit construction [25] of the H0-action on  �×C∗
(
Qrat
�

)
to find and prove our

inverse Chevalley formula in  �×C∗ (Q�), which is given by Theorem 1.

1.2. Quantum K-theory of �/�

In [10, 12], Kato established a Z[%]-module isomorphism – with Z[%] acting by equivariant scalars –

from the (completed) H-equivariant quantum K-group & � (�/�) :=  � (�/�) ⊗ Z [[&∨,+]] of the

finite-dimensional flag manifold�/� onto the H-equivariant K-group � (Q�) obtained by specialising

@ = 1 in  �×C∗ (Q�). (Here Z [[&∨,+]] is the ring of formal power series in the (Novikov) variables

&8 , 8 ∈ �.) Kato’s isomorphism respects Schubert classes and intertwines the quantum multiplication in

& � (�/�) with the tensor product by line bundles in  � (Q�). Thus it provides a means to transport

formulas from  � (Q�) to& � (�/�). In the sequel [16] to this paper, we will use Kato’s isomorphism

to derive a corresponding inverse Chevalley formula in & � (�/�).

1.3. Our results

Let us now explain our results in more detail. Recall that a weight _ ∈ % is called minuscule if

〈_, U∨〉 ∈ {0,±1} for all U ∈ Δ . Nonzero minuscule weights exist in all types except �8, �4 and �2.

Our results explicitly describe the inverse Chevalley formula in  �×C∗ (Q�) for arbitrary minuscule

weights _ ∈ % in the case when G is simply laced. By iteration, our formulas completely determine

the inverse Chevalley rule for arbitrary weights in ADE type (except in type �8). Indeed, a result of
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Stembridge [27] (as stated in [18, Theorem 2.1]) asserts that in all types except �8, �4 and �2, the

minuscule weights form a set of generators for the weight lattice. (The full version of Stembridge’s

result, which holds in arbitrary type, requires quasi-minuscule weights. We plan to take up the study of

our constructions in the case of quasi-minuscule weights elsewhere.)

Any minuscule weight belongs to the Weyl group orbit of a dominant minuscule weight – that is, a

minuscule fundamental weight. Suppose s: ∈ %+ is a minuscule fundamental weight. Set � = � \ {:},
and consider the parabolic subgroup,� =

〈
B 9 | 9 ∈ �

〉
, which is the stabiliser ofs: . Let, � be the set

of minimal coset representatives for,/,� . Finally, let _ = Gs: ∈ % be an arbitrary minuscule weight,

where G ∈ , � .

1.3.1. Algebraic formula

For G simply laced, _ as before and any F ∈ , , our first main result gives an algebraic expression for

the product 4_ ·
[
OQ� (F)

]
∈  �×C∗ (Q�) in terms of the right q-Heisenberg action on  �×C∗

(
Qrat
�

)
.

This is given explicitly as a sum over a set QW_,F of walks (F1, . . . , F=) in the quantum Bruhat graph

QBG(,) [3], beginning at F0 = F and with steps prescribed by a set of positive roots determined by

_. (Here n is the length of the minimal representative of the coset F◦,� .)

Theorem 1 (= Theorem 3.11). Assume that G is of ��� type but not of type �8. For any minuscule

weight _ = Gs: ∈ %, where G ∈ , � , and any F ∈ , , we have

4_ ·
[
OQ� (F)

]
=

∑

w=(F1 ,...,F=) ∈QW_,F

[
OQ� (F=)

]
· 6̃+w-

−F◦F
−1
;
_6̃−w, (1.5)

where ; = ℓ(G) and 6̃+w-
−F◦F

−1
;
a 6̃−w is an element of the q-Heisenberg algebra ℌ given explicitly by

equations (3.63) and (3.64).

Acting by translations from the q-Heisenberg algebra, one immediately obtains a corresponding

formula for 4_ ·
[
OQ� (FCb )

]
∈  �×C∗

(
Qrat
�

)
, for any b ∈ &∨.

In order to prove Theorem 1, we apply the main result of [25]. The main step in our proof (see Theorem

3.7) is the intricate computation of a limit, as t → 0, from the polynomial representation of the double

affine Hecke algebra (DAHA). Thus one should also regard Theorem 1 as an explicit determination of

all nonsymmetric q-Toda operators, in the sense of [4, 25], for minuscule weights in ADE type.

1.3.2. Combinatorial formula

Our second main result expresses the same product 4_ ·
[
OQ� (F)

]
combinatorially. To achieve this,

we enhance the set of quantum walks QW_,F to a set Q̃W_,F of decorated quantum walks. Roughly

speaking, a decorated quantum walk (w, b) ∈ Q̃W_,F consists of a quantum walk w = (F1, . . . , F=) ∈
QW_,F together with a decoration b : ((w) → {0, 1}. The latter is a {0, 1}-valued function on an

explicit subset ((w) ⊂ {C : FC = FC−1} of the stationary steps in the walk w. Each (w, b) ∈ Q̃W_,F

carries a sign (−1) (w,b) ∈ {±1}, a weight wt(w, b) ∈ &∨ and a degree deg(w, b) ∈ Z. For details, see

Section 3.4.1.

Our combinatorial inverse Chevalley formula reads as follows:

Theorem 2 (= Theorem 3.14). Assume that G is of ��� type but not of type �8. For any minuscule

weight _ = Gs: ∈ %, where G ∈ , � , and any F ∈ , , we have

4_ ·
[
OQ� (F)

]

=
∑

(w,b) ∈Q̃W_,F

(−1) (w,b)@deg(w,b) · [OQ� (F=C−F◦ (wt(w,b) ) ) (−F◦F
−1
; _ + wt(w, b))] . (1.6)

Theorem 2 is obtained as an immediate consequence of Theorem 1, by fully expanding the right-hand

side of equation (1.5) in the q-Heisenberg algebra. Our combinatorial framework is designed to record
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the terms in this expansion. We find it satisfying that the DAHA-based limit used to prove equation (1.5)

automatically manufactures the combinatorics of decorated quantum walks necessary for both formulas.

We mention that equation (1.5) gives the extension to  �×C∗ (Q�) of Lenart’s rule [17, Theorem 3.1],

which holds in  ((!(= + 1)/�), for multiplying a Grothendieck polynomial by a variable.

In Appendix A we work out some further details in the type A case, including concrete examples of

equation (1.5) in equations (A.1) and (A.2) and the important special case F = F◦, : = 1 in equation

(A.7). We also explain, following [25, §5.1], how to obtain the usual q-Toda difference operator by

symmetrising Theorem 1.

1.4. The sequel

In [16] we will establish a different, equivalent version of our inverse Chevalley formula (1.6) in terms

of paths (instead of walks) in the quantum Bruhat graph. By means of this alternate formula, we will

give a separate and logically independent proof of Theorem 2 in type A, based on the Chevalley formulas

of [13, 24] and an equivalent set of character identities for Demazure submodules of level 0 extremal

weight modules. Finally, we will use Theorem 2 to derive a corresponding inverse Chevalley formula

in the quantum K-ring & � (�/�), by means of Kato’s isomorphism.

2. Basic notation

2.1. Root system

Let G be a simply connected simple algebraic group overC. As in the introduction, we fix a maximal torus

and Borel subgroup � ⊂ � ⊂ �. Set g := Lie(�) and h := Lie(�). We denote by 〈·, ·〉 : h∗ × h → C
the canonical pairing, where h∗ = HomC(h,C).

Let Δ ⊂ h∗ be the root system of g, Δ+ ⊂ Δ the positive roots (with respect to B) and {U8}8∈� ⊂ Δ+

the set of simple roots. We denote by U∨ ∈ h the coroot corresponding to U ∈ Δ . Also, we denote by

\ ∈ Δ+ the highest root of Δ , and we set d := (1/2)
∑
U∈Δ+ U. The root lattice Q and the coroot lattice

&∨ of g are & :=
∑
8∈� ZU8 and &∨ :=

∑
8∈� ZU

∨
8 .

For 8 ∈ �, let s8 ∈ h∗ be the fundamental weight determined by
〈
s8 , U

∨
9

〉
= X8, 9 for all 9 ∈ �, where

X8, 9 denotes the Kronecker delta. The weight lattice P of g is defined by % :=
∑
8∈� Zs8 . We denote by

Z[%] the group algebra of P – that is, the associative algebra generated by formal elements
{
4_ | _ ∈ %

}
,

where the product is defined by 4_4` := 4_+` for _, ` ∈ %.

A reflection BU ∈ �!(h∗), U ∈ Δ , is defined by BU (_) := _− 〈_, U∨〉 U for _ ∈ h∗. We write B8 := BU8
for 8 ∈ �. Then the Weyl group , := 〈B8 | 8 ∈ �〉 of g is the subgroup of �!(h∗) generated by {B8}8∈� .
We denote by ℓ(F) the length of F ∈ , with respect to {B8}8∈� .

2.2. Quantum Bruhat graph

The quantum Bruhat graph QBG(,) (compare [3, Definition 6.1]) is the Δ+-labelled directed graph

whose vertices are the elements of W and whose edges are of the form G
U
−→ H, with G, H ∈ , and U ∈ Δ+,

such that H = GBU and either of the following holds: (B) ℓ(H) = ℓ(G)+1 or (Q) ℓ(H) = ℓ(G)−2 〈d, U∨〉+1.

An edge satisfying (B) (resp., (Q)) is called a Bruhat edge (resp., a quantum edge).

2.3. Affine root system

Let gaf :=
(
g ⊗ C

[
I, I−1

] )
⊕ C2 ⊕ C3 be the (untwisted) affine Lie algebra over C associated to g,

where c is the canonical central element and d is the degree operator. Then haf := h ⊕ C2 ⊕ C3 is the

Cartan subalgebra of gaf . We denote by 〈·, ·〉 : h∗
af
× haf → C the canonical pairing. Regarding _ ∈ h∗ as

_ ∈ h∗
af
= HomC(haf ,C) by setting 〈_, 2〉 = 〈_, 3〉 = 0, we have h∗ ⊂ h∗

af
. In this identification, we see

that the canonical pairing 〈·, ·〉 on h∗
af
× haf extends that on h∗ × h.
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Let us consider the root system of gaf . We define X to be the unique element of h∗
af

which satisfies

〈X, ℎ〉 = 0 for all ℎ ∈ h, 〈X, 2〉 = 0 and 〈X, 3〉 = 1. We set U0 := −\ + X ∈ h∗
af

. Then the root system Δaf

of gaf has simple roots {U8}8∈�af
, where �af := � ⊔ {0}.

For each U ∈ Δaf , we have a reflection BU ∈ �!(haf), defined as for g. Note that for U ∈ Δ ⊂ Δaf ,

the restriction of a reflection BU defined on haf to h coincides with a reflection BU defined on h. Set

B8 := BU8 for 8 ∈ �af . Then the Weyl group ,af of gaf (called the affine Weyl group) is defined to be the

subgroup of �!(haf) generated by {B8}8∈�af
, namely ,af = 〈B8 | 8 ∈ �af〉. In [9, §6.5], it is shown that

,af ≃ , ⋉ {CU∨ | U∨ ∈ &∨} ≃ , ⋉&∨, where CU∨ is the translation element corresponding to U∨ ∈ &∨.

2.4. Simply laced assumption

While the definitions we have given are completely general, we will in fact assume throughout that G is

simply laced. As a result, we almost always identify h∗ with h, roots with coroots and so on. We do this

by means of the nondegenerate W-invariant symmetric bilinear form (·, ·) : h∗ × h∗ → C, normalised

so that (U, U) = 2 for all U ∈ Δ . We write |_ |2 = (_, _) for _ ∈ h∗.

2.5. Extended affine Weyl group

Let,ex = , ⋉ % be the extended affine Weyl group, which we let act on % ⊕ Z X
4

by the level 0 action

FC` (_) = F(_) − (`, _)X, FC` (X) = X. (2.1)

Here we choose e to be the smallest positive integer such that 4 · (%, %) ⊂ Z.

We also define the group Π = %/&, which we realise as the subgroup of length 0 elements in,ex.

2.6. Parameters

Let us introduce a parameter @1/4 such that
(
@1/4

)4
= @, where @ ∈ '(C∗) is the equivariant parameter

corresponding to loop rotation on Qrat
�

. We will also use a related, but distinct parameter q1/4, as well

as parameters t, v such that t = v2. Our base field for DAHA constructions will be K = Q
(
q1/4, v

)
.

2.7. Matrices

For any ring R with 1, let Mat, (') denote the R-algebra of , × , matrices with entries in R.

Let {4F }F ∈, be the standard basis of the free R-module ' |, | . For � ∈ Mat, ('), we denote by

�F,• =
∑
E ∈, �F,E4E the row of the matrix A indexed by F ∈ , .

3. Inverse Chevalley formula via DAHA

In this section we use the methods of [25], based on the (H0,ℌ)-bimodule structure of  �×C∗
(
Qrat
�

)
, to

prove the inverse Chevalley formulas (1.5) and (1.6).

3.1. K-groups

Let  Ĩ

(
Qrat
�

)
be the equivariant K-group of Qrat

�
introduced in [13, §6], where Ĩ = I ⋊ C∗ is a semidirect

product of the Iwahori subgroup I ⊂ � (C[[I]]) and loop rotation C∗. Correspondingly,  Ĩ

(
Qrat
�

)
is a

module over Z[%]
((
@−1

))
, which acts by equivariant scalar multiplication.

One has the following classes in  Ĩ

(
Qrat
�

)
, for each G ∈ ,af and _ ∈ %:

◦ Schubert classes
[
OQ� (G)

]

◦ Equivariant line bundle classes [O(_)]
◦ Classes

[
OQ� (G) (_)

]
corresponding to the tensor product sheaves OQ� (G) ⊗ O(_).
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We follow the conventions of [13] for indexing equivariant line bundles and Schubert varieties in Qrat
�

.

Definition 3.1 ((� × C∗)-equivariant K-groups of Qrat
�

and Q�). Let  �×C∗
(
Qrat
�

)
be the Z

[
@±1

]
[%]-

submodule of  Ĩ

(
Qrat
�

)
consisting of all convergent infinite Z

[
@±1

]
[%]-linear combinations of Schubert

classes
[
OQ� (G)

]
for G ∈ ,af , where convergence holds in the sense of [13, Proposition 5.11].

Similarly, we define  �×C∗ (Q�) to be the Z
[
@±1

]
[%]-submodule of  Ĩ

(
Qrat
�

)
consisting of all

convergent infinite Z
[
@±1

]
[%]-linear combinations of Schubert classes

[
OQ� (G)

]
for G ∈ , ≥0

af
.

The classes
{[
OQ� (G)

]}
G∈,af

satisfy a notion of topological linear independence in  Ĩ

(
Qrat
�

)
given

by [13, Proposition 5.11]; thus they form a topological Z
[
@±1

]
[%]-basis of  �×C∗

(
Qrat
�

)
. Also, one

has
[
OQ� (G) (_)

]
∈  �×C∗

(
Qrat
�

)
for any G ∈ ,af and _ ∈ %, thanks to the two Chevalley formulas for

dominant weights [13] and antidominant weights [24]. Similar (in fact, equivalent) assertions hold for

 �×C∗ (Q�).

Definition 3.2. Define K ⊂  �×C∗
(
Qrat
�

)
to be the Z

[
@±1

]
-submodule consisting of all finite Z

[
@±1

]
-

linear combinations of the classes
{[
OQ� (G) (_)

]}
G∈,af ,_∈%

.

By definition, K is only a Z
[
@±1

]
-submodule of  �×C∗

(
Qrat
�

)
. But, as shown in [25, Theorem 5.1], it

is indeed a Z
[
@±1

]
[%]-submodule of  �×C∗

(
Qrat
�

)
. We note that the classes

{[
OQ� (G) (_)

]}
G∈,af ,_∈%

are linearly independent over Z
[
@±1

]
, by the Chevalley formula of [13].

To summarise, we have the following chain of Z
[
@±1

]
[%]-modules, and  Ĩ

(
Qrat
�

)
is in fact a

Z[%]
((
@−1

))
-module:

K ⊂  �×C∗
(
Qrat
�

)
⊂  Ĩ

(
Qrat
�

)
,

where K is equipped with the Z
[
@±1

]
-basis

{[
OQ� (G) (_)

]}
G∈,af ,_∈%

, and  �×C∗
(
Qrat
�

)
with the topo-

logical Z
[
@±1

]
[%]-basis

{[
OQ� (G)

]}
G∈,af

. Next we discuss additional structures on these modules.

3.1.1. q-Heisenberg algebra

Let ℌ̂ be the q-Heisenberg algebra defined as a Z
[
@±1/4

]
-algebra by generators

-a (a ∈ %), C` (` ∈ %), (3.1)

and relations

-_-a = -_+a (3.2)

C`Cb = C`+b (3.3)

-0 = C0 = 1 (3.4)

-aC` = @ (`,a) C`-
a (3.5)

for all _, `, a, b ∈ %.

Let ℌ ⊂ ℌ̂ be the Z
[
@±1

]
-subalgebra generated by -a ( a ∈ %) and CV ( V ∈ &).

Proposition 3.3. There exists a unique right ℌ-module structure on K and  �×C∗
(
Qrat
�

)
such that

[
OQ� (G) (_)

]
· -a =

[
OQ� (G) (_ + a)

]
(3.6)

[
OQ� (G) (_)

]
· CV = @ (V,_) ·

[
OQ� (GC−F◦V) (_)

]
(3.7)
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for all G ∈ ,af , _, a ∈ % and V ∈ &. Moreover, K is free as an ℌ-module, with ℌ-basis given by{[
OQ� (F)

]}
F ∈,

.

Proof. See [10] and [25, Proposition 2.3]. We note that our conventions here differ slightly from those

of [25], where the class
[
OQ� (G)

]
is denoted by

[
OG

]
. This accounts for the twist by −F◦ in the action

of CV . �

3.1.2. Nil-DAHA

Next we turn to the nil-DAHA H0, which is the Z
[
q±1

]
-algebra (note the notational distinction between

q and q) defined by generators

)8 (8 ∈ �af), -a (a ∈ %), (3.8)

and relations

)8)9 · · · = )9)8 · · ·
(
<8 9 =

��B8B 9
�� factors on both sides

)
(3.9)

)8 ()8 + 1) = 0 (3.10)

-0 = 1 (3.11)

-a-` = -a+` (3.12)

)8-
a = -B8 (a))8 −

-a − -B8 (a)

1 − -U8
, (3.13)

where it is understood that - X = q. We also use �8 = 1 + )8 ( 8 ∈ �af). These elements satisfy the braid

relations as before and quadratic relations �2
8 = �8 .

Proposition 3.4 [13, Theorem 6.5]. There is a left H0-action on  �×C∗
(
Qrat
�

)
uniquely determined by

q ·
[
OQ� (CU) (_)

]
= @−1

[
OQ� (CU) (_)

]
(3.14)

-a ·
[
OQ� (CU) (_)

]
= 4−a

[
OQ� (CU) (_)

]
(3.15)

�8 ·
[
OQ� (CU) (_)

]
=

[
OQ� (CU) (_)

]
(3.16)

�0 ·
[
OQ� (CU) (_)

]
=

[
OQ� (B0CU) (_)

]
(3.17)

for all 8 ∈ �, U ∈ & and a, _ ∈ %.

We warn the reader that -a (a ∈ %) can be viewed both as an element of H0 and as an element of ℌ.

Its left and right actions on  �×C∗
(
Qrat
�

)
differ drastically. From the left, -a ∈ H0 acts as equivariant

scalar multiplication by 4−a , whereas from the right, -a ∈ ℌ acts as the line bundle twist by O(a).

3.1.3. K as a bimodule

By [25, Theorem 5.1], the H0-action on  �×C∗
(
Qrat
�

)
leaves K stable. Thus K is an (H0,ℌ)-bimodule.

Since K is free as a right ℌ-module, the nil-DAHA action on K and hence on  �×C∗
(
Qrat
�

)
is therefore

characterised by the unique ring homomorphism r0 : H0 → Mat, (ℌ) satisfying

� ·
[
OQ� (F)

]
=

∑

E ∈,

[
OQ� (E)

]
· r0(�)EF (3.18)

for all � ∈ H0 and F ∈ , .
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For us, the key point is that the matrices encoding the inverse Chevalley formula (1.2) are exactly

r0

(
-−_

)
for _ ∈ %.

3.1.4. Further observations

For any 8 ∈ �af and G ∈ ,af , we have

�8 ·
[
OQ� (G)

]
=

{[
OQ� (B8 G)

]
if B8G ≺ G,[

OQ� (G)

]
if B8G ≻ G,

(3.19)

where ≺ is the semi-infinite Bruhat order on,af (see [13] or [25]). In the special case where 8 ∈ � and

G = F ∈ , , we have

�8 ·
[
OQ� (F)

]
=

{[
OQ� (B8F)

]
if B8F < F,[

OQ� (F)

]
if B8F > F,

(3.20)

where < is the (usual) Bruhat order on W.

It follows from equation (3.20) and Proposition 3.4 (see also [13, Proposition 6.3]) that the nil affine

Hecke Z
[
q±1

]
-subalgebra H0 ⊂ H0 generated by

�8 (8 ∈ �), -a (a ∈ %),

leaves  �×C∗ (Q�) ⊂  �×C∗
(
Qrat
�

)
stable. (Our inverse Chevalley formulas make this explicit.)

We also deduce from equation (3.20) that
[
OQ� (F◦)

]
generates K as an (H0,ℌ)-bimodule (in fact,

the action of ℌ and the �8 for 8 ∈ � on
[
OQ� (F◦)

]
are sufficient to generate all of K).

3.2. DAHA

The main result of [25] gives an algebraic construction of the homomorphism r0 : H0 → Mat, (ℌ)
of equation (3.18), as a limit as t → 0 from the polynomial representation of DAHA. Let us recall the

necessary details of this construction.

3.2.1. Definition of DAHA

Recall that K = Q
(
q1/4, v

)
, where t = v2. The (extended) DAHA Ĥ is the K-algebra defined by generators

)8 (8 ∈ �af), -a (a ∈ %), c (c ∈ Π), (3.21)

and relations

)8)9 · · · = )9)8 · · ·
(
<8 9 =

��B8B 9
�� factors on both sides

)
(3.22)

()8 − t) ()8 + 1) = 0 (3.23)

-a-` = -a+` (3.24)

-0 = 1 (3.25)

)8-
a = -B8 (a))8 + (t − 1) (1 − -U8 )−1

(
-a − -B8 (a)

)
(3.26)

c)8c
−1 = )9

(
c(U8) = U 9

)
(3.27)

c-ac−1 = - c (a) (3.28)

for all 8, 9 ∈ �af , a, ` ∈ % and c ∈ Π. Here it is understood that - X/4 = q1/4.
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One has well-defined elements . a ∈ Ĥ ( a ∈ %) given by

. a = v−
∑ℓ

:=1 n: c)
n1
81

· · ·) nℓ
8ℓ

(3.29)

for any reduced expression Ca = cB81 · · · B8ℓ ∈ % ⋊, = ,ex, where 8: ∈ �af and c ∈ Π, and where

n: ∈ {±1} are determined by

n: =

{
+1 if cB81 · · · B8:−1

(
U8:

)
∈ −Δ+ + ZX,

−1 if cB81 · · · B8:−1

(
U8:

)
∈ Δ+ + ZX.

(3.30)

These elements satisfy

. a. ` = . a+` (3.31)

.0 = 1 (3.32)

)8.
a − . B8 (a))8 = (t − 1) (1 − .−U8 )−1

(
. a − . B8 (a)

)
(3.33)

for any 8 ∈ � and a, ` ∈ %. (To extend the latter relation to 8 ∈ �af , see, e.g., [25, §3.2].)

3.2.2. Polynomial representation

Let K(%) be the field of fractions of K[%] = K[-a : a ∈ %]. The extended affine Weyl group ,ex acts

on K[%] by automorphisms as follows: C`F(-
a) = @−(`,Fa)-Fa . By a ‘difference-reflection operator’

we mean an element of the smash product

K(%) ⋊,ex � K(%) ⊗K K[,ex] (K-linear isomorphism)

acting from the left on K(%) by multiplication operators (first tensor factor) and the induced action of

,ex (second tensor factor). We note that K[%] ⋊ %, where % �
{
C` : ` ∈ %

}
⊂ ,ex, is nothing but the

q-Heisenberg algebra ℌ̂ with scalars extended to K.

The polynomial representation r : Ĥ→ End(K[%]) is a faithful representation of Ĥ given as follows:

r(-a) is multiplication by -a , the elements c ∈ Π ⊂ ,ex act by the automorphisms already discussed

and )8 ( 8 ∈ �af) act by Demazure–Lusztig operators:

r()8) =
t-U8 − 1

-U8 − 1
B8 +

1 − t

-U8 − 1
. (3.34)

In general, elements of Ĥ act on K[%] by difference-reflection operators from K(%) ⋊,ex; therefore,

they are represented uniquely as sums of 5 C`D = 5 ⊗ C`D, where 5 ∈ K(%) and C`D ∈ ,ex. Obviously,

not all elements of K(%) ⋊ ,ex leave K[%] stable, but those from Ĥ do. As in equation (3.34), we

will simultaneously regard r(�) for � ∈ Ĥ as an element of End(K[%]) and as a difference-reflection

operator – that is, an element of K(%) ⋊,ex.

3.2.3. Limiting procedure

Consider the homomorphism

p : K(%) ⋊,ex → Mat, (K(%) ⋊ %),

which for 5 C`D ∈ K(%) ⋊,ex and E, F ∈ , is given by

p
(
5 C`D

)
EF

=

{ (
E−1 · 5

) ��
-a ↦→t−(d,a)-a t(d,E

−1`) CE−1 (`) if E = DF,

0 otherwise.
(3.35)
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By [25, Theorem 5.1], the sought-after matrices r0

(
-−_

)
from equation (3.18) can be obtained by

applying a simple automorphism to the result of the entry-wise limit

r′0

(
._

)
:= lim

v→0
p
(
r

(
._

))
∈ Mat, (ℌ). (3.36)

The existence of this limit for any _ ∈ % is ensured by [4, Theorem 4.4]. The significance of ._ here is

that it is the image of -−_ under the DAHA duality anti-involution; see [25, §3.2] for further details.

3.3. Computing limits

Our goal is thus to compute certain r′
0

(
._

)
given by formula (3.36). To do so, we will work with

compositions of the auxiliary difference-reflection operators

G±
[ =

t±1 − - [

1 − - [
+

t±1 − 1

1 − -−[
B[ (3.37)

for [ ∈ Δ+
af

. These are cousins of the Demazure–Lusztig operators r()8):

G+
U8

= B8 r()8), G−
U8

=
(
G+
U8

)−1
= r

(
)−1
8

)
B8 .

As we wish to take v → 0, all rational functions in such operators will be expanded in

Z
[
q±1/4

]
[%] ((v)). In this context, we shall write � ≈ � to mean that A and B have the same low-

est term – that is, that A and B have the same order with respect to v and that � − � has strictly greater

order than that of A and B.

Set [ ∈ Δ+. By equation (3.35), we see that a matrix entry of p
(
G±
[

)
vanishes unless it is indexed by

(F, F) or
(
F, B[F

)
for some F ∈ , . The nonvanishing entries are given as follows:

p
(
G+
[

)
F,F

=
t − t−(d,F

−1[)-F
−1 ([)

1 − t−(d,F
−1[)-F

−1 ([)
≈




1 if F−1[ > 0,

t

(
1 − -F

−1[
)

if
(
d, F−1[

)
= −1,

t if
(
d, F−1[

)
< −1

(3.38)

p
(
G+
[

)
F,B[F

=
t − 1

1 − t(d,F
−1[)-−F−1[

≈

{
−1 if F−1[ > 0,

t−(d,F
−1[)-F

−1[ if F−1[ < 0
(3.39)

p
(
G−
[

)
F,F

=
t−1 − t−(d,F

−1[)-F
−1 ([)

1 − t−(d,F
−1[)-F

−1 ([)
≈




1 − -−F−1[ if
(
d, F−1[

)
= 1,

1 if
(
d, F−1[

)
> 1,

t−1 if F−1[ < 0

(3.40)

p
(
G−
[

)
F,B[F

=
t−1 − 1

1 − t(d,F
−1[)-−F−1[

≈

{
t−1 if F−1[ > 0,

−t−(d,F
−1[)−1-F

−1[ if F−1[ < 0.
(3.41)

Remark 3.5. These computations are closely related to those of [3, §4] involving quantum Bruhat

operators. The precise connection to the quantum Bruhat graph will be made later.

3.3.1. Expanding products as sums over walks

Using the vanishing of the matrix coefficients, we obtain the following row expansion (see Section 2.7)

for any F ∈ , and any sequence ®[ = ([1, . . . , [=) ∈ (Δ+)=:

p
(
G±
[1

G±
[2
· · ·G±

[=

)
F,•

=
∑

w∈W
®[
F

p
(
G±
[1

)
F0 ,F1

p
(
G±
[2

)
F1 ,F2

· · · p
(
G±
[=

)
F=−1 ,F=

4F=
, (3.42)
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where F0 = F and W
®[
F is the set of sequences w = (F1, . . . , F=) of elements of W such that

FC ∈
{
FC−1, B[CFC−1

}
for each C = 1, . . . , =. (3.43)

We call elements of W
®[
F walks in W.

3.3.2. Quantum walks

We will see that the matrices describing our inverse Chevalley formula are given by sums over subsets

of walks given as follows:

Definition 3.6. We call w = (F1, . . . , F=) ∈ W
®[
F a quantum walk if it defines a directed walk in the

quantum Bruhat graph QBG(,) – that is, for each 1 ≤ C ≤ =, either FC = FC−1 or FC−1 → FC = B[CFC−1

is an edge in QBG(,).

We note that such an edge FC−1 → FC in QBG(,) is labelled by ±F−1
C−1
[C . In the case when

FC−1 > FC , the requirement for an edge is that ℓ(FC−1) − ℓ(FC ) =
(
2d,−F−1

C−1
[C

)
− 1.

3.3.3. Main limit

Now we proceed to the limit computation which will give our first main result. Let s: ∈ %+ be a

minuscule fundamental weight. (Thus we implicitly assume that our simply laced group G is not of type

�8.) As in the introduction, let � = � \ {:}, let,� =
〈
B 9 | 9 ∈ �

〉
⊂ , be the corresponding parabolic

subgroup, which is the stabiliser of s: , and let , � denote the set of minimal coset representatives for

,/,� . For F ∈ , , let ⌊F⌋ ∈ , � be the minimal representative of its coset F,� .

Fix G ∈ , � and let _ = Gs: ∈ %, which is an arbitrary minuscule weight. Let H ∈ , be the unique

element such that ⌊F◦⌋ = HG. Since s: is minuscule, we have ℓ(⌊F◦⌋) = ℓ(H) + ℓ(G); indeed, on , � ,

the Bruhat order coincides with the left weak Bruhat order [6, Lemma 11.1.16].

We fix reduced expressions G = B 9; · · · B 91 and H = B81 · · · B8< , and we define

VA = B 9; B 9;−1
· · · B 9A+1

(
U 9A

)
, 1 ≤ A ≤ ;, (3.44)

WB = B8< B8<−1
· · · B8B+1

(
U8B

)
, 1 ≤ B ≤ <. (3.45)

Hence, if we set

Inv(F) = Δ+ ∩ F
(
−Δ+), (3.46)

then Inv(G) = {V1, . . . , V;} and Inv
(
H−1

)
= {W1, . . . , W<}.

Now, for any F ∈ , , define the set of walks W_,F = W
®[
F , where ®[ is given by

®[ = ([1, . . . , [=) = (V; , . . . , V1, W1, . . . , W<) (3.47)

and = = ; +<. Let QW_,F denote the subset of quantum walks in W
®[
F . (These sets depend on the choice

of reduced expressions for x and y, even though our notation does not indicate this.)

The inverse Chevalley formula for minuscule weights is an immediate consequence of the following,

which is the main technical achievement of this paper:

Theorem 3.7. For any minuscule _ ∈ % and F ∈ , , we have

r′0

(
._

)
F,•

=
∑

w=(F1 ,...,F=) ∈QW_,F

6−wCF−1
;
_6

+
w4F=

, (3.48)
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with

6−w =
∏

1≤C≤;




1 − -−F−1
C−1
[C if FC = FC−1 and

(
d, F−1

C−1
[C

)
= 1,

−-F
−1
C−1
[C if FC < FC−1,

1 otherwise

(3.49)

6+w =
∏

;<C≤=




1 − -F
−1
C−1
[C if FC = FC−1 and

(
d, F−1

C−1
[C

)
= −1,

-F
−1
C−1
[C if FC < FC−1,

−1 if FC > FC−1,

1 otherwise.

(3.50)

For the proof of Theorem 3.7, we will need the following notions, which rely heavily on _ ∈ % being

minuscule. For F ∈ , , and with all other notation as before, let us define

Inv(F)+_ = {W ∈ Inv(F) | (W, _) = 1}, ℓ+_ (F) = #Inv(F)+_ , (3.51)

Inv(F)−_ = {W ∈ Inv(F) | (W, _) = −1}, ℓ−_ (F) = #Inv(F)−_ , (3.52)

and

Inv(F)−_,A = Inv(F) ∩ {VA , VA+1, . . . , V;}, ℓ−_,A (F) = #Inv(F)−_,A , (3.53)

Inv(F)+_,B = Inv(F) ∩ {WB , WB+1, . . . , W<}, ℓ+_,B (F) = #Inv(F)+_,B , (3.54)

where 1 ≤ A ≤ ; and 1 ≤ B ≤ <.

The following lemma seems to be well known, but we give a simple proof in Appendix B for the

convenience of the reader:

Lemma 3.8. With all notation as before, the following are true:

1. We have

2ℓ(G) − ℓ(⌊F◦⌋) = −2(d, _). (3.55)

2. For any F ∈ , ,

(d − Fd, _) = ℓ+_ (F) − ℓ
−
_ (F) (3.56)

and

Inv(F)−_ = Inv(F) ∩ Inv(G), (3.57)

Inv(F)+_ = Inv(F) ∩ Inv
(
H−1

)
. (3.58)

The proof of the following proposition will be given in Appendix B:

Proposition 3.9. With all notation as before, the following are true:

1. If BVAF < F for 1 ≤ A ≤ ;, then

ℓ(F) − ℓ
(
BVAF

)
= 2

(
ℓ−_,A (F) − ℓ

−
_,A

(
BVAF

) )
− 1. (3.59)

2. If BWBF < F for 1 ≤ B ≤ <, then

ℓ(F) − ℓ
(
BWBF

)
= 2

(
ℓ+_,B (F) − ℓ

+
_,B

(
BWBF

) )
− 1. (3.60)

Remark 3.10. Equations (3.59) and (3.60) generalise the following well-known formula for length

differences in the symmetric group (=:

ℓ(F) − ℓ((8 9)F) = 1 + 2 ·
��{: : 8 < : < 9 and F−1 (8) > F−1 (:) > F−1 ( 9)

}�� ,
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where 1 ≤ 8 < 9 ≤ =, F ∈ (= is a permutation such that F−1 (8) > F−1 ( 9), and (8 9) denotes the

transposition swapping i and j.

Proof of Theorem 3.7. Let c ∈ Π be the length 0 element of ,ex corresponding to coset s: + & in

%/&. We have the formula Cs:
= c ⌊F◦⌋ = cHG (which may be taken as the definition of c), and hence

C_ = GcH.

Using equations (3.33) and (3.55), we find

._ = v2ℓ (G)−ℓ ( ⌊F◦ ⌋))−1
G−1c)H

= t−(d,_))−1
G−1c)H

in Ĥ, and

r
(
._

)
= t−(d,_) r

(
)−1
G−1

)
G−1C_H

−1r
(
)H

)

= t−(d,_)G−
V;
· · ·G−

V1
C_G+

W1
· · ·G+

W<

in the polynomial representation. Thus we need to compute the limit

r′0

(
._

)
= lim

v→0
p
(
G−
V;
· · ·G−

V1

)
t−(d,_)p(C_)p

(
G+
W1
· · ·G+

W<

)
.

The matrix t−(d,_)p(C_) is diagonal with entries

t−(d,_)p(C_)F,F = t(d,F
−1_)−(d,_) CF−1_.

Using equation (3.56), we can write t−(d,_)p(C_) = p
−
_
g_p

+
_
, where p±

_
and g_ are the diagonal matrices

given by

(
p−_

)
F,F

= tℓ
−
_
(F) , (g_)F,F = CF−1_,

(
p+_

)
F,F

= t−ℓ
+
_
(F) . (3.61)

Our strategy is to commute p−
_

to the left past p
(
G−
V;
· · ·G−

V1

)
, and p+

_
to the right past p

(
G+
W1
· · ·G+

W<

)
.

After we have done so, all negative powers of v will disappear.

For A = 1, . . . , ;, we have

p
(
G−
VA

)
F,F

· t
ℓ−
_,A

(F) ≈ t
ℓ−
_,A+1

(F) ×




1 − -−F−1VA if
(
d, F−1VA

)
= 1,

1 if
(
d, F−1VA

)
> 1,

1 if F−1VA < 0,

and

p
(
G−
VA

)
F,BVA F

· t
ℓ−
_,A (BVA F)

≈ t
ℓ−
_,A+1

(F) ×

{
t
−1+ℓ−

_,A (BVA F)−ℓ
−
_,A

(F) if F−1VA > 0,

−t
−(d,F−1VA )+ℓ−_,A (BVA F)−ℓ

−
_,A

(F)
-F

−1VA if F−1VA < 0

= t
ℓ−
_,A+1

(F) ×

{
v−1+ℓ(BVA F)−ℓ (F) if F−1VA > 0,

−v−(2d,F
−1VA )−1+ℓ(BVA F)−ℓ (F)-F

−1VA if F−1VA < 0,

where we use equations (3.59) to obtain the last equality. Notice that in all cases, each factor after the

bracket involves no negative powers of v. Moreover, after commuting p−
_

all the way to the left, we arrive

at t
ℓ−
_,;+1

(F)
= 1, for any F ∈ , .
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Similarly, for B = 1, . . . , <, we have

t
−ℓ+

_,B
(F) · p

(
G+
WB

)
F,F

≈ t
−ℓ+

_,B+1
(F) ×




1 if F−1WB > 0,

1 − -F
−1WB if

(
d, F−1WB

)
= −1,

1 if
(
d, F−1WB

)
< −1,

and

t
−ℓ+

_,B
(F) · p

(
G+
WB

)
F,BWBF

≈ t
−ℓ+

_,B+1
(BWBF) ×

{
−t

−1+ℓ+
_,B (BWBF)−ℓ

+
_,B

(F) if F−1WB > 0,

t
−(d,F−1WB)+ℓ+_,B (BWBF)−ℓ

+
_,B

(F)
-F

−1WB if F−1WB < 0

= t
−ℓ+

_,B+1 (BWBF) ×

{
−v−1+ℓ(BWBF)−ℓ (F) if F−1WB > 0,

v−(2d,F
−1WB)−1+ℓ(BWBF)−ℓ (F)-F

−1WB if F−1WB < 0.

As before, each factor after the bracket involves no negative powers of v, and after commuting p+
_

all the

way to the right, we arrive at t
ℓ+
_,<+1

(F)
= 1, for any F ∈ , .

To complete the proof, we expand the product of resulting matrices (including g_) and take v → 0.

Taking into account the exponents of v, one sees that the surviving terms are exactly those indexed by

quantum walks QW_,F . �

3.4. Inverse Chevalley formula

By means of [25, Theorem 5.1], Theorem 3.7 immediately gives the following algebraic form of the

inverse Chevalley formula in  �×C∗ (Q�), which is our first main result:

Theorem 3.11. For any minuscule _ ∈ % and F ∈ , , we have

4_ ·
[
OQ� (F)

]
=

∑

w=(F1 ,...,F=) ∈QW_,F

[
OQ� (F=)

]
· 6̃+w-

−F◦F
−1
;
_6̃−w (3.62)

in terms of the q-Heisenberg action of Proposition 3.3, with

6̃−w =
∏

1≤C≤;




1 − -̃−F◦F
−1
C−1
[C if FC = FC−1 and

(
d, F−1

C−1
[C

)
= 1,

−-̃F◦F
−1
C−1
[C if FC < FC−1,

1 otherwise

(3.63)

6̃+w =
∏

;<C≤=




1 − -̃F◦F
−1
C−1
[C if FC = FC−1 and

(
d, F−1

C−1
[C

)
= −1,

-̃F◦F
−1
C−1
[C if FC < FC−1,

−1 if FC > FC−1,

1 otherwise,

(3.64)

and -̃V = @ · CV-
V for V ∈ Δ .

Remark 3.12. The elements -̃V commute, as one easily checks.

Remark 3.13. The image of equation (3.62) under the map trunc of formula (1.3) recovers the corre-

sponding inverse Chevalley formula in  � (�/�) given by [23, p. 239]; note that under the map trunc,

the class
[
OQ�

(`)
]

for ` ∈ % corresponds to the class
[
O�/� (`)

]
, which is denoted by [L(−`)] in

[23]. We note also that the image of equation (3.62) under trunc has positive coefficients for _ ∈ −%+
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(i.e., when ; = =), and alternating coefficients for _ ∈ %+ (i.e., when ; = 0). Informally, the ef-

fect of the map trunc is achieved by setting -̃V = 0 in equations (3.63) and (3.64), where V ∈ Δ+

always.

3.4.1. Decorated quantum walks

We now proceed to further combinatorialise equation (3.62). First we enlarge the summation set, so

that each term on the right-hand side of equation (3.62) is a product of monomials in the q-Heisenberg

algebra.

Given w = (F1, . . . , F=) ∈ QW_,F , let (−(w) denote the set of steps t, for 1 ≤ C ≤ ;, such that

FC = FC−1 and
(
d, F−1

C−1
[C

)
= 1. Similarly, let (+ (w) denote the set of steps t, for ; < C ≤ = such that

FC = FC−1 and
(
d, F−1

C−1
[C

)
= −1.

Let ((w) = (− (w) ∪ (+(w), and define the set of decorated quantum walks Q̃W_,F to consist of all

pairs (w, b) where w ∈ QW_,F and b is a {0, 1}-valued function on ((w). Then equation (3.62) can be

written as

4_ ·
[
OQ� (F)

]
=

∑

(w,b) ∈Q̃W_,F

[
OQ� (F=)

]
· 6̃+(w,b)-

−F◦F
−1
;
_6̃−(w,b) , (3.65)

with

6̃−(w,b) =
∏

1≤C≤;




(
−-̃−F◦F

−1
C−1
[C

)b(C)

if C ∈ (−(w),

−-̃F◦F
−1
C−1
[C if FC < FC−1,

1 otherwise

(3.66)

6̃+(w,b) =
∏

;<C≤=




(
−-̃F◦F

−1
C−1
[C

)b(C)

if C ∈ (+(w),

-̃F◦F
−1
C−1
[C if FC < FC−1,

−1 if FC > FC−1,

1 otherwise.

(3.67)

Next, to expand equation (3.65) further, let us introduce some more notation. For (w, b) ∈ Q̃W_,F ,

define the sign

(−1) (w,b) =
∏

1≤C≤;
FC<FC−1

(−1)
∏

;<C≤=
FC>FC−1

(−1)
∏

C ∈( (w)

(−1)b(C)

and partial weights (in Q)

wt0 (w, b) = 0

wtC (w, b) = wtC−1 (w, b) +




−b(C)F◦F
−1
C−1
[C if C ∈ (− (w),

F◦F
−1
C−1
[C if FC < FC−1,

0 otherwise

for 1 ≤ C ≤ ;

wtC (w, b) = wtC−1 (w, b) +




b(C)F◦F
−1
C−1
[C if C ∈ (+(w),

F◦F
−1
C−1
[C if FC < FC−1,

0 otherwise

for ; < C ≤ =.
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Define the weight of (w, b) to be wt(w, b) = wt= (w, b) ∈ &, and set 3C (w, b) = wtC (w, b) −
wtC−1 (w, b) for 1 ≤ C ≤ =.

Define the partial degrees (in Z):

deg−0 (w, b) = 0

deg−C (w, b) = deg−C−1 (w, b) +
|3C (w, b) |

2

2
+ (3C (w, b),wtC−1(w, b)), for 1 ≤ C ≤ ;

deg+; (w, b) = deg−; (w, b) +
(
−F◦F

−1
; _,wt; (w, b)

)

deg+C (w, b) = deg+C−1 (w, b) +
|3C (w, b) |

2

2
+ (3C (w, b),wtC−1(w, b)), for ; < C ≤ =.

Define deg(w, b) = deg+= (w, b) ∈ Z.

Then, from equation (3.65), we obtain our second main result, the combinatorial form of our inverse

Chevalley formula:

Theorem 3.14. For any minuscule _ ∈ % and F ∈ , , we have

4_ ·
[
OQ� (F)

]

=
∑

(w,b) ∈Q̃W_,F

(−1) (w,b)@deg(w,b) ·
[
OQ� (F=C−F◦ (wt(w,b) ) )

(
−F◦F

−1
; _ + wt(w, b)

)]
. (3.68)

Proof. Proceed from right to left in equation (3.65), commuting all translations to the left of line bundle

twists, and then act on
[
OQ� (F=)

]
. �

Appendix A. The type A case

We briefly consider the type A case. For this appendix, let � = (!(= + 1,C).

A.1. The root system of type A

Let {Y8 : 1 ≤ 8 ≤ = + 1} be the standard basis of Z=+1. We realise the weight lattice as % = Z=+1/Z(Y1 +
· · · + Y=+1), and by abuse of notation, we continue to denote the image of Y8 in P by the same symbol.

Thus s: := Y1 + · · · + Y: , for : ∈ {1, . . . , =}, are the fundamental weights of G.

We set U8 := Y8 − Y8+1 for 8 ∈ {1, . . . , =} and U8, 9 := U8 + U8+1 + · · · + U 9 for 8, 9 ∈ {1, . . . , =}
with 8 ≤ 9 . Then the root system is Δ :=

{
±U8, 9 | 1 ≤ 8 ≤ 9 ≤ =

}
, with the set of positive roots

Δ+ :=
{
U8, 9 | 1 ≤ 8 ≤ 9 ≤ =

}
and the set of simple roots {U1, . . . , U=}.

We identify the Weyl group W with the symmetric group S=+1 in the usual way. Regarding F ∈ ,
as a permutation, we have FY8 = YF (8) for 8 ∈ {1, . . . , = + 1}. Thus, for 8, 9 ∈ {1, . . . , =} with 8 ≤ 9 , the

reflection BU8, 9 corresponds to the transposition (8, 9 + 1) ∈ S=+1. The longest element of W is given by

F◦ (8) = = + 2 − 8 for 8 ∈ {1, . . . , = + 1}.

A.2. Generators

Each fundamental weights: ( : = 1, . . . , =) is minuscule. Moreover, we have F◦s: = −s=+1−: . Since

the Y8 generate P, the inverse Chevalley rule in  �×C∗
(
Qrat
�

)
is completely determined by Theorem

3.14 in the case of _ = ±Y8 , where 1 ≤ 8 ≤ = + 1. (That is, _ belongs to the W-orbit of either s1 or

s= = −Y=+1.)

A.3. Examples

We give two concrete examples of our inverse Chevalley formula (3.62) in type A.
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First, for � = (!(3,C) and _ = s1, we have

4s1 ·
[
OQ� (B1)

]
=

[
OQ� (B1) (−F◦B1s1)

]
− @

[
OQ� (B1CU1 )

(−F◦s1)
]

−
[
OQ� (B1B2) (−F◦B1s1)

]
+ @

[
OQ� (CU1 )

(−F◦s1)
]
. (A.1)

Indeed, ⌊F◦⌋ = B2B1, ; = 0, ®[ = (W1, W2) = (U1 + U2, U1) and three of the four possible walks are

quantum walks, namely

QWs1 ,B1
= {(B1, B1), (B1B2, B1B2), (B1, 4)}.

(The reason the remaining walk (B1B2, B2) ∈ Ws1 ,B1 is not a quantum walk is that B1B2 → B2 is not

an edge in QBG(,).) The right-hand side of equation (3.62) produces the following expression for

4s1 ·
[
OQ� (B1)

]
:

( [
OQ� (B1)

]
· 6̃+(B1 ,B1) +

[
OQ� (B1B2)

]
· 6̃+(B1B2 ,B1B2) +

[
OQ� (4)

]
· 6̃+(B1 ,4)

)
· -−F◦B1s1 ,

where the q-Heisenberg elements are

6̃+(B1 ,B1) = 1 − -̃F◦B1U1 = 1 − @C−F◦U1
-−F◦U1 ,

6̃+(B1B2 ,B1B2) = −1,

6̃+(B1 ,4) = -̃
F◦B1U1 = @C−F◦U1

-−F◦U1 .

Finally, we use the formulas in Proposition 3.3 to obtain equation (A.1).

For our second example, we consider� = (!(4,C) and_ = B2s2 = Y1+Y3. One has ⌊F◦⌋ = B2B1B3B2,

; = 1 and ®[ = (V1, W1, W2, W3) = (U2, U1 + U2 + U3, U1, U3). Using one-line notation for permutations in

, = (4, equation (3.62) gives

4Y1+Y3 ·
[
OQ� (4312)

]
=

[
OQ� (4312)

]
·
(
1 − -̃−F◦U1

)
-−F◦F

−1_

+
[
OQ� (3412)

]
· -̃−F◦U1-−F◦F

−1_

−
[
OQ� (4321)

]
·
(
1 − -̃−F◦U1

)
-−F◦F

−1_

−
[
OQ� (3421)

]
· -̃−F◦U1-−F◦F

−1_

+
[
OQ� (1342)

]
· -̃−F◦ (U1+U2)-−F◦F

−1_

−
[
OQ� (1432)

]
· -̃−F◦ (U1+U2)-−F◦F

−1_

−
[
OQ� (2341)

]
· -̃−F◦ (U1+U2)-−F◦F

−1_

+
[
OQ� (2431)

]
· -̃−F◦ (U1+U2)-−F◦F

−1_,

where F = 4312. We note that 6̃−w = 1 and F; = F for all quantum walks in QWY1+Y2 ,4312. Using

Proposition 3.3, we obtain

4Y1+Y3 ·
[
OQ� (4312)

]
=

[
OQ� (4312)

(
−F◦F

−1_
)]

− @
[
OQ� (4312·CU1)

(
−F◦

(
F−1_ + U1

))]

+ @
[
OQ� (3412·CU1 )

(
−F◦

(
F−1_ + U1

))]

−
[
OQ� (4321)

(
−F◦F

−1_
)]

+ @
[
OQ� (4321·CU1)

(
−F◦

(
F−1_ + U1

))]

− @
[
OQ� (3421·CU1)

(
−F◦

(
F−1_ + U1

))]

+ @
[
OQ� (1342·CU1+U2 )

(
−F◦

(
F−1_ + U1 + U2

))]
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− @
[
OQ� (1432·CU1+U2 )

(
−F◦

(
F−1_ + U1 + U2

))]

− @
[
OQ� (2341·CU1+U2 )

(
−F◦

(
F−1_ + U1 + U2

))]

+ @
[
OQ� (2431·CU1+U2 )

(
−F◦

(
F−1_ + U1 + U2

))]
, (A.2)

where F−1_ = Y2 + Y3, F−1_ + U1 = Y1 + Y3 and F−1_ + U1 + U2 = Y1 + Y2.

A.4. Special case: F = F◦ and : = 1

For � = (!(= + 1,C), we consider the special case F = F◦ and : = 1; the latter means that _ = Y;+1 for

some 0 ≤ ; ≤ =. In the setting of Section 3.3.3, we have

⌊F◦⌋ = B= · · · B1 (A.3)

= B= · · · B;+1︸     ︷︷     ︸
=H

B; · · · B1︸  ︷︷  ︸
=G

(A.4)

and ®[ = ([1, . . . , [=) = (V; , . . . , V1, W1, . . . , W<), where < = ℓ(H) = = − ; and

VA = YA − Y;+1, 1 ≤ A ≤ ;, (A.5)

WB = Y;+1 − Y=+2−B , 1 ≤ B ≤ <. (A.6)

Let us abbreviate our notation as follows: W
(;)
F = WY;+1 ,F and QW

(;)
F = QWY;+1 ,F

.

The following lemma describes the set QW
(;)
F◦

. Its proof is straightforward and is left to the reader.

Lemma A.1. A walk w ∈ W
(;)
F◦

belongs to QW
(;)
F◦

if and only if one of the following holds:

(a) w = (F1, . . . , F; , F; , . . . , F;), where (F1, . . . , F;) ∈ W
(U;,; ,...,U1,;)
F◦

.

(b) w = (F◦, . . . , F◦, F;+1, . . . , F=), where (F;+1, . . . , F=) ∈ W
(U;+1,= ,...,U;+1,;+1)
F◦

.

We have (− (w) = ∅ in all cases, and (+(w) = ∅ unless ; < = and w = (F◦, . . . , F◦), in which case

(+ (w) = {=}. (Note that the two cases in the lemma share the walk w = (F◦, . . . , F◦).)

Combining Lemma A.1 with Theorem 3.11, one obtains the following (where we set 8 = ; + 1):

Proposition A.2. In  �×C∗ (Q�) for � = (!(= + 1,C), one has

4Y8 ·
[
OQ� (F◦)

]
=

[
OQ� (F◦) (−Y8)

]
− 1{8<=+1} · @ ·

[
O

Q�

(
F◦C−F◦ (U8)

) (−Y8+1)

]
(A.7)

+
∑

∅≠{81< · · ·<80 }⊂{1,...,8−1}

(−1)0

O

Q�

(
(81 · · ·808)

−1F◦C−F◦(U81 ,8−1)

) (−Y8)



+
∑

∅≠{ 91< · · ·< 91 }⊂{8+1,=+1}

(−1)1−1 @ ·


O

Q�

(
(8 91 · · · 91)

−1F◦C−F◦(U8, 91−1)

) (
−Y 91

)
,

where 1 ≤ 8 ≤ = + 1 and

1{8<=+1} =

{
1 if 8 < = + 1,

0 otherwise.
(A.8)
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Remark A.3. The leading term
[
OQ� (F◦) (−Y8)

]
in equation (A.7) recovers the ‘classical’ analogue

of this formula in  � (�/�), via the map trunc of formula (1.3), while the remaining terms give the

explicit corrections in  �×C∗ (Q�).

Remark A.4. Applying the diagram automorphism ‘ −F◦,’ which sends

[
OQ� (FCV) (`)

]
↦→

[
OQ� (F◦FF◦C−F◦ (V) )

(−F◦`)
]
,

and an equivariant scalar 4_ ↦→ 4−F◦_, one obtains a similar formula for 4−Y=+2−8 ·
[
OQ� (F◦)

]
in

 �×C∗ (Q�). By the observations in Section 3.1.4, the action of 4_ on  �×C∗ (Q�) for any _ ∈ % is

then completely determined by iteration of these two formulas together with the �8 for 8 ∈ �.

A.5. Symmetrisation

The usual q-Toda difference operators are realised geometrically by the ‘spherical part’ of K, which is

the free ℌ-submodule generated by
[
OQ�

]
. By [25, Corollary 5.3], the action (of a spherical nil-affine

Hecke subalgebra ofH0) on the spherical part is obtained by taking the (4, 4)-entry of the corresponding

matrix in Mat, (ℌ), namely

5 (-) ·
[
OQ�

]
=

[
OQ�

]
· r0 ( 5 )4,4, (A.9)

for any symmetric Laurent polynomial 5 = 5 (-) ∈ Z
[
@±1

]
[-], ⊂ H0.

Applying equation (A.9) for � = (!(= + 1,C) to the symmetrisation of 4s1 , one obtains

=+1∑

8=1

4Y8 ·
[
OQ�

]
=

[
OQ�

]
· r0

(
=+1∑

8=1

-−Y8

)

4,4

, (A.10)

and we can use equation (3.62) to compute the right-hand side. One can easily show that just a single

term contributes to the (4, 4)-entry for each 8 = 1, . . . , = + 1. The contributing terms are those given by

the stationary walk (4, . . . , 4) ∈ QW
(8−1)
4 . Thus equation (3.62) immediately results in the following:

=+1∑

8=1

4Y8 ·
[
OQ�

]
=

[
OQ�

]
·

(
-−F◦ Y1 +

=+1∑

8=2

-−F◦ Y8
(
1 − @ · C−F◦U8−1

-−F◦U8−1
)
)
. (A.11)

The element of ℌ acting on the right-hand side of equation (A.11) is an equivalent form of the usual

first-order q-Toda difference operator (compare [5, equation (2)]).

Appendix B. Proofs of Lemma 3.8 and Proposition 3.9

Recall the setting of Section 3.3.3. Equation (3.55) follows from the formula

d − F−1d =
∑

U∈Inv(F−1)

U for F ∈ ,, (B.1)

applied to the cases F = G and F = ⌊F◦⌋, by using the fact that (U, s: ) = 1 for all U ∈ Inv
(
F−1

)
⊂

Δ+ \Δ+
�

with F ∈ , � . Equation (3.56) follows from equation (B.1), using the fact that (_, W) ∈ {0,±1}
for all W ∈ Δ .

The following lemma is well known; indeed, it follows from the Cauchy – Schwarz inequality:

Lemma B.1. For U, V ∈ Δ , we have (U, V) ∈
{
0,±1,±2

}
. In addition, (U, V) = ±2 if and only if U = ±V.

Lemma B.2. 1. (_, VA ) = −1 for all 1 ≤ A ≤ ;.
2. (VA , VC ) ∈

{
0, 1

}
for all 1 ≤ A , C ≤ ; with A ≠ C.
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Proof. (1) We see that

(_, VA ) =
(
B 9; B 9;−1

· · · B 92 B 91s: , B 9; B 9;−1
· · · B 9A+1

(
U 9A

) )

=
(
B 9A B 9A−1

· · · B 92 B 91︸               ︷︷               ︸
=:E

s: , U 9A

)
=

(
s: , E

−1U 9A

)
.

Since E = B 9A B 9A−1
· · · B 92 B 91 ∈ , � with B 9A E < E, it follows that E−1U 9A ∈ −

(
Δ+ \ Δ+

�

)
. Therefore, we

have
(
s: , E

−1U 9A
)
< 0; since s: is minuscule, we obtain

(
s: , E

−1U 9A
)
= −1, as desired.

(2) By Lemma B.1, we have (VA , VC ) ∈
{
0,±1

}
. Suppose, for a contradiction, that (VA , VC ) = −1.

Then BVA (VC ) = VA + VC ∈ Δ . By (1), we have (_, VA + VC ) = −2, which contradicts the assumption that

s: is minuscule. This proves the lemma. �

Equation (3.57) follows from Lemma B.2(1). Equation (3.58) follows from equation (3.57) using the

Dynkin diagram automorphism l : � → � induced by F◦ (see Appendix B.2).

In Appendices B.1 and B.2, we provide a complete proof of Proposition 3.9, since we do not know

of a suitable reference for these assertions.

B.1. Proof of equation (3.59)

For U =
∑
8∈� 28U8 ∈ &, we set ht(U) :=

∑
8∈� 28 ∈ Z.

Lemma B.3. Set 1 ≤ A < C ≤ ;. If (VA , VC ) = 1, then ht(VA ) > ht(VC ).

Proof. We prove the assertion by induction on ; = ℓ(G). If ; = 0 or ; = 1, then the assertion is obvious.

Assume that ; > 1. If C = ;, then VC = V; = U 9; , and

B 9;−1
· · · B 9A+1

(
U 9A

)
= B 9; VA = BVC VA = VA − VC .

Hence VA = VC + B 9;−1
· · · B 9A+1

(
U 9A

)
; note that B 9;−1

· · · B 9A+1

(
U 9A

)
∈ Δ+, since B 9;−1

· · · B 9A+1
B 9A is reduced.

Therefore, we obtain ht(VA ) > ht(VC ).
Assume that C ≤ ; − 1. Note that G ′ := B 9;G ∈ ,

� with ℓ(G ′) = ℓ(G) − 1, and that G ′ = B 9?−1
· · · B 92 B 91

is a reduced expression for G ′. We set

V′D := B 9;−1
· · · B 9D+1

(
U 9D

)
= B 9; VD for 1 ≤ D ≤ ; − 1.

Since 1 ≤ A < C ≤ ; − 1 satisfy the condition that
(
V′A , V

′
C

)
= (VA , VC ) = 1, it follows by our induction

hypothesis that ht
(
V′A

)
> ht

(
V′C

)
. Here we remark that

VA = V
′
A −

(
V′A , U 9;

)
︸    ︷︷    ︸

=:0

U 9; , VC = V
′
C −

(
V′C , U 9;

)
︸   ︷︷   ︸

=:1

U 9; ,

where 0, 1 ∈ {0,−1} by Lemma B.2(2). If 0 = −1 or if 0 = 1 = 0, then it is obvious that ht(VA ) > ht(VC ),
since ht

(
V′A

)
> ht

(
V′C

)
by our induction hypothesis. Assume that 0 = 0 and 1 = −1. Suppose, for

a contradiction, that ht(VA ) ≤ ht(VC ). Since ht(VC ) = ht
(
V′C

)
+ 1 and ht(VA ) = ht

(
V′A

)
, and since

ht
(
V′A

)
> ht

(
V′C

)
by our induction hypothesis, we have ht(VA ) = ht(VC ). Since (VA , VC ) = 1 by the

assumption, we see that VA − VC ∈ Δ . However, ht(VA − VC ) = ht(VA ) − ht(VC ) = 0, which is a

contradiction. Hence we conclude that ht(VA ) > ht(VC ), as desired. This proves the lemma. �

Lemma B.4. Set 1 ≤ A ≤ ;, and set ℎ := ht(VA ). Then

#{A < C ≤ ; | (VC , VA ) = 1} = ℎ − 1, (B.2)

#
{
U ∈ Δ+ | ht(U) < ht(VA ), (U, VA ) = 1

}
= 2(ℎ − 1). (B.3)
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Proof. We prove the assertion by induction on ; = ℓ(G). If ; = 0 or ; = 1, then the assertion is obvious.

Assume that ; > 1. If A = ;, then the assertion is obvious. Assume now that 1 ≤ A ≤ ; − 1. Note that

G ′ := B 9;G ∈ ,
� with ℓ(G ′) = ℓ(G) −1, and that G ′ = B 9;−1

· · · B 92 B 91 is a reduced expression for G ′. We set

V′D := B 9;−1
· · · B 9D+1

(
U 9D

)
= B 9; VD for 1 ≤ D ≤ ; − 1.

Since V; = U 9; , we see by Lemma B.2(2) that
(
V′A , U 9;

)
= −

(
VA , U 9;

)
= −(VA , V;) ∈ {0,−1}.

Case 1. Assume first that
(
V′A , U 9;

)
= 0, or equivalently,

(
VA , U 9;

)
= 0; in this case, VA = V′A , and

hence ht
(
V′A

)
= ht(VA ) = ℎ. In addition, since V; = U 9; , it follows that

{A < C ≤ ; | (VC , VA ) = 1} = {A < C ≤ ; − 1 | (VC , VA ) = 1}

=
{
A < C ≤ ; − 1 |

(
B 9; VC , B 9; VA

)
= 1

}

=
{
A < C ≤ ; − 1 |

(
V′C , V

′
A

)
= 1

}
.

By our induction hypothesis, we have #
{
A < C ≤ ; − 1 |

(
V′C , V

′
A

)
= 1

}
= ℎ − 1, and hence #{A < C ≤ ; |

(VC , VA ) = 1} = ℎ − 1, as desired. Also, since VA = V
′
A in this case, it is obvious that

{
U ∈ Δ+ | ht(U) < ht(VA ), (U, VA ) = 1

}
=

{
U ∈ Δ+ | ht(U) < ht

(
V′A

)
,
(
U, V′A

)
= 1

}
.

Since #
{
U ∈ Δ+ | ht(U) < ht

(
V′A

)
,
(
U, V′A

)
= 1

}
= 2(ℎ − 1) by our induction hypothesis, we obtain

equation (B.3), as desired.

Case 2. Assume next that
(
V′A , U 9;

)
= −1, or equivalently,

(
VA , U 9;

)
= 1; in this case, VA = V

′
A + U 9; ,

and hence ht
(
V′A

)
= ht(VA ) − 1 = ℎ − 1. In addition, since V; = U 9; , it follows that

{A < C ≤ ; | (VC , VA ) = 1} = {A < C ≤ ; − 1 | (VC , VA ) = 1} ∪ {;}

=
{
A < C ≤ ; − 1 |

(
B 9; VC , B 9; VA

)
= 1

}
∪ {;}

=
{
A < C ≤ ; − 1 |

(
V′C , V

′
A

)
= 1

}
∪ {;}.

By our induction hypothesis, we have #
{
A < C ≤ ; − 1 |

(
V′C , V

′
A

)
= 1

}
= ℎ − 2, and hence #{A < C ≤ ; |

(VC , VA ) = 1} = ℎ − 1, as desired.

Let us prove equation (B.3) in this case. For simplicity of notation, we set

' = 'A :=
{
U ∈ Δ+ | ht(U) < ht(VA ), (U, VA ) = 1

}
,

( = (A :=
{
U ∈ Δ+ | ht(U) < ht

(
V′A

)
,
(
U, V′A

)
= 1

}
. (B.4)

Since
(
VA , U 9;

)
= 1 and VA − U 9; = B 9; VA = V

′
A ∈ Δ+, we deduce that U 9; , VA − U 9; ∈ '. We claim that

B 9;U ∈ ( for all U ∈ ' \
{
U 9; , VA − U 9;

}
. (B.5)

It is easily verified that B 9;U ∈ Δ+ and
(
B 9;U, V

′
A

)
= 1. We show that ht

(
B 9;U

)
< ht

(
V′A

)
. By Lemma B.1,(

U, U 9;
)
∈ {0,±1}. If

(
U, U 9;

)
= 1, then it is obvious that ht

(
B 9;U

)
< ht

(
V′A

)
. Assume that

(
U, U 9;

)
= 0.

Suppose, for a contradiction, that ht
(
B 9;U

)
≥ ht

(
V′A

)
. Since ht(U) < ht(VA ) and ht

(
V′A

)
= ht(VA ) −1, we

have ht
(
B 9;U

)
= ht

(
V′A

)
. Since

(
B 9;U, V

′
A

)
= 1, we see that V′A − B 9;U ∈ Δ . However, ht

(
V′A − B 9;U

)
= 0,

which is a contradiction. Assume that
(
U, U 9;

)
= −1; in this case, B 9;U = U + U 9; . Suppose, for a

contradiction, that ht
(
B 9;U

)
≥ ht

(
V′A

)
; since ht

(
B 9;U

)
= ht(U) + 1 and ht

(
V′A

)
= ht(VA ) − 1, and since

ht(U) < ht(VA ), ht
(
B 9;U

)
is equal to ht

(
V′A

)
or ht

(
V′A

)
+ 1. By the same reasoning as before, we see that

ht
(
B 9;U

)
≠ ht

(
V′A

)
. Therefore, ht

(
B 9;U

)
= ht

(
V′A

)
+ 1, and hence ht(U) = ht(VA ) − 1. Also, we see that

BUVA = VA − U ∈ Δ+. From these, we deduce that U = VA − U 9 for some 9 ∈ �. It follows that

−1 =
(
U, U 9;

)
=

(
VA , U 9;

)
−

(
U 9 , U 9;

)
= 1 −

(
U 9 , U 9;

)
,
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and hence
(
U 9 , U 9;

)
= 2. This implies that 9 = 9; , and hence U = VA − U 9; , which is a contradiction.

Thus, we have shown that ht
(
B 9;U

)
< ht

(
V′A

)
in all cases. Therefore, we obtain a map

B 9; : ' \
{
U 9; , VA − U 9;

}
→ (, U ↦→ B 9;U.

Similarly, we obtain its inverse

B 9; : ( → ' \
{
U 9; , VA − U 9;

}
, U ↦→ B 9;U.

Recall that ht
(
V′A

)
= ht(VA ) − 1 = ℎ − 1. We conclude that

#' = #
(
' \

{
U 9; , VA − U 9;

})
+ 2

= #( + 2 = 2(ℎ − 2) + 2 = 2(ℎ − 1),

as desired. This proves the lemma. �

Remark B.5. Keep the notation and setting as before. Set 1 ≤ A ≤ ;. We set

'A :=
{
U ∈ Δ+ | ht(U) < ht(VA ), (U, VA ) = 1

}
. (B.6)

If U ∈ 'A , then BUVA = VA − U ∈ Δ+; it is easily verified that VA − U ∈ 'A . Hence f : U ↦→ VA − U is an

involution on 'A ; notice that f is fixed-point-free (otherwise, VA = 2U for some U ∈ 'A ). By Lemma

B.3,

�A := {VC | A < C ≤ ;, (VC , VA ) = 1}

is a subset of 'A ; recall from Lemma B.4 that #�A = ℎ − 1 and #'A = 2(ℎ − 1), where ℎ := ht(VA ). We

claim that f(�A ) ⊔ �A = 'A . Suppose, for a contradiction, that f(VC ) = VA − VC ∈ �A for some VC ∈ �A .
Let A < B ≤ ; be such that f(VC ) = VB . Then VA = VB + VC , and hence (_, VA ) = (_, VB) + (_, VC ) = −2

by Lemma B.2(1). However, this contradicts the assumption that _ is minuscule. It follows that f(�A ) ∩
�A = ∅, and hence #(f(�A ) ∪ �A ) = 2(ℎ − 1) = #'A . Thus, we conclude that f(�A ) ⊔ �A = 'A .

We will prove equation (3.59). For E ∈
{
F, BVAF

}
, we set

- (E) :=
{
W ∈ Inv(E) | BVA W ∈ Δ+

}
,

. (E) :=
{
W ∈ Inv(E) | BVA W ∈ Δ−

}
.

Note that Inv(E) = - (E) ⊔. (E) for E ∈
{
F, BVAF

}
. We see that the map - (F) → -

(
BVAF

)
, W ↦→ BVA W,

is bijective. Therefore,

ℓ(F) − ℓ
(
BVAF

)
= #. (F) − #.

(
BVAF

)
.

Also, by Lemma B.1 and the assumption that BVAF < F, it follows that

. (F) = {VA } ⊔ (Inv(F) ∩ 'A ), .
(
BVAF

)
= Inv

(
BVAF

)
∩ 'A

(for the definition of 'A , see Remark B.5). Recall from Remark B.5 that for VC ∈ �A , f(VC ) = VA − VC ∈
'A \ �A , and that 'A = �A ⊔ f(�A ). Since VA ∈ Inv(F), for each VC ∈ �A , one of the following holds:

(i) VC , f(VC ) ∈ Inv(F).
(ii) VC ∈ Inv(F) and f(VC ) ∉ Inv(F).
(iii) VC ∉ Inv(F) and f(VC ) ∈ Inv(F).

We see that these are equivalent, respectively, to the following:

(i)’ VC , f(VC ) ∉ Inv
(
BVAF

)
.

(ii)’ VC ∈ Inv
(
BVAF

)
and f(VC ) ∉ Inv

(
BVAF

)
.

(iii)’ VC ∉ Inv
(
BVAF

)
and f(VC ) ∈ Inv

(
BVAF

)
.
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Therefore, if we set

0 := #{VC ∈ �A | VC , f(VC ) ∈ Inv(F)},

1 := #{VC ∈ �A | VC ∈ Inv(F), f(VC ) ∉ Inv(F)},

2 := #{VC ∈ �A | VC ∉ Inv(F), f(VC ) ∈ Inv(F)},

we have

#. (F) = 1 + #(Inv(F) ∩ 'A ) = 1 + 20 + 1 + 2,

#.
(
BVAF

)
= #

(
Inv

(
BVAF

)
∩ 'A

)
= 1 + 2,

and hence

ℓ(F) − ℓ
(
BVAF

)
= #. (F) − #.

(
BVAF

)
= 1 + 20. (B.7)

Now we see that

ℓ−_,A (F) − ℓ
−
_,A

(
BVAF

)

= #(Inv(F) ∩ {VA , VA+1, . . . , V;}) − #
(
Inv

(
BVAF

)
∩ {VA , VA+1, . . . , V;}

)

= #({VA } ⊔ (Inv(F) ∩ {VA+1, . . . , V;})) − #
(
Inv

(
BVAF

)
∩ {VA+1, . . . , V;}

)
=: (∗),

where the last equality follows from the assumption that BVAF < F. Also, we deduce that for A < B ≤ ;
with (VB , VA ) = 0, VB ∈ Inv(F) if and only if VB ∈ Inv

(
BVAF

)
. Therefore,

(∗) = 1 + #(Inv(F) ∩ �A ) − #
(
Inv

(
BVAF

)
∩ �A

)

= 1 + (0 + 1) − 1 = 1 + 0.

Thus we conclude that

2
(
ℓ−_,A (F) − ℓ

−
_,A

(
BVAF

) )
− 1 = 2(1 + 0) − 1 = 20 + 1

(�.7)
= ℓ(F) − ℓ

(
BVAF

)
,

as desired. This proves equation (3.59).

B.2. Proofs of equations (3.58) and (3.60)

Let l : � → � be the Dynkin diagram automorphism induced by the longest element F◦ – that is,

F◦U8 = −Ul (8) for 8 ∈ �; note that ⌊F◦⌋s: = F◦s: = −sl (:) . We see that sl (:) is also minuscule.

In addition, H−1 = B8< · · · B81 ∈ ,l (� ) = , � \{l (:) }. We set a := H−1sl (:) ; for W ∈ Δ+,

(W, _) = 1 ⇐⇒
(
W, H−1 ⌊F◦⌋s:

)
= 1 ⇐⇒

(
W, H−1

(
−sl (:)

) )
= 1 ⇐⇒ (W, a) = −1.

Hence it follows that Inv(F)+
_
= Inv(F)−a for F ∈ , . Also, it is easily verified that ℓ+

_,B
(F) = ℓ−a,B (F)

for all F ∈ , . Thus equations (3.58) and (3.60) follow from equations (3.57) and (3.59) (applied to a),

respectively.

This completes the proof of Proposition 3.9.
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