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CENTRAL DOUBLE CENTRALIZERS 
ON QUASI-CENTRAL BANACH ALGEBRAS 

WITH BOUNDED APPROXIMATE IDENTITY 

SIN-EI TAKAHASI 

1. Introduction. We assume throughout this paper that A is a semi-
simple, quasi-central, complex Banach algebra with a bounded approxi­
mate identity {ea\. The author [6] has shown that every central double 
centralizer T on A can be, under suitable conditions, represented as a 
bounded continuous complex-valued function <£ron Prim A, the struc­
ture space of A with the hull-kernel topology, such that 

Tx + P = $T(P) (x + P) for all x 6 A and P £ Prim A. 

Here x + P for P 6 Prim A denotes the canonical image of x in A /P. 
This map # is called Dixmier's representation of Z(M(A)), the central 
double centralizer algebra of A. We denote by r the canonical isomor­
phism of A into the Banach algebra D{A) with the restricted Arens 
product as defined in [6]. Also denote by \x Davenport's representation of 
Z(M(A)). In fact, this map M is given by 

fiT = weak*-lim r(Tea) 
a 

for each T G Z(M(A)). Then M is a continuous algebraic isomorphism 
of Z(M(A)) onto Z(D(A)), the ideal center of A (see [6] or [7]). In [7], 
we have shown that if Z(D(A)) has a Hausdorff structure space, then 

V-l(?(Z(A))) = ^(CoÇPrimA)). 

Here Z(A) denotes the center of A and r(Z(A)) denotes the kernel of 
the hull of T(Z(A)) in the structure space of Z(D(A)). Also C0(Prim A) 
denotes the commutative Banach algebra, with the supremum norm, 
consisting of all bounded continuous complex-valued functions on Prim A 
which vanish at infinity. If A is a C*-algebra, then the ideal center 
Z(D(A)) becomes a commutative C*-algebra and hence it always has 
a Hausdorff structure space. However, if G is a non-discrete locally 
compact Abelian group and if A = L1(G)f the group algebra of G, then 
A is completely regular but Z(M(A)) is not regular and so Z(D(A)) 
does not have a Hausdorff structure space (see [4, p. 42]). We will there­
fore discuss what can be said about the above result when the Hausdorff 
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condition on the structure space of Z(D(A)) is replaced by the weaker 
condition that Z(A) is completely regular. Actually, in the next section, 
it will be shown that 

^(T{Z{A))) = # - 1 ( C o ( P r i m ^ ) ) n Z l o w ( M ( ^ ) ) , 

whenever Z(A) is completely regular. Here Z\0W(M(A)) denotes the set 
of all central double centralizers T on A such that the map : M —» 
\XM(VT)\ is lower semi-continuous on Prim Z(D(A)), where XM for 
M Ç Prim Z{D(A)) is the non-zero homomorphism of Z(D(A)) onto 
the complex field induced by M. 

In the final section, it will be shown that if T is a central double 
centralizer on A such that the support of $T is quasi-compact (i.e., it 
satisfies the Borel-Lebesgue axiom without necessarily being Hausdorff) 
and if J is a closed two-sided ideal of A such that the hull of I disjoints 
from the support of $7*, then there exists a unique element zol Z{A) C\ I 
with Lz — T whenever Z(A) is completely regular. Here Lz for z Ç Z(A) 
is the central double centralizer on A defined by Lz{x) = zx for each 
x 6 A. Moreover, the following Tauber type theorem is shown as an 
application of the above result. If Z(A) is completely regular and if the 
two-sided ideal Zoo (A) of Z(A) consisting of all z 6 Z(A) such that the 
support of &Lz is quasi-compact is norm dense in Z(A), then every closed 
two-sided ideal of A which does not contain Z(A) is contained in some 
primitive ideal of A. In particular, if A is a quasi-central C*-algebra, then 
Zoo 04) is always norm dense in Z(^4) from the density theorem of 
Archbold [1]. 

In the remainder of this paper, we denote by <t>I>B the natural homeo-
morphism of Prim I into Prim B when B is an algebra and 7 is a two-
sided ideal of B. In this case, we notice that <l>ItB(P) C\ I = P for all 
P e Prim J (see [5, Theorem 2.6.6]). 

2. Dixmier's representation of yrl(r(Z(A))). The purpose of this 
section is, as promised, to prove the following result which is an extension 
of [7, Theorem 3.3]. 

THEOREM 2.1. Let A be a semi-simple, quasi-central, complex Banach 
algebra with a bounded approximate identity. If the center Z(A) of A is 
completely regular, then 

n~Hr(Z(A))) = < i>- 1 (C 0 (Pr im^))nZ l o w (M(^) ) . 

In order to prove this theorem, we have to prepare some lemmas. 
Denote by Ann^(£) and AnnT(£) the left annihilater and the right 
annihilater of E, respectively, provided E is an arbitrary subset of an 
algebra B. 
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LEMMA 2.2. Let B be an algebra and let I be a two-sided ideal of B. If I is 
semi-simple and 

A n n , ( / ) n A n n r ( 7 ) = {0}, 

then 4>I,B (Prim / ) is dense in Prim B. 

Proof. Set 0 = <f>IfB. Then in order to get the lemma, it is sufficient 
to show that 

ker (0(Pr im/) ) = {0}. 

For this, let x be a fixed element of ker (0(Pnm / ) ) . Then for any 
element P of Prim / , we have x 6 0(P) , s o that 

xy G 4>(P) H J = P and yx Ç <t>(P) H I = P 

for all y £ I. Therefore xl U Ix is contained in the radical of / . However 
since / is semi-simple, it follows that xl = {0} and Ix = {0}. So the 
assumption 

Ann*(I)P>Ann r(I) = {0} 

implies that x = 0, and hence 

ker OKPrim/)) = {0}. 

Following [7], we define U(A) to be the set 

U(A) = TG4) + Z(D{A)). 

Then U{A) is a subalgebra of D(A) since T(A) is a two-sided ideal of 
the Banach algebra D(A). 

COROLLARY 2.3. Let A be a semi-simple Banach algebra with a bounded 
approximate identity. Then 

<l>r(A),U(A)(Prim r(A)) 

is dense in Prim U(A ). 

Proof. Notice that 

Ann z ( r (^)) = Ann r ( r (^) ) = {0} 

from [2, Lemma 2.6, 2.6.3]. Note also that T(A) is semi-simple since r is 
an isomorphim. Therefore our corollary follows immediately from the 
preceding lemma. 

The following lemma plays an essential role in the proof of our main 
theorem. 

LEMMA 2.4. Let B be a commutative Banach algebra with an identity 
element and let I be a closed ideal of B. Assume that K is a {hull-kernel) 
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closed subset of Prim I. If K is compact in the Gelfand topology, then 
<t>ItB(K) is also closed in Prim B. In particular, if I is completely regular, 
then <t>ItB(K) is closed in Prim B for each compact subset K of Prim I. 

Proof. Since K is compact in the Gelfand topology, ker K is a modular 
ideal of I from [5, Theorem 3.6.7] and hence there exists an element e of 
/ such that X M W = 1 for all M 6 K. Set e' — 1 — e and <t> — <t>ItB. 
Note that 

XHM)\I = XM for each M 6 Prim I. 

We then have 

X<HM)(e') = 1 - XHM){e) = 1 - XM(C) = 0 

for all M 6 K and 

XRW) = 1 - xnie) = 1 

for all i? Ç hull J. In other words, e' £ ker 0(X) and e' $ R for all 
JR 6 hull / . Now in order to show that </>(K) is closed in Prim B, let R be 
any element of Prim B with ker <t>(K) C i?. Then i? belongs to Prim B 
— hull I from the above arguments, so that there exists an element M 
of Prim I with R = <f>(M). We therefore have 

M = inRDI nker 4>(K) = H {J H </>(7V) : JV G # } 

= H {iV: iV G X} = k e r # . 

Hence i f must be in K since K is closed in Prim I, so that i? is in <t>(K). 
Thus 0(i£) is closed in Prim B as required. 

In particular, if I is completely regular and K is a compact subset of 
Prim I, then since the hull-kernel topology in the carrier space of I is 
equivalent to the Gelfand topology, <f>(K) is closed in Prim B by the 
above arguments. 

For each central double centralizer T on A, let &T
U be the bounded 

complex-valued function on Prim U(A) as defined in Section 5 of [7]. 

LEMMA 2.5. If Z(A) is completely regular, then 

r{A),UU)\T (P))) 

for all P e Prim A and T e Z(M(A)). 

Proof. This lemma follows directly from the second half of the proof in 
[7, Theorem 5.1] plus [6, Theorem 3.6]. 

LEMMA 2.6. If ZLA)_^is^completely regular, then each element T of 
Z(M(A)) wither £T(Z(A)) belongs to Zlow(M(A)). 

Proof. Let T be any element of Z(M(A)) with fiT G T(Z(A}). By 
[7, Lemma 4.4, (i)], r(Z(A)) is an ideal of Z(D(A)) and so is r(Z(A)). 
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Set 
<£ = 4>HZ(A)),Z(D(A))-

Then 0"1 is a continuous map of Prim Z(D(A)) — hull r(Z(A)) onto 
Prim r(Z(27) . Now the complete regularity of Z(A) also implies the 
complete regularity of r(Z(AJ) from [7, Lemma 4.3, (ii)]. Hence the 
map : N —> XN(HT) is continuous on Prim r(Z(^4)). Observe that 

for each i f G Prim Z(Z>W)) - hull ^(Z(27). Therefore the map : Af 
—> XM(M^) is continuous on Prim Z(D(^4)) — hull T(Z(ÂJ). Let e be an 
arbitrary positive number and set 

G = {M G Prim Z(D(^) ) : |X j ,G*r)| > e}. 

Since X M O ^ ) = 0 for all M 6 hull T(Z(A)), it follows that 

G C Prim Z(J9(^)) - hull 7{Z{A)). 

Therefore the openness of Prim Z(D(A)) — hull T(Z(A)) in Prim 
Z(D(A)) also implies the openness of G in Prim Z(D(A)). In other 
words, T belongs to ZÏ0W(M(A)). 

We are now in a position to prove our main theorem. 

Proof of Theorem 2.1. The fact that yrl{r(Z{A))) is contained in 
<ï>_1(C0(Prim A)) C\ ZÏ0W(M(A)) is a consequence of [7, Theorem 3.2] 
and Lemma 2.6. 

Now we have to show that an arbitrary element T of ZÏ0W(M(A)) 
with $T Ç Co (Prim A) belongs to ^r1 (r(Z^Â))). Suppose, on the 
contrary, that there exists an element To £ Zi0W(M(A)) such that 

$To 6 Co (Prim ^ ) 

but 

Mr0 g îr(Z(lf). 
Then, by the definition of T(Z(A)), there exists a primitive ideal Afo of 
Z(D(A)) such that r(Z(i4)) C M0 but M^O g Af0. Since M0 belongs to 
the hull of r(Z{A)) in Prim Z(D(A))t it follows from [7, Lemma 4.5] 
that there exists an element R0 of the hull of r{A) in Prim U(A) such that 

Mo = R0nZ(D(A)). 

Set 

€o = |XATO(M7"O)|. 

Then e0 > 0. We next set 

Ko = {P e Prim A : |$r0CP)| è €0/2j. 
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Since $To vanishes at infinity, Ko is a quasi-compact subset of Prim A. 
Moreover set 

*(P) = <t>rU),uu)(r(P)) 

for each P G Prim A. Then 0 is a homeomorphism of Prim A onto 
Prim U(A) — hull T(A) and hence <t>(Ko) is also quasi-compact in 
Prim U(A). We now write 

* (£ ) = i?nZ(C(i4)) 

for each i£ G Prim C/(^4). Then ^ is a continuous map of Prim U(A) 
into Prim Z(D(A)) from [7, Lemma 4.10]. Therefore V(4>(K0)) is also 
quasi-compact in Prim Z(D(A)). Note that 

*(0(Prim A)) C Pnm Z(J9(4)) - hull r(Z(A)). 

Suppose actually that there exists an element Qo of Prim A such that 

r(Z(A)) C * ( * ( & ) ) . 

Then r ( Z ( 4 ) ) C «(Ço) and so 

T(Z( i4 ) )C«(Ço)nT(X) = T(ÇO). 

Since r is one-to-one, Z(-4) C Co. This contradicts the quasi-centrality 
of A. We thus obtain that ^(<t>(K0)) is contained in Prim Z(D(A)) 
— hull T(Z(A)). Therefore ty(<t>(K0)) is also quasi-compact in Prim 
Z(D(A)) - hull r(Z(A)). Hence the set 

<t>7(Z(A)),Z(D(A))(y(<t>(Ko))) 

is compact in Prim T(Z(A)). Since T(Z(A)) is completely regular, it 
follows from Lemma 2.4 that S£(0(i£o)) is closed in Prim Z{D{A)). 
Hence ^^(^(^(KQ))) is also closed in Prim U(A). Moreover, we see 
from [7, Lemma 4.5] that 

tf-W^o))) C Prim U(A) - hull r(A). 

Since i?0 belongs to the hull of T(A) in Prim U(A), setting, 

Gx = Prim £7(4) - ^ ^ ( ^ ( « ( X o ) ) ) , 

Gi is an open neighbourhood of R0. We further set 

W = {M G Prim Z(Z)(^)) : \XM(HT0)\ > *o/2}. 

Since T0 belongs to Zl0W(M(^4)), PF is open in Prim Z(D(A)). Then 
setting, 

G2 = ^- i (T^) , 

G2 is also open in Prim U(A). Note that 

| x * ( « o ) ( / * r o ) | = \XROH Z ( D U ) ) ( M 3 T O ) | = | X M O ( M ^ O ) | > e 0 / 2 . 

https://doi.org/10.4153/CJM-1983-021-0 Published online by Cambridge University Press

file:///xroH
https://doi.org/10.4153/CJM-1983-021-0


CENTRAL DOUBLE CENTRALIZERS 379 

Then ^ (R0) £ W, that is R0 £ G2. Thus G2 is an open neighbourhood of 
Ro. Set Go = Gi H G2. Then Go is an open neighbourhood of R0. Notice 
that <£(Prim A) is dense in Prim U(A) from Corollary 2.3 and so we can 
find an element P 0 of Prim A such that 0(PO) 6 G0. Then ^(0(PO)) is in 
PF and hence 

(2.1.1) |x*<*(Po»G*r0)| > eo/2. 

Also since 

4>(K0) C tf"1 (*(*(*<>))) = Prim U(A) - Gi 
C Prim U(A) - Go, 

it follows that <£(P0) ? 4>(Ko) and hence P 0 $ K0. We thus obtain that 

(2.1.2) |* r o (Po) | < €o/2. 

Recall, from the definition of QT
U, T £ Z (M(4) ) , that 

^ ( « ( ^ o W + *(Po)) = MPo + 0(Po) 

and so 

^ ( « ( A ) ) / - uTo € *(Po) H Z(Z7(i4)) = ¥ (*(P 0 ) ) . 

Here / denotes the identity element of D (A ). We therefore have 

X*0KPO))(MPO) = $2^(tfCPo))x*(*(Po))CO = *r 0 ^(*(-Po)) . 

Hence it follows from Lemma 2.5 that 

X*(*(PO))(MPO) = $roCPo) 

and so (2.1.1) and (2.1.2) are not compatible. This completes the proof. 

COROLLARY 2.7 (cf. [7, Theorem 3.3]). Let A be a semi-simple, quasi-
central, complex Banach algebra with a bounded approximate identity. If 
the ideal center Z(D(A)) of A has a Hausdorff structure space, then 

M-i(KZ(Z))) = ^(CoCPrimil)). 

Proof. Since Z(D(A)) has the identity element and its structure space 
is Hausdorff, Z(D(A)) is completely regular. Then T(Z(A)) is also 
completely regular from [5, Theorem 2.7.2] and so is Z(A) since r is an 
isomorphism. Note also that the complete regularity of Z(D(A)) implies 
that the map : M —» XM(PT) is continuous on Prim Z(D(A)) for each 
P C Z(M(A)) and hence 

Zl0W(M(A)) = Z(M(A)). 

Therefore the corollary follows from the preceding theorem. 

Remark. In the preceding theorem, H~1(T(Z(A))) is still contained in 
«l?-1 (Co(Prim A)) C\ ZXoyf(M(A)) without necessarily assuming semi-
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simplicity of A because [7, Theorem 3.2] and Lemma 2.6 is true even if A 
is not semi-simple. 

3. Tauber type theorem depending on Z(A). In this section, we 
will consider some spectral synthesis problems depending on the center 
Z(A) of A. The following lemma plays an essential role in our considera­
tions and its proof can be observed in the proofs of [5, Theorem 2.7.9 
and 2.7.10]. 

LEMMA 3.1. Let A be a quasi-central Banach algebra with a completely 
regular center and let F be any closed subset of Prim A. Then F is quasi-
compact if and only if ker F is modular. 

If / is a complex-valued function on Prim A, we denote by supp (/) 
the hull-kernel closure of the set of all P Ç Prim A such that f(P) ^ 0 
and it is called the support of / . 

THEOREM 3.2. Suppose that the center Z(A) of A is completely regular. 
If T is a central double centralizer on A such that $T has quasi-compact 
support and if I is a closed two-sided ideal of A such that 

supp (3>r) H hull 7 = 0, 

then there exists a unique element zof Z{A) C\ I with Lz — T. 

Proof. By the preceding lemma, ker (supp ($T)) is modular and so is 
I + ker (supp (^r) ) - Then 

supp (3>r) H hull 7 = 0 

implies that 

A = I + ker (supp ($T))> 

Let e be an identity for modulo ker (supp (<£r))- Hence we can write 
e — u + v, where u £ I and v £ ker (supp (<£r))- Set z = Tu. We first 
show that z is in Z(A). In fact, let x be an arbitrary element of A. If 
P G supp («Êr), then 

(3.2.1) xu + P = xe + P = x + P = ex + P = ux + P 

and hence 

(3.2.2) xz + P = x(Tu) + P = T{xu) + P = $>T{P){xu + P) 

= $T(P)(ux + P) = T{ux) + P = (Tu)x + P 

= zx + P. 
If P $ supp ($T), then $T(P) = 0 and hence 

z + P = Tu + P = $T(P) (u + P) = 0, 
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so that 

(3.2.3) zx + P = 0 = xz + P. 

We thus observe that zx — xz belongs to the radical of A. Hence the 
semi-simplicity of A implies that zx — xz for all x G A, that is z 6 Z(A). 
Also since 

z = Tu — lima T(uea) = limaw(7>a), 

the element z belongs to the norm closure of J and hence I. Finally we 
show that Lz = P. In fact, if P € supp ( $ r ) , then (3.2.1) and (3.2.2) 
imply that 

(3.2.4) zx + P = $T(P)(ux + P) = *T(P)(x + P) 

for all x 6 A, Also if P & supp (#r)> then (3.2.3) implies that 

(3.2.5) zx + P = 0 = *T(P)(x + P) 

for all JC G A. Note that for each x £ A and P £ Prim Ay 

zx + P = $L2(P)(x + P). 

Therefore (3.2.4) and (3.2.5) imply that 

*T(P)(pc + P) = $L 2(P)(* + P) 

for all x G 4̂ and P Ç Prim ^4. We thus obtain that $T = $£« and hence 
T — Lz must be in ZMR(A) from [6, Theorem 3.6]. Here Z M B ( i ) 
denotes the set of all P £ Z(M(A)) such that P(^4) is contained in the 
radical of A. However since A is semi-simple, ZMR(A) = {0}. Then 
Lz = P as wanted. Also the uniqueness of z is clear because A has the 
approximate identity. 

Remark. Theorem 3.6 in [6] states that if the center Z{A) of A is 
completely regular then the map : T —» <&T is a continuous homomorphism 
of Z(M(^4)) into C6 (Prim A), the Banach algebra of all bounded con­
tinuous complex-valued functions on Prim A. But the kernel of this 
homomorphism is, of course, equal to ZMR(A) as can be seen in the 
proof of [6, Theorem 3.2]. 

COROLLARY 3.3. If Tis an element of Z(M(A)) such that $T has a quasi-
compact support, then there exists a unique element z of Z(A) with Lz = P. 

Proof. By taking A instead of / in the preceding theorem, our corollary 
follows immediately from the theorem. 

If x is an arbitrary element of an algebra B, we denote by supp s (x), 
or simply by supp (#), the hull-kernel closure of the set of all P Ç Prim B 
with x (£ P and it is called the support of x. We also denote by BQ0 the set 
of all x Ç B such that supp (x) is quasi-compact. Note that P0o is a 
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two-sided ideal of B. Let Zoo (A) be the set of all z G Z(A) such that 
$Lz has quasi-compact support. Then Z00(A) is also an ideal of Z(A) 
since the map : z —> $Lz is homomorphic on Z(A). 

LEMMA 3.4. If the center Z(A) of A is completely regular, then hull A00 

= 0andZoo(A) = AooC\Z(A). 

Proof. By [7, Theorem 3.1], Prim A is a locally quasi-compact space. 
Therefore if there exists an element Po of hull A 00, we can find an open 
neighbourhood Uo of P 0 with quasi-compact closure. We then have 

ker (Prim A - Uo) C ^00 C Po, 

and hence 

Po G hull (ker (Prim 4 - Ê7Ô)) = Prim 4 - É7Ô 

C Prim A - Uo = Prim A - C/0> 

where the bar denotes the hull-kernel closure. This contradicts that P 0 is 
in Uo. We thus obtain that hull ^00 = 0- Also by [7, (6.1.2)], 

^L 2 (P ) = XPD Z(A)(Z) 

for all z G Z ( 4 ) and P G Prim 4 . Therefore 

suppA (2) = supp ($LZ) for all z G Z(^4) 

and hence Z0oC4) = 4̂oo H Z(A). 

The following result is a Tauber type theorem depending on Z(A). 

THEOREM 3.5. Suppose that Z(A) is completely regular. If Z0o(^4) is 
norm dense in Z(A), then every closed two-sided ideal of A which does not 
contain Z(A) is contained in some primitive ideal of A. Conversely, if every 
closed two-sided ideal of A which does not contain Z(A) is contained in some 
primitive ideal of A, then Z(A) is contained in the norm closure of Aoo> 

Proof. Assume first that Zoo (A) is norm dense in Z(A). Let / be any 
closed two-sided ideal of A with Z(A) (£ I. We want to show that I is 
contained in some primitive ideal of A. Suppose, on the contrary, that 
hull / = 0. If z is any element of Zoo04), then $Lz has a quasi-compact 
support and so z must be in / from Theorem 3.2. In other words, Zoo (A) 
C I- Also since Zoo (A) is norm dense in Z(A) and i" is norm closed, we 
have Z(A) C / . This is a contradiction and hence we obtain the first 
assertion. Assume conversely that every closed two-sided ideal of A which 
does not contain Z(A) is contained in some primitive ideal of A. Note 
that the norm closure A00 of A00 is a closed two-sided ideal of A. If Z(A) 
is not contained in A 00, then hull A 00 9e 0 from the assumption. But this 
is impossible since hull 4̂ 00 = hull A 00 and hull 4̂ 00 = 0 from Lemma 3.4. 
We thus obtain the second assertion. 
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COROLLARY 3.6. Let A be a quasi-central C*-algebra. Then Z0o(A) is 
norm dense in Z(A). 

Proof. Note that every proper closed two-sided ideal of A is always 
contained in some primitive ideal of A from [3, Théorème 2.9.7]. Also 
Z(A) is of course completely regular. Furthermore since Aoo is a two-
sided ideal of A, it follows from the density theorem of Archbold [1] that 

i o o H Z ( i ) = I7o C\ Z(A). 

Therefore the corollary follows immediately from Lemma 3.4 and the 
preceding theorem. 

LEMMA 3.7. If Z(A) is completely regular, then 

Zoo(A) C (Z(i4))00. 

Proof. Set <r(P) = P C\ Z{A) for each P Ç Prim A. Then a- is a con­
tinuous map of Prim A onto Prim Z{A) from [5, Theorem 2.7.5]. Since 
$LZ(P) = Xa(P)(z) for all z e Z(A) and P Ç Prim A from [7, (6.1.2)], 
it follows that 

(3.7.1) a({P 6 Prim A : $Lz{P) * 0}) = \M 6 Prim Z(4 ) : s g Jlf} 

for all z 6 Z(A). Hence the continuity of a implies that 

<r(supp ($z,2)) C supp z U) (z) 

for all z Ç Z(^4). We next assert that 

suppzu) (z) C <r(supp ($Lt)) 

for all z Ç Zoo 04). In fact, let s £ Z00(^4) and I f Ç supp z U ) (z). Then 
there exists a net {Mx} in Prim Z{A) such that limx M\ = M and z $ M\ 
for each X. By (3.7.1), there exists a primitive ideal P\ of 4̂ such that 
<T(P\) = ikTx and $Lz(P\) ?£ 0 for each X. Hence every Px belongs to 
supp ($£z). Then since supp ($Lz) is quasi-compact, there exists a 
subnet {Px'} of {P\} and an element P of supp ($Lz) such that 

limx' Px' = P . 

Therefore 

limv Mx* = limx* <r(Pv) = cr(P). 

Since Prim Z(^4) is Hausdorff, <r(P) = M and we thus obtain the asser­
tion. Now by the above arguments, if z G Zoo (A) then 

a (supp ($£*)) = suppz(A) (z) 

and hence suppzu) (z) must be compact since supp ($Lz) is quasi-
compact and a is continuous on Prim A. In other words, Z0o(A) C 
(Z(A))M. 
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Remark. If B is a completely regular Banach algebra and J30o is norm 
dense in B, then B is said to be Tauberian (cf. [5, p. 92] or [8]). Then, by 
the preceding lemma, if Zoo04) is norm dense in Z(A) then Z(A) is 
Tauberian. But we don't know conditions under which Zoo (A) — (Z {A ) ) 0o. 
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