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AN ELEMENTARY PROOF OF JOHNSON-DULMAGE-
MENDELSOHN'S REFINEMENT OF BIRKHOFF'S 

THEOREM ON DOUBLY STOCHASTIC MATRICES 
BY 

AKIHIRO NISHI 

SUMMARY. A purely combinatorial and elementary proof of 
Johnson-Dulmage-Mendelsohn's theorem, which gives a quite 
sharp upper bound on the number of permutation matrices needed 
for representing a doubly stochastic matrix by their convex combi
nation, is given. 

1. Introduction. Since Birkhoff [1] proved that the set of all doubly stochas
tic (d.s.) matrices of order n coincides with the convex hull of all permutation 
matrices of the same order, several authors have been seeking the least upper 
bound on the number of permutation matrices needed for representing a d.s. 
matrix by a convex combination of these matrices ([4], 323-325). Among 
them, Johnson et al [2] gave the sharpest bound, which reflects the structure of 
the d.s. matrix, using the Birkhoff algorithm ([2], 240-241). In their paper the 
Lemma 2 and its corollary ([2], 238-240) play an essential role. Their proofs of 
these propositions require some graph theoretical prerequisites. In this note we 
will present elementary combinatorial proofs to these propositions. 

2. Fully indecomposable decomposition. A square matrix A is called reduc
ible if 

where B and D are non-empty square matrices, for some permutation matrix P 
and irreducible otherwise. Similarly A is called fully indecomposable (f.i.) if 
PAO is irreducible for any permutation matrices P and Q. When A is a d.s. 
matrix, it is easily seen that any A, not f.i., can be decomposed into a direct 
sum of f.i. and d.s. submatrices. We call such a decomposition a fully indecom
posable decomposition (f.i.d.) of A. Note that such a decomposition of A is 
concordant with the canonical decomposition of the bipartite graph introduced 
by A ([2] and [3]). Since the canonical decomposition is uniquely determined 
[3], the f.i.d. of A is also unique up to permutations on rows and columns of A. 
We will give, in the following lemma, a combinatorial proof to this fundamen
tal result. The proof of this lemma occurred with the author while he was refining 
the proof of Birkhoff's theorem based on the celebrated P. Hall's marriage 
theorem ([6], 553-554). 
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We denote A ~ B if B = PAQ for some permutation matrices P and Q. 

LEMMA. Let A = (atj) be a nxn d.s. matrix. If A has two f.i.d.s: A~ 
At+ • • • -i- As and A ~B x + • • • + B„ where At and Bt are f.i. matrices of order 
mt and n,- respectively (1 < i < s, 1 < / < f), then t = s and there exists an approp
riate permutation a on {1 ,2 , . . . , s} such that nx = mo.(0 and Bt ~ Ao.(0 for all i. 

Proof. Let Tt^{j | l < / < n , aiy>0} and L ^ l ^ , . . . , /mJ be the set of 
suffixes of rows in A corresponding to A ^ l ^ i ^ s ) . Since At is a f.i. and d.s. 
matrix, the following property is easily verified. 

(*) U i \ 
veJLi 

= mh U i \ >K for (f»cvK( A, 

where \S\ denotes the cardinality of the set S. The following property also 
immediately follows from (*) and the fact that A is a d.s. matrix. 

(* *) akj = 0 for k eU and \& U I\,; kéU and keLt and ]é U r„; fcéL* /e U r„. 

It is clear that there exists an obvious one-one correspondence in the sense 
that to a f.i.d. of A there corresponds a partition of {1, 2 , . . . , n} with the 
property (*). Let {L1 ? . . . , LJ and {M l 5 . . . , MJ be two partitions as described 
above. We will show below that if Lt CiM^ <j>, then Lt = M,. Thus the equality 
t = s and the existence of an appropriate permutation a on {1, 2 , . . . , s} such 
that Mj = Lo.(0 is guaranteed. Therefore we have nt = m<T(0 and Bt ~ Ao.(0 for all 

Now suppose L^Mj in despite of Lt DM^ <j>. Note that none of Lts contain 
any M7, and vice versa. From (*) and (**), we have easily akl = Q for 
keLiHMj and le(\JveU Tv-[jv 

L,-(L,nMJ) and fe lU^-o^ni^r , , ; keA^-(L,nA4|) and le 
Uv6M,-(L,nM,) Tv. Thus the equality |LULlnM,ri,| = |Li r>M / | can be proved 
considering A being a d.s. matrix. This contradicts the property (*) of Lit 

because <$> ç Lt fl M,; s L(. 
The following corollary is a part of the Lemma 2 in [7]. We give, however, a 

simple proof different from the one therein. 

COROLLARY. Let A be a nxn square matrix of the form 

A = 

A, 
A2 B7 

B, 
Bs-, 

A. 

, where each At is f.i. 

and Bj contains at least one non zero entry. Then A is f.i. 
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Proof. It is easily seen by our assumptions that |Uv€Lrv |>|L| for 4>SvLç 
{1, 2 , . . . , n} and |Uv=i I\,| = n. Hence A can not contain any t x (n -1) zero 
submatrices, l < f < n - l . 

EXAMPLE. 

A = 

Pi 4i 
P2 <?2 

Pn-i qn-i 

Pn 

, where # # 0 and qt # 0 

(1 < i < n), is a particular case of the corollary described above, thus A is f.i. On 
the other hand 

B = 
ro l 
\p o 
[q 0 

01 

q\ 
PJ 

where p>0 , q>0 and p + q = l, is regular (i.e. irreducible and aperiodic in the 
sense of finite Markov chains) but is not f.i., since obviously 

B 
[1 
0 

L° 

0 

p 
<\ 

0] 
q\ 
PJ 

3. Proof of Johnson-Dulmage-Mendelsohn's theorem. Let A be a d.s. 
matrix of order n. Let A (0 (i = 0 ,1 ,2 , . . . , A ( 0 ) ^A) be the matrix which 
comes out after the i -times consecutive performances of the Birkhoff algorithm 
starting at A. Let p(A(i)) and d(0 (i = 0,1,2,.. .) be the number of positive 
entries in A(i) and the number of f.i. components of A(i), respectively. Let 
v{A) be the number of performances of the Birkhoff algorithm which are 
needful until the algorithm terminates, i.e. A(v(A)) = 0. Then the theorem of 
Johnson et al. [2] may be stated as follows 

*>(A)<p(A)-2n + d + l, where d^d(0). (1) 

B. It is worth while to note that v(A) - v(B) provided A 
In the following we will confine i within l < i < v ( A ) - l . In case there are 

just J (/> 1) f.i. components Ba (a - 1 , . . . , /) of A0_1) which, after the ith 
performance, come out as the direct sum of f.i. components JB^ , . . . , B^ 
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(ka>2) of A(i) respectively, i.e. 

[March 

B (k.) 

and every Ba is f.i. 

If [* • • • Bf • • •* ] = [0 ••• BJ? ••• 0] for some a and /, then 

r * 

B? 

L * 

= 

" ° 1 

B« 

_0 J 

because all row sums and all column sums of Ba are of the same value. This 
contradicts the fact that Ba is f.i. Thus there exist at least ka positive entries in 
Ba which vanish at the ith performance. Since d(0 = Zl=i ka + (d( i -1)-Z), we 
have the inequality 

(2) pCA^-^-pCA^)^ £ fca = d(i)-d(i-1)+/ = d( i )-(d( i-1)-0, 

which is identical with the Lemma 2 of Johnson et al [2]. In case every f.i. 
component of A(i_1) remains f.i. after the ith performance, d(i) = d(i_1), and on 
the other hand there always exist at least one positive entry in A(I_1) which 
vanish at the ith performance by the definition of the Birkhoff algorithm. Thus 
we have the inequality 

(3) piA^-V) - p(A(i)) > 1 = d(i) - d(i-1} + 1. 

In any case, considering the inequalities (2) and (3), we have the following 
inequality 

(4) p ^ ' - ^ - p C A ^ a d ^ - d ^ + l , 

which is identical with the corollary to the Lemma 2 of Johnson et al. [2]. 
We rewrite here the proof of (1) ([2], 240-241) for convenience. Using the 
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inequality (4), we have 

p(A)-p(A ( 1 ))>d ( 1 )-d + l> 

p(A ( 1 ))-p(A ( 2 ))>d ( 2 )-d ( 1 )+l, 

(5) 

p(A(v(A)-2)) _ p(A(v(A)-l) > d(v(A)-l) _ d(v(A)-2) + j 

Adding the above inequalities term by term, we have p(A) - p(A(v(A) 1})> 
d^-»-d + (v(A)-l). s i n c e p(A<l'<A)-1)) = d^A)-1) = n, we obtain v(A)^ 
p(A)-2n + d + l. 

REMARKS, (i) The equality in (1) holds iff the inequality (4) becomes the 
equality for any i ( l< i<i>(A)- l ) : i.e. in the case of the inequality (2) 1 = 1 
and the equality holds, moreover in the case of the inequality (3) the equality 
holds. 

(ii) Let y(A) be the max {rt(A), c^A) 11 ̂  i, j^n}, where rt(A) (resp. Cj(A)) 
is the number of positive entries in ith row (resp. /th column). We clearly have 
the inequality 

(6) *(A)>y(A). 

This inequality gives a lower bound on v{A). For example, y(A) = 3, n = 3, 
d = 1 and p(A) = 7 for 

A = 

We have 3 < y ( A ) < 7 - 2 x 3 + l + l = 3, thus v(A) = 3. 
Finally it will be worthwhile to cite, concerning d.s. matrices and the 

extention of P. HalFs theorem, again the expository papers of Mirsky [4], 
Mirsky and Perfect [6] and the book of Mirsky [5]. 
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