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Abstract. Continuous maps from the real line to itself give, in a natural way, a partial
ordering of permutations. This paper studies the structure of simple permutations
which have order a power of two, where simple permutations are permutations
corresponding to the simple orbits of Block.

0. Introduction
Sarkovskii [9] proved the following theorem:

THEOREM. Let < be the ordering of the positive integers

3 < 5 < 7 < - - - < ! 2 - 3 < 2 - 5 < 2 - 7 < l - - - < 2 2 - 3 < 2 2 - 5 < l - - - < 2 2 < l .

Let f be a continuous map from the real line to itself. Iff has a periodic point of period
n and if m satisfies n<\m then f also has a periodic point of period m.

Elegant proofs of this theorem using Markov graphs have been given in [3] and [4].
If the order in which points are permuted by a function is known then Markov
graphs can give more information about the existence of other periodic points. For
example, suppose / is a continuous map from the real line to itself such that there
exist real numbers Xi<x2<x3<x4 and /(x,) = x9(l), where 6 is the permutation
(1234). Sarkovskii's theorem shows the existence of periodic points of periods one
and two; but by looking at the Markov graph it is seen that / has periodic points
of all periods. Further analysis of the graph shows that there exists points y, < y2 < y*.
such that/(_y,) = j\,(j), where 17 = (123). This conclusion can also be drawn from the
fact that there is no division for (xu x2, x3, x4), see [7].

The important elements in the above example are the permutations. Continuous
maps from the real line to itself induce a partial ordering on the set of permutations.

In this paper, the structure of simple permutations which have order a power of
two is studied, where simple permutations denote permutations corresponding to
the simple orbits of Block (see [1], [2], [4], [5]).

In the first section the basic concepts and notation is introduced. The second
section shows that the partial ordering restricted to the above permutations gives
rise to a tree. It shows what a permutation's immediate successors and predecessors
are.

In the third section the number of critical points associated to a permutation is
studied. This is of interest because there have been many papers considering
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180 C. Bemhardt

unimodal maps (see for example [2], [6]) and because of theorem 1.5. It is shown
that in the unimodal case there are only two simple permutations with order 2" for
each n; one corresponding to a map with a maximum and the other to a map with
a minimum.

1. Basics
Throughout this paper (Sm°) will denote the group of permutations on n objects.
All functions will be assumed to be continuous maps from the real line to itself.

Definition 1.1. Given a function,/, its set of permutations denoted Perm if) is denned
by the following. A permutation, 8, belongs to Perm if) if there exist real x, < x2 <
• • • < xn such that /(*;) = x#(0.

Definition 1.2. Let 8 and TJ be permutations. Say 8 dominates 17, denoted by 8 < 17,
if {f\e e Perm if)} is contained in {f\i) e Perm (/)}.

Definition 1.3. Suppose that 8 belongs to Perm if) and that xu... ,xn represent the
reals such that /(*,) = xe(i). Then a directed graph can be associated to 8 and / in
the following way. The graph has n - 1 vertices Ju..., /„_,, and an arrow is drawn
from Jk to Jt if and only if f([xk, xk+l])^[xb x,+l]. This graph will be called the
Markov graph associated to / and 8.

For basic facts about Markov graphs see [8], [4] (or [3], where they are called
A-graphs).

Definition 1.4. The set which contains permutations consisting of exactly one cycle
of order n will be denoted Cn.

Definition 1.5. Given a permutation 8 belonging to Sn the primitive function, f
associated to 8 is denned by the following:

(1) f_(k) = 8(k);
(2) f_(tk
(3) f_(x) =
(4) f(x) = 8(n)

where k = 1,. . . ,« and 0 < t < 1.

Definition 1.6. The Markov graph associated to 8 and its primitive function will be
called the Markov graph of 8.

The following lemma follows from the definition of primitive function.

LEMMA 1.7. Let 8 belong to Cn and let f be its primitive function. If TJ belongs to
Cm n Perm (/) and if t]^ 8 then the Markov graph of 8 has a non-repetitive loop of
length m corresponding to TJ.

If 8 belongs to Perm if) then the Markov graph associated to 8 and / contains, in
a natural way, the Markov graph of 8, (see [4]). Thus an easy consequence of the
above lemma is the following.

LEMMA 1.8. Let 8 belong to Cn and 17 to Cm and 8^7). Then 8 dominates rj if and
only if the Markov graph oft) has a non-repetitive loop of length m corresponding to 77.
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The following is an extension of Sarkovskii's theorem.

SARKOVSKII'S EXTENDED THEOREM. If 6 belongs to Cn then for any integer m,
satisfying m t> n there exists an rjeCm such that 171> 0.

Proof. From 0 construct its primitive function / Since / has a periodic point of
period n, Sarkovskii's theorem shows that / has a periodic point of period m, and
so there exists an 77 belonging to Perm (/) n Cm. Lemma 1.7 shows that the Markov
graph of 0 has a loop corresponding to 77 and Lemma 1.8 completes the proof.

•
Block has strengthened Sarkovskii's theorem by considering simple orbits, see [1],
[2]. Ho has also studied simple orbits see [4] and [5].

Definition 1.9. Let m and « be positive integers. Let S denote the set {xeZ|l < x <
mn}. Then there is a natural way of partitioning S into subsets each of size n by
choosing the first n elements, then the second n elements and so on. Define

P(mn, m, k):={xeZ\(k- l)n<x<kn},

where k is an integer satisfying 1 < k < m.

Definition 1.10. A permutation belonging to C2k-i is simple if when expressed in
cycle notation it is equal to either

[k(k-l)(k + l){k-2)(k+2) • • • (k-j)(k+j) • • • l(2k-l)]

or

l)(k-l)(k+2) • • • (k+j)(k-j) • • • (2*-1)1].

Definition 1.11. An element 0 of C2n is simple if for every k satisfying 0 < k < n - 1
it satisfies the following two conditions:

(i) 02k[P(2n,2kJ)]=P{2",2kJ));
(ii) 82\P{2",2k+',;)] has empty intersection with P(2",2k+1,j).

Definition 1.12. An element 0 of Cr2
m is simple if it satisfies the following conditions:

(i) 0[P(r2m, 2m,j)] = P{r2m, 2m, o-(j)), where a is a simple element of C2-\
(ii) 02"" restricted to P(r2",2m,j) is simple for every/

Definition 1.13. The set of simple elements of Ck will be denoted Sim (k).

Example 1.14. Let

_ / l 2 3 4 5 6\ _ / I 2 3 4 5 6 7 8 9 10\
a ~ \ 5 4 6 1 3 2/ a n ^ \ 7 8 10 6 9 2 3 5 1 4 ) '

Then it is easily checked that a belongs to Sim (6) and )3 to Sim (10).

Block and Hart [2] have shown that if a function has a periodic point of period n
then it has a simple periodic point of period n. By an argument analogous to the
proof of Sarkovskii's Extended Theorem the following can be proved.

BLOCK AND HARTS EXTENDED THEOREM. If 0 belongs to Cn then for any integer
m satisfying m > n or m = n there exists 17 an element of Sim (m) such that 77 D> 0.
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Definition 1.15. Let 0 belong to Cn. Say 0 has a relative maximum at k if both
6(k-l) and 6(k + l) are defined and 0(fc-l)<0(fc) and d(k + \)<6(k).

Similarly, 0 has a relative minimum at k if both 6(k- 1) and 0(fc + l) are defined
and both 0(k + l) and 0(fc- 1) are greater than 6(k).

Definition 1.16. The number of relative maxima of a permutation 0 or a function/
will be denoted ymax(8), ymax(/) respectively. The number of relative minima of a
permutation 0, or a function/, will be denoted ymin{8), ymm(f) respectively. Let

The following lemma follows easily from the definitions

LEMMA 1.17. Let f be a function and 8 an element of Perm (/). Then

(0 r™x(/)a:y««(e);

(iii)

LEMMA 1.18. If 6 is a permutation there exists a function f such that y(f) = y(0).

Proof. Clearly the primitive function of 0 is such a map. D

The following lemma follows trivially from the above lemmas and definitions.

LEMMA 1.19. If 0 and rj are two permutations with 0 < rj then

(ii) ymin(0)sy
(iii) y(d)>y(r}).

Remark. It is easily checked that if 0 belongs to Sim(2fc + 1) then y(0) = 1. This
observation combined with Block and Hart's theorem shows the following.

THEOREM 1.20. If 8 belongs to C2k+\ then for any m with m t> (2k + 1) there exists 77
an element of Sim (m) such that

(i) 7} > 0; and
(ii) y(V)=\.

Remarks. Notice that y(a) = 4 and y(P) = 6 where a and @ are as in example 1.14.
Clearly if 0 belongs to Ck then -y(0)<fc-2, because 1 and k cannot be critical

points. The simple permutation a is an example where y(a) equals 6 — 2. However,
it will be shown in § 3 that if 0 belongs to Sim (2"), for M > 2 , then y ( 0 ) < 2 " - 3 .

It is interesting to note that both a and /3 are maximal, in the sense that no simple
permutation dominates a other than itself and no simple permutation dominates j8
other than itself. Thus if the intersection of Perm (/) and C10 contains only )3 the
function / has periodic points only for periods m where m > 10.

2. Partial ordering
In this section it is shown that the partial ordering restricted to (J n Sim (2n) gives
rise to a tree. Theorem 2.10 shows what are the immediate predecessors and
successors of a given permutation.

The following lemma was proved by C. Ho in [4].
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LEMMA 2.1. There exist 22"~("+1) simple permutations of period 2".

LEMMA 2.2. If 6 belongs to Sim (2"), then for any integer m, 02m+l belongs to Sim (2").

Proof. This follows directly from definition 1.11. •

Definition 2.3. If 0 belongs to Sim (2") then 0*, an element of S2"*>, is defined by

0*(2fc) = 20(fc), 0*(2fc- l )=20(fc)- l .

Remarks. The permutation 0* consists of two 2"- cycles. It is clear that 0* dominates
0.

Definition 2.4. Let ps denote the transposition

(2s -1 2s \

\ 2s 2 5 - 1 /

LEMMA 2.5. If 0 belongs to Sim (2") then

0*oP.,oP.2
o- • •°Pi2m_,

belongs to Sim (2"+1) for any positive integers m, i, where I s ij<2"/or 1 < j < 2 / n - l .

Proof. Let rj denote 0* ° p,T ° pJ2° • • • ° Pi2m_r First, it will be shown that 17 belongs
to C2»+>. Since 0 belongs to C2» the set 7?fc({l, 2}) has empty intersections with {1,2}
for l < f c < 2 " and TJ2"({1,2}) = { 1 , 2 } . SO, either T?2"(1) = 1 or TJ2"+ '(1) = 1. Now
T/2"|{i,2} = Pim~'|{i,2}, thus i72"(l) = 2 and consequently TJ belongs to C2»+>. Next it
will be shown that TJ satisfies the conditions given in definition 1.11. Since 0 is
simple it follows from the construction of 17 that for every k satisfying 0< k < n -1,

(i) 7]2k[P{2"+\2k,j)] = P{2n+\2k,j);
(ii) Tj2\P(2n+l, 2fc+1, j)] has empty intersection with P(2n+1, 2k+x, j).
Putting k = n — \ in both of the above conditions shows that

and because T? belongs to C2-+> it is clear that r)2"[P(2n+\2n+i,j)] has empty
intersection with P(2 n + 1 ,2 n + \ j ) . U

LEMMA 2.6. If i\ belongs to Sim (2n+1) then there exists 6 belonging to Sim (2") and
transpositions p , , , . . . , pJ2t_, such that 17 = 0* ° ph ° • • • ° p,2k_,.

Proo/ First notice that if 0* ° ph ° • • • ° pi2t_, = 0* ° p,, ° • • • ° p/2m_, then 0f = 6*, and
if the strings of transpositions contain no repetitions {p, , , . . . , pi2t_,} = {p,,, • • . , P/2m_,}-

Lemma 2.1 shows that there are 22"~(n+l) elements in Sim (2"). The number of
ways of choosing an odd length string of transpositions is 22""1, if all the transposi-
tions in the string are distinct. Thus there are (22"~("+l))(22"~1) ways of choosing TJ,
by lemma 2.5 each of the choices corresponds to an element of Sim(2n+1) and
lemma 2.1 completes the proof. •

Definition 2.7. If 0 belongs to Sim (2") define 0* an element of S2»-' by

0:(!(fc) = Int[l0(2fc)]

where Int [ ] means round up to the nearest integer.

Remark. It is clear that if 0 belongs to Sim (2") then (0* ° p,, ° • • • ° p^ . , )* = 0, and
so the following is obtained trivially.
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LEMMA 2.8. If 0 belongs to Sim (2") then
(i) 0*6 Sim (2—);
(ii) 0<0* .

LEMMA 2.9. If 0 belongs to Sim (2") and 0 dominates both TJ, and TJ2, where T/I and
•n2 ore elements of Sim (2""'), then TJ, = -n2.

Proof. Consider the Markov graph associated to 0. It has 2" — 1 vertices. It will be
shown that there exists only one loop of length 2"~\

In the graph there exists at least one loop of 2"'k vertices corresponding to a
periodic point of period 2"~k for each k, 1 < k < n. These loops must be distinct or
else 17 would dominate an infinite number of permutations. However, ££= 1 2"~k =
2" - 1 and so there exists exactly one loop of length 2"~k for each k. •

The following theorem has now been proved.

THEOREM 2.10. Suppose 0 belongs to Sim (2").
(i) If rj < 0 and tj belongs to Sim (2" +1) then there exist transpositionsph,..., Pi2k_,

such that r) = 0* o pu ° • • • o phk^.
(ii) If<f>>0 and <f> belongs to C2-< then </> = 6%.

3. Critical points
In this section the following theorem will be proved.

THEOREM 3. For n > 2 the following hold.
(1) If 6 belongs to Sim (2") and m is an integer satisfying -y(0)<m<

2 n + ' - 2 - y ( 0 ) , then there exists 17 belonging to Sim(2"+I) such that T? dominates 6
and y{r]) = m.

(2) IfO belongs to Sim (2") then 02"~'+1 belongs to Sim (2") and

(3) There are exactly two elements of Sim (2") that have only one critical point.

LEMMA 3.1. Let 6 belong to Sim (2n).

(i) If k is a critical point of 6^ then one of 2k or 2k-I is a critical point of 6, but
not both.

(ii) If k is not a critical point of 6%, where 1 < k < 2", then either
(a) both 2k and 2k- 1 are critical points of 6; or
(b) neither 2k nor 2k- 1 are critical points of 0.

Proof. The case when 0^ has a maximum at k will be proved, the other cases can
be proved similarly.

If 0^(k)>0*{k-\) and 0^(k)>0+(k + l) then 0(2k-1)> 0(2k-2) and 0{2k)>
0(2k + l). If 0(2k-l)>0(2k) then 0 has a maximum at 2k-1 and 2k is not a
critical point. Similarly, if 0(2k— 1) < 0{2k) then 0 has a maximum at 2k and 2k— 1
is not a critical point. •

LEMMA 3.2. Suppose 0 belongs to Sim (2"), « > 2 . Let m be an integer satisfying
y(0)<m<2n+1 -2-y(0). Then there exists i\ belonging to Sim (2"+l) such that r) < 0
and y(r)) = m.
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Proof. Denote the set of integers where 6 has critical points by C. Denote the set
of non-critical integers by R, i.e. R = {1,2,3,. . . ,2"}\C. Let 77 =
0* ° P., ° Pi2 °' ' ' ° Phkr ^ c belongs to C then 17 has exactly one critical point in
{2c, 2c - I}. If r, where 1< r < 2", belongs to /? then one of 17 or 77 ° pr ° pc has exactly
two critical points in {lr, 2r— 1} and the other permutation has none. Notice that
both 77 and 17 ° pr ° pc belong to Sim (2"+1).

If s is either 1 or 2", then one of 77, v ° Ps° Pc has exactly one critical point in
{2s, 25-1} and the other permutation has none. Again, both 77 and 77 ° ps ° pc belong
to Sim(2n+I).

Thus it can be seen that given any subset 5 of R it is possible to construct an
element r)s of Sim (2"+l) such that the following hold:

(i) TJS has two critical points in {2k, 2k - 1} if k belongs to 5 and 1 < k < 2";
(ii) r}s has one critical point in {2k, 2k— 1} if k belongs to S and k is either 1 or

2";
(iii) T/S has 1 critical point in {2k,2k— 1} if k belongs to C;
(iv) T}S has no other critical points.

In general a subset S does not define a unique element.
Let 0 denote the empty set then 770 has y(0) critical points. Choosing S=R

gives an element rjR that has 2n+1 -2-y{8) critical points. Given m satisfying
y(0)< m<2n+1 ~2-y(6) it is clear that there exists an element TJS with y{r)s) = m
for some 5 contained in R •

An immediate corollary is the following.

LEMMA 3.3. If 0 belongs to Sim (2") then y(d*)< y{6)<2"-2-

LEMMA 3.4. If 6 belongs to Sim (2") then 02" ' + l is simple and

Proof. The proof follows from lemma 2.2 and the proof of lemma 3.2 after noting
the following fact. If 0 = <f>* ° p/, ° • • • ° pi2k_l then

02"~1+1 = * * » f t - , o - - - o P w
where the two sets {i,, . . . i'2k-i} and {/,,..., j'2m-i} have empty intersection and their
union is {« e Z| 1 < M < 2"}.

LEMMA 3.5. There exist only two elements of Sim (2") that have only one critical point,
for « > 2

Proof. This will be proved by induction.
When n = 2 there are only two elements of Sim (22); these are

/I 2 3 4\ /I 2 3 4\
l3 4 2 l) ^ U 3 1 2>

both of which only have one critical point.
Suppose 6 belongs to Sim (2r) and y(0) = 1. Then there exists a unique permuta-

tion 77 belonging to Sim (2r+1) with 7(77) = 1 such that 77 <] ft This is the unique
permutation defined by taking S to be the empty set, where 5 is defined in the proof
of lemma 3.2. It is unique because C contains a single element. •
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Remark. Of these two permuations that have only one critical point one has a relative

maximum and the other has a relative minimum.

COROLLARY 3.6. There exist exactly two elements of Sim (2"), n >2 that have 2" - 3

critical points.

Proof. The proof is an immediate consequence of lemmas 3.4 and 3.5. •

Remark It is interesting to note that if 6 belongs to Sim (2") and y(0) = 2" - 3 then

?(»*) = 1-
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