Canad. Math. Bull. Vol. 15 (4), 1972.

ON FIXED POINT THEOREMS FOR MAPPINGS IN A SEPARATED LOCALLY CONVEX SPACE

BY CHENG-MING LEE

The Banach contraction principle has been generalized by Tan [6] to the mappings in separated locally convex spaces. We show that the result of Sehgal [5] and also of Holmes [3] can be generalized in the same way.

Throughout this note, we let X be a separated locally convex space, U a base for the closed absolutely convex neighborhoods of the origin O in X, K a nonempty subset of X, and T a mapping from K to K. For each $u \in U$, we denote P_u the gauge of u defined by

 $P_u = \inf\{\lambda > 0 : x \in \lambda u\} \text{ for each } x \in X.$

We refer to [4] for the concept of gauge functions.

Theorem 1 is similar to the result in [5] but we do not assume the continuity of T (cf. [2]). This is due to the referee, to whom the author expresses many thanks.

THEOREM 1. Let K be sequentially complete. Suppose that for each $x \in K$ there is a positive integer N(x), and for each $u \in U$ there is a constant λ_u with $0 \le \lambda_u < 1$ such that

$$P_u(T^{N(x)}(x) - T^{N(x)}(y)) \le \lambda_u P_u(x - y)$$

for all x, $y \in K$ and for all $u \in U$. Then T has a unique fixed point ξ (in K) and $\lim_n T^n(x) = \xi$ for each $x \in K$.

Proof. Let $x_0 \in K$ and $x_{n+1} = T^{N(x_n)}(x_n)$ for $n \ge 0$. Then since P_u is a seminorm, it follows as in [5] that $\{x_n\}$ is a Cauchy sequence in the seminormed space (X, P_u) , $u \in U$, and hence $\{x_n\}$ is Cauchy in K. As K is sequentially complete, $x_n \rightarrow \xi \in K$. Then by the hypothesis, $T^{N(\xi)}(x_n) \rightarrow T^{N(\xi)}(\xi)$. Since for any u, P_u is continuous,

$$P_u(T^{N(\xi)}(\xi) - \xi) = \lim_n P_u(T^{N(\xi)}(x_n) - x_n) = 0,$$

i.e. $T^{N(\xi)}(\xi) = \xi$. It follows that ξ is the unique fixed point for $T^{N(\xi)}$, and therefore $T(\xi) = \xi$ is unique fixed point of T. The proof of $T^n(x_0) \rightarrow \xi$ follows again as in [5].

In case that K is not sequentially complete, following Holmes [3] using a modified condition due to Bailey [1], one can prove

THEOREM 2. Let T be continuous. Suppose that for each pair $x, y \in K$, there is a positive integer N(x, y) and for each $u \in U$, there is a constant λ_u with $0 \le \lambda_u < 1$ such that

$$P_{u}(T^{N(x,y)+t}(x) - T^{N(x,y)+t}(y)) \le \lambda_{u}P_{u}(x-y)$$
603

CHENG-MING LEE

for each pair $x, y \in K$ and for each $t=0, 1, 2, 3, \ldots$. Furthermore, suppose that there is an $x_0 \in K$ such that the sequence $\{T^n(x_0)\}$ contains a subsequence converging to $\xi \in K$. Then ξ is the unique fixed point (in K) of T, and $\{T^n(y)\}$ converges to ξ for each $y \in K$.

REFERENCES

1. D. F. Bailey, Some theorems on contractive mappings, J. London Math. Soc. 41 (1966), 101-106.

2. L. F. Guseman, Jr., Fixed point theorems for mappings with contractive iterate at a point, Proc. Amer. Math. Soc. 26 (1970), 615-618.

3. R. D. Holmes, On fixed and periodic points under certain sets of mappings, Canad. Math. Bull. 12 (1969), 813-822.

4. A. P. Robertson and W. Robertson, *Topological vector spaces*, Cambridge Univ. Press, New York, 1964.

5. V. M. Sehgal, A fixed point theorem for mappings with a contractive iterate, Proc. Amer. Math. Soc. 23 (1969), 631-634.

6. K-K. Tan, Some fixed point theorems for non-expansive mappings in Hausdorff locally convex spaces, Ph.D. thesis, Univ. of British Columbia, Vancouver, B.C., Canada, 1970.

UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BRITISH COLUMBIA

UNIVERSITY OF WISCONSIN, MILWAUKEE, WISCONSIN

604