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THE KÔNIGSBERG BRIDGE PROBLEM 
FOR PEANO CONTINUA 

W. BULA, J. NIKIEL AND E. D. TYMCHATYN 

ABSTRACT. Peano continua which are images of the unit interval [0,1 ] or the circle 
S under a continuous and irreducible map are investigated. Necessary conditions for 
a space to be the irreducible image of [0,1] are given, and it is conjectured that these 
conditions are sufficient as well. Also, various results on irreducible images of [0,1] 
and S are given within some classes of regular curves. Some of them involve inverse 
limits of inverse sequences of Euler graphs with monotone bonding maps. 

1. Introduction. All spaces considered in this paper are metrizable and all map­
pings are continuous. A continuum is a compact and connected space. 

We shall say that a mapping/: X —• Y is irreducible iff is surjective (i.e.,f(X) = Y) 
and/(F) ^ Y for each proper closed subset F of X (see e.g. [2]; in some papers the 
mappings with the above property were called strongly irreducible, while irreducibility 
meant that no proper subcontinuum of X is mapped onto Y by the given map). 

We are going to investigate Hausdorff spaces which are irreducible images of the 
closed unit interval [0,1] and the circle S. Of course, each such space is a metrizable 
locally connected continuum (that is an obvious consequence of the easier part of the 
well-known Hahn-Mazurkiewicz theorem) but the converse fails, as the example of the 
simple triod shows. 

Let Irr denote the class of all (Hausdorff) spaces which are irreducible images of 
[0,1], and let Irr0 be the class of all spaces which are irreducible images of the circle 
S. Obviously, Irr0 C Irr. The problem to characterize the class Irr was posed in [12]. 
In this section we shall recall three results closely related to that problem. Also, we put 
here most of the définitions and preliminary properties. In Section 2 we shall get some 
necessary conditions for a Peano continuum X to belong to Irr or Irr0. They are expressed 
in terms of monotone decompositions of X onto cyclicly completely regular continua. 
And we conjecture that those conditions are also sufficient. Section 3 contains various 
results concerning the members of Irr among regular continua. Some of results proved 
there involve inverse sequences of Euler graphs with monotone bonding surjections. 
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By a graph we shall mean a continuum which is a 1-dimensional polyhedron. Unless 
otherwise stated, a vertex of a graph is a point of order ^ 2 in that graph. The following 
result due to Leonard Euler can be found in each textbook on graph theory. 

THEOREM A. Let Xbea graph. Then X E Irr if and only ifX has at most two vertices 
of odd order, and X E Irr0 if and only if all the vertices ofX have even orders. 

We also recall here that graphs which belong to Irr0 are called Euler graphs, and that 
each graph has an even number of vertices of odd order. By irr-graphs we shall mean 
graphs that belong to Irr. 

Let X be a locally connected continuum and Y C X. Y is said to be a cyclic element of 
X if Y is connected and maximal with respect to the property that no point disconnects 
it, see e.g. [8] or [15]. It follows that each cyclic element of X is a locally connected 
continuum itself, and two different cyclic elements have at most one point in common. 
Also, a non-degenerate subset Z of X is a cyclic element of X if and only if it is maximal 
with respect to the property that every pair of points of Z is contained in a copy of S in Z. 

Let X be a non-degenerate continuum. We shall say that X is 
- regular if it has a basis *B of open sets such that bd(U) is finite for each U E $; 
- totally regular if, for each countable set C C X, there exists a basis (Be of open 

sets such that CD bd(U) = 0 and bd(tf) is finite for all U E # c ; 
- completely regular if each non-degenerate subcontinuum of X has a non-empty 

interior in X\ 
- cyclicly completely regular if X is locally connected and each non-degenerate 

cyclic element of X is a completely regular continuum; 
- a dendrite if for every x ^ y E X there is z E X which separates x from y in X\ 

equivalently, if X is locally connected and each cyclic element of X is degenerate. 
All of these classes of continua were considered with respect to various properties 

in many old and newer papers (see e.g. [4], [15], [8] or [10]). They also admit nice 
generalizations in the class of compact connected Hausdorff spaces (see [11]). One easily 
gets the following inclusions between those classes (see e.g. [4]): 

- each graph is a completely regular continuum; 
- each completely regular continuum is cyclicly completely regular; 
- each dendrite is a cyclicly completely regular continuum; 
- each cyclicly completely regular continuum is totally regular; 
- each totally regular continuum is regular. 

None of the inclusions above can be reversed (for example [4, Figure 5 on p. 238] 
represents a totally regular continuum which is not cyclicly completely regular). It can 
be also shown that a locally connected continuum is totally regular (resp. regular) if and 
only if each of its cyclic elements is totally regular (resp. regular). 

Now, let X be a locally connected continuum. A point x of X is said to be a local 
separating point of X if there is a connected open subset U of X such that U — {x} is 
not connected. We shall denote by N(X) the set of all x E X such that x is not a local 
separating point of X. 
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A subset J of X is a free arc in X if J is homeomorphic to ]0,1 [ and J is an open set 
in X. By local connectedness of X, | bd(7)| < 2 for each free arc J. Let A C X. We shall 
say that A is a T-set in X if A is closed and |bd(X)| = 2 for each component ^ of X — A. 
And A is said to be a strong T-set in X if it is a T-set and each component of X — A is a 
free arc in X. 

We shall say that a collection jF of subsets of X is a null-family if for each e > 0 the 
subcollection {F E 7 : diamF > e} is finite. By compactness of X, the latter notion 
does not depend on the choice of a particular metrization of X. 

Recall that a (continuous) mapping/: X —> Y is monotone if f~l(y) is connected for 
each y E Y. 

Harrold proved the following general result in 1940 (see also [5] for somewhat related 
considerations). 

THEOREM B [3]. Let X be a locally connected continuum. If the set of all non-local 
separating points is dense in X, i.e., ifc\(N(X)) = X, then X E Irr0. 

In [3], it was claimed that X E Irr but the argument given there establishes the stronger 
inclusion X E Irr0 as well. Harrold's proof of Theorem B is rather simple. He uses the 
facts that locally connected continua are locally arcwise connected and are continuous 
images of [0,1] to prove that, for a given countable dense subset P of N(X), the collection 
J of continuous surjections/: [0,1] —» X with the properties that [/*_1(Jt)| = 1 f° r e a c h 
x E P and/ - 1 (P) is dense in [0,1] constitutes a dense G^-set in the completely metrizable 
space of all continuous surjections [0,1] —• X. Clearly, each/ G J is irreducible and the 
argument remains valid when [0,1] is replaced by S. 

While there are many Peano continua which do not belong to Irr, it is interesting to 
see the following theorem proved by Ward in 1977. 

THEOREM C [ 14]. Each locally connected continuum is an irreducible image of some 
dendrite. 

2. Peano continua in general. We start by proving the following basic result: 

THEOREM 1. If X E Irr (resp. X E Irr0J, A is a proper closed subset ofX and Q is 
the decomposition ofX into components of A and points, then the quotient space Xj g 
belongs to Irr (resp. to Irr0J. 

More precisely, let T be one of [0,1] and S and let g:X —• Xj g denote the quotient 
map. Iff: T —> X is an irreducible map, then there exist a monotone surjection m:T ^T 
and an irreducible map h:T —> Xj g such that g of = ho m. 

PROOF. Since the decomposition of A into its components is upper semi-continuous, 
Q is an upper semi-continuous decomposition of X. Therefore, Y — Xj g is a Hausdorff 
space, whence it is a locally connected (metric) continuum. Let g:X —» Y denote the 
quotient map. Let / be an irreducible map of T E {[0,1], S} onto X. 

Let ^denote the decomposition of T into components of (gof)~l(y), y E Y. SinceA ^ 
X, J ^ {T}. Also, the members of J are closed intervals (most of them degenerate). 
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Hence J is an upper semi-continuous decomposition of T and the quotient space / = 
T/ (j is homeomorphic to T. Let m\T -^ I denote the quotient map. Then there is an 
unique h:I —> Y such that g of = h o m. Obviously, h is surjective and continuous 
(because if C is a closed subset of Y then h~l(Q = m(f~l (g~l(C)) ) is closed in /; it is 
easy to see that ho m constitutes the monotone-light factorization of g of: T —> F, see 
e.g. [151). We shall prove that h is irreducible. 

Suppose that His a proper closed subset of /such that h(H) = Y. Let U be a component 
of the open set I — H. 

First, consider the case when m~x(U) C f~l(A). Since m~l(U) is connected, 
f(m~x (£/)) is contained in a component K of A. Therefore, U consists of a single point. 
This contradicts the fact that U is open in /. 

Now, suppose that the set V' = m~](U) —f~l(A) is non-empty. Clearly, V' is open in 
T. Let V be a component of V. Then V = m~x (m(Vfj and m\y\ V —• m(V) is one-to-one. 
Also,/"1 (A)CT-V and m(V) Cl-H. Since h(H) = Y, it follows that/(7 - V) = X. 
Thus/ is not irreducible, a contradiction. 

Now, let X be a locally connected continuum. Let Qx be the decomposition of X into 
components of the set cl(yV(X)) and points. Also, let Yx denote the quotient space Xj ^ 
and let gx'-X —• Yx be the quotient map. Clearly, Yx is a locally connected continuum 
and gx is a monotone surjection. 

The following Lemma 1 is a part of [4, (5.1)]. 

LEMMA 1. A continuum X is cyclicly completely regular if and only if Y — N(X) 
contains a non-degenerate continuum, for each non-degenerate subcontinuum Y ofX. 

THEOREM 2. Let X be a locally connected continuum. If Yx is non-degenerate then 
(a) Yx is a cyclicly completely regular continuum; and 
(b) ifX E Irr then Yx E Irr, and ifX 6 Irr0 then Yx E Irr0. 

PROOF, (b) follows from Theorem 1. To prove (a) observe that the set N(YX) of all 
non-local separating points of Yx is contained in the O-dimensional set gx(Nt(X)y By 
Lemma 1, Yx is cyclicly completely regular. 

In the next section some results on cyclicly completely regular continua which belong 
to Irr will be given. We conjecture that the converse of Theorem 2(b) is true, i.e., the 
following problem has a positive solution: 

PROBLEM 1. Let X be a locally connected continuum such that Yx E Irr or Yx E Irr0. 
Does it follow that X E Irr or X E Irr0? 

EXAMPLE 1. One can not claim that if/: X —• F is a monotone surjection and X E In-
then Y E Irr again (compare with Theorem 1 ; see also Theorem 6, below). In fact, let X be 
any one of the following spaces: the square [0, l]2 , the Sierpifiski universal plane curve 
(see e.g. [8]), or the Janiszewski universal dendrite (see e.g. [8]). Then X — cl(yV(X)) 
and so X E IrrG. Observe that X admits a monotone retraction onto the triod (= the only 
acyclic graph with 4 vertices). 

The following auxiliary fact was proved in a more general setting in [9, (3.2)]. 
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LEMMA 2. If A is a T-set in a locally connected continuum X, then {K : K is a 
component ofX — A} is a null-family. 

THEOREM 3. Suppose that X is a Peano continuum and Z is a strong T-set in X such 
that c\(X — Z) = X.IfZisa Peano continuum too, then X E Irr0. 

Observe that Yx is the Hawaiian earring (i.e., the wedge of a countable null-family of 
circles), and so Yx E Irr0. 

PROOF. Let d be a metric on X such that all open balls of X are connected and all 
open balls in d restricted to Z are connected too (e.g. d can be a simple extension to X 
of the Mazurkiewicz metric on Z, see [15]). For each positive integer n, let An be a finite 
subset of Z which is 2~n-dense in Z. 

By Lemma 2, the collection jFof all components of X—Zis a null-family. In particular, 
7 is at most countable. Since \J 7 = X — Z is dense in X, 7 is infinite. Let 7 = 
U ^ i 7n be a representation of 7 as the union of finite pairwise disjoint subcollections 
% such that diamF < 2~n for each F E %, n = 2 ,3 , . . . . Also, let 7 = U£Li % 
be a representation of J as the union of pairwise disjoint collections JQ such that Z C 
cl(U %i) f° r e a c r i w-

FIGURE 1 

We are going to need the following fact (see Figure 1). 
(*) If Fu...,Fk E 7, zu • • • ,zi € Z and % C 7 is such that Z C clflj X), then 

there exists g: S —• X such that 
(1) g: S —• g(S) is irreducible, 
(2) g~l(Z) is O-dimensional, 
( 3 ) F i U - - - U F i k U { z i , . . . , z / } C g ( S ) C F i U - - - U F i k U Z U U ^ a n d 
(4) diam g(S) < 2 diam(Fx U • • • U Fk U {z\,..., Z/}). 

The desired map g can be obtained as the limit of a uniformly convergent sequence 
(gn)^=\ of mappings S —y X such that 

(i) gn: S —+ g(S) is irreducible, 
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(ii) dimnK < £ for each component K of gn *(Z), 
(iii) F 1 U - - - U F i f e U { z i , . . . , z / } c ^ ( S ) C F , U - - - U F i k U Z U U ^ a n d 
(iv) diamgn(S) < 2 diam(Fi U • • • U Fk U {zx,..., z/}). 
Observe that ZU |J ^C is a locally connected continuum and intersections of ZU U ^C 

with d-balls of X are connected again. These observations make it possible to get a simple 
construction of (gn)^\ as required. The details are left to the reader. 

Now, let Si,£2, • • • De copies of S. We are going to find mappings fn:Sn —* X and 
mn: Sn+\ —• Sn such that 

(a) U ( ^ U - - - U ^ ) U A 1 U - - - U A B C / „ ( 5 I I ) ; 
(b) fn:Sn -+fn(Sn) is irreducible; 
(c) f~l(Z) is 0-dimensional; 
(d) X —fn(Sn) contains Z in its closure; 
(e) mn is a monotone surjection; 
(f) if s G Sn and m~l (s) = {t} then fn(s) = fn+l (r); 
(g) if s G Sn and m~l (s) is a non-degenerate arc with end-points t and /', then/rt+i (t) = 

fn+\(t')=fn(s);<md 
(h) if n > 1 and s e Sn then diam/n+i (m~l(s)) < 2~n+2. 
Weget / 1 asgof(*) ,where{F 1 , . . . ,F ,}= fl, {Zl,... ,Z/} = A! and ^C = %• 
Suppose that/n is already given for some n. Let G be either a member of %+\ or a 

point of An+X. Let xG € Zfl/n(5„) be such that d(xG, G) < 2~n and let ^G € / n
- 1

 (JCG). 

Define a mapping mn:Sn+\ —• Sn to be such that the only possibly non-degenerate 
point preimages are arcs I?I~1(SG), where G is as above. For t E Sn+\ — \Jm~l(sG), let 
fn+\Q) = fn(mn(tj). Also, by (*), it is easy to find mappings/n+i|m-i^c) from the arcs 
fn~l(sG) into X such that all the conditions (a)-(h) are satisfied. 

Since all the maps mn are monotone, T = l iminv^, mn) is a copy of S. Let 7rn: T —• Sn 

denote the natural projections. Observe that if -zr"1^) is non-degenerate for some n and 
s E S ,̂ then n~l(s) is an arc with end-points t and f7 such that/^(7^(0) = /ki^kit')) for 
each k > n. 

Define /zn: 7 —• X by /zrt(0 =/n(7rn(0). By (h), the sequence (K)^ uniformly con­
verges to some mapping h: T —» X. By (a), /z is surjective. It is not difficult to prove that, 
by (c), h~l(Z) is 0-dimensional. By (b), it follows that h is irreducible. Thus, X G Irr0. 

In contrast with Theorem 3, the following particular versions of Problem 1 show how 
much topology interferes with combinatorics in investigations of the class Irr. 

PROBLEM 2. Does Theorem 3 remain true if the hypothesis that Z is a Peano contin­
uum is replaced by the hypothesis that Z is merely a continuum? 

PROBLEM 3. Let X be a Peano continuum and Z a strong T-set in X such that 
cl(X — Z) = X. Suppose that Z is homeomorphic to the product of a continuum Zf and 
the Cantor set. Does then Yx G Irr or Yx G Irr0 imply that X G Irr or X G Irr0? 

EXAMPLE 2. Let X be a Peano continuum and Z a nowhere dense subcontinuum of 
X. Suppose that bd(X) consists of a single point ax and cl(/T) G Irr0 for each component 
KofX-Z. ThenXGlrr0. 
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Indeed, let A = {CIK : ̂ i s a component of X—Z}. Then A is dense in X. Let r.X—*Z 
be defined by r{z) = z for z E Z and r(x) = a# if x E ^ for some component of X — Z. 
Then r is a monotone retraction. In particular, Z is a locally connected continuum. By the 
well-known Hahn-Mazurkiewicz theorem, there exists a continuous surjection/: S—+Z. 
Since A is dense in Z, it is possible to modify/ and get a continuous surjection g: S —• Z 
such that g is not constant on an open subset of S and g~l (A) is dense in S. There exists 
a dense subset B = {bK : K is a component of X — Z} of S such that #(&#) = aK for 
each ^ . Let T be another copy of S and m: 7 —» 5 be a continuous monotone map such 
that m_1(.s) is non-degenerate if and only if s — b^ for some K. Since c\{K) E Irr0 for 
each component K of X — Z, there exists an irreducible mapping h:T —> X such that 
g om = roh. Therefore, X E Irr0. 

In particular, one can add a null-family of simple closed curves (or copies of the uni­
versal dendrite, etc.) to a given Peano continuum Z and get a continuum X E Irr0, see 
Figure 2. 

FIGURE 2 

Thus addition of cyclic elements can produce a continuum which belongs to Irr or 
Irr0. 

PROBLEM 4. Relate the properties of cyclic elements and A-sets (see [15]) of a Peano 
(or regular, or cyclicly regular) continuum X to the property X E Irr or X E Irr0. 

3. Various classes of regular continua. 

LEMMA 3 (SEE [6] OR [7]). A continuum X is completely regular if and only if there 
exists a O-dimensional subset ofX which is a strong T-set in X. 

THEOREM 4. IfX is a completely regular continuum and X E Irr, then there exists an 
inverse sequence (Xn, hn) of irr-graphs Xn with monotone bonding surjections hn: Xn+\ —• 
Xn such that X = liminv(Xn, hn). If moreover, X E Irr0 then one may assume that each 
Xn is an Euler graph. 

PROOF. The sequence (Xn, hn) is exactly the one which was constructed in the proof 
of [10, Theorem 3.8] (see also [10, Remark 3.10 (i)] for some additional properties). 
Namely, by Lemma 3, there exists a strong T-set A in X such that A is O-dimensional. Let 
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{K\, K2,...} be an enumeration of all components of X — A (by Lemma 2 and metriz-
ability of X, that collection is countable). 

For each positive integer n let % denote the family of all components of the set Yn = 
X — (K\ U • • • U Kn). Since Yn is compact and locally connected, % is finite. Let Qn be 
the decomposition of X into points and members of %. Let Xn denote the quotient space, 
Xn = Xjgn, and let/n: X —• Xn be the quotient map. Note that each Xn is a graph, each 
fn is a monotone surjection, and %+\ refines % for each n. Then, for each n, we have a 
(unique and monotone) mapping hn:Xn+\ —> Zn such that/„ = An o/n+1. It follows that X 
is homeomorphic to \immv(Xn,hn) (see [10] for more details). By Theorem 1, Xn G In­
for each n, and if X G Irr0 then Xn G Irr0 for each n. 

EXAMPLE 3. Theorem 4 does not generalize to wider classes of continua. 
(a) In Theorem 4 it is not enough to assume that X is cyclicly completely regular. 

Indeed, let X denote the Janiszewski universal dendrite. By Theorem B, X G Irr0. How­
ever, if (Xn, hn) is an inverse sequence of graphs Xn with monotone bonding surjections 
hn such that X is homeomorphic to liminv(X„, hn\ then each Xn is an acyclic graph and 
there is no such that X^ is not homeomorphic to [0,1]. It follows that Xno+/ $ Irr for 
i = 0 , l , . . . . 

(b) Let G be a graph with G $ Irr (e.g. a triod, see Figure 2). Let X be a Peano contin­
uum such that G G X,X = c\(X — G) and each component K of X — G is a copy of ]0,1 [ 
with I bd(AT)| = 1. By Example 2, X G Irr0. Note that X is cyclicly completely regular 
and N(X) is finite (whence Yx = X). Observe that there is no inverse sequence (Xn, hn) 
of Euler graphs Xn with monotone bonding surjections hn such that X is homeomorphic 
to liminv(Xn,/zn). 

(c) A continuum given in [4, Figure 5, p. 238] is totally regular, cyclic and not com­
pletely regular. It can be easily factorized as the inverse limit of an inverse sequence of 
Euler graphs with monotone bonding surjections. By Theorem 5, below, that continuum 
belongs to the class Irr0. 

(d) Figure 3, below, illustrates a continuum X such that 
(1) X is totally regular and cyclic, 
(2) X G Irr, and 
(3) X does not factorize as the inverse limit of an inverse sequence of irr-graphs with 

monotone bonding surjections. 
Concerning the considerations above, recall that a continuum which is the inverse 

limit of an inverse sequence of graphs with monotone bonding surjections must be totally 
regular, [10, (3.7)]. Conversely, each totally regular continuum is homeomorphic to the 
inverse limit of an inverse sequence of graphs with monotone bonding surjections, [1]. 

We shall need the following lemma concerning graphs. 

LEMMA 4. Let X and Y be graphs andf: X —» Y be a monotone surjection. If y G Y 
is a vertex of odd order, then there is a vertex x of odd order in X such thatf(x) = y. 

PROOF. Since/ is monotone, the set/_ 1(j) has a closed connected neighbourhood 
U in X such that 
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(a) each component of U —f 1(y) is homeomorphic to [0,1[, and 
(b) f\u\ U —•/(£/) is monotone. 

FIGURE 3 

Since U is a subcontinuum of a graph X, it is a graph itself. Let A = {K : K is 
a component of £/ — f~l(y)}. Then cl(X) is an arc from CIK to bfc, where CIK € K and 
{/?^} = bd(/0 C / - 1 (y) . By (b),f(U) is an |J3L|-odd with the central point 3; and the 
end-points f(ajc), K E SI. Also, there is a one-to-one and onto correspondence between 
A and the family of all components off(U) — {y}, which is given by K \—>f(K), K E Si. 

Note that/(L0 is a closed neighbourhood of y in Y. Hence, \ft\ coincides with the 
order of y in Y. Therefore, \R\ is an odd number. 

Let S and T denote the sets of all vertices of the graphs X and U, respectively. Observe 
that T = {aK : K E Sl}u(f~l(y)DSy and the orders of z in X and in U coincide for each 
z E f~x (y)DS. Since {aK : K E &} are vertices of order 1 in U and \{aK : K E A}\ = \A\ 
is an odd number, there is at least one more vertex x of U such that the order of x in U is 
odd. Then x Ef~l(y) D 5, and so the order of x in X is odd and/(x) = y. 

The following fact follows immediately from Lemma 4 (another proof can be obtained 
from Theorem 1). 

COROLLARY 1. A monotone image of an Euler graph (resp. an irr-graph) is again 
an Euler graph (resp. an irr-graph). 

LEMMA 5. Let (Xn9fn) and (Yn,gn) be inverse sequences of compact spaces with 
surjective bonding maps. Also, let hn:Xn —• Yn be a sequence of mappings such that 
hn o/„ = gnohn+\for each n. If all the maps hn are irreducible, then the induced mapping 
h: liminv(X„,/n) —• liminv(yn,^n) is irreducible. 

PROOF. Let X = liminv(Xn,/n) and Y = liminv(yn,gn). Also, let </>n:X —• Xn and 
V>n: Y —• Yn denote the natural projections. Since/„, gn and hn are surjective for all n, it 

https://doi.org/10.4153/CJM-1994-066-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-066-2


1184 W. BULA, J. NIKIEL AND E. D. TYMCHATYN 

follows that hn, <f)n and \j)n are also surjections. Since h is induced by hn, n = 1,2,..., 
the equality t/>n o h = hn o </>n holds for each n. 

Suppose that there is a proper closed subset F of X such that h(F) = Y. Then X — F 
is a non-empty open set, whence there exist an index m such that </>n(F) ^ Xn. Since 
hn is irreducible, hn o <j>n{F) is a proper subset of Yn. On the other hand, hn o <j)n(F) = 
\j)n o /Ï(F) = t/;n(y) = yn, a contradiction. 

LEMMA 6. Le£ 7 6 {[0,1], S}. Suppose thatg: T —>Xis an irreducible mapping and 
that A C B are proper closed subsets ofX. Let ÇA and ÇB denote the decompositions 
ofX into points and components of A and B, respectively. Let h^X —• XA = Xj gA 

and hB'.X —• XB = X/ gB denote the corresponding quotient spaces and maps. Also, let 
H\XA —• XB denote the unique map such that h o h A = hs- Then there exist irreducible 
mappings gA'T —• XA and gB'-T —• XB, and monotone mappings m A, ms and m ofT onto 
itself such that the following diagram commutes 

T <— T 

S-
T 

XA 

XB ^ X 

h \hA 

hB 

PROOF. The second part of Theorem 1 provides the following: 
(a) an irreducible map gA'T —• XA and a monotone surjection m A'. T —> T such that 

hAog = gAomA,and 
(b) an irreducible map gB'- T —• XB and a monotone surjection mB:T —> T such that 

hB°g = gB°rnB. 
Then there is the unique m:T —> T such that mo m A = ms. Since ms is monotone, m is 
monotone too. 

THEOREM 5. If(Xn, hn) is an inverse sequence of irr-graphs Xn with monotone bond­
ing surjections hn andX = liminv(Zn, hn), then X G Irr. If all Xn 's are Euler graphs then 
X e Irr0. 

PROOF. For all positive integers n and / let h„+l = hn o • • • o hn+i-}:Xn+i —> Xn. 
Then each h"+l is a monotone surjection. We may assume that for all n and / only finitely 
many point preimages (h"+l)~l (x\ x 6 Xn, are non-degenerate. Hence, each h"+l may be 
considered as the quotient map Xn+i —+ Xn = Xn+i/ g, where Ç is a decomposition of 
Xn+i into points and components of some proper closed subset. This allows applications 
of Theorem 1. 

If there is some Xn which contains points an and bn of odd order then, by Lemma 4, Xn+i 
contains points an+i and bn+t of odd order such that h„+l(an+i) = an and h"+l(bn+i) = bn, 
for / = 1,2, Hence, it suffices to consider the following two cases: 
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CASE 1. All the vertices of Xn are of even order for n = 1,2,...; and 

CASE 2. Each Xn contains exactly two vertices of odd order. 
We are going to consider Case 1 only. In Case 2 considerations are quite analogous 

provided the attention is restricted to irreducible maps/: [0,1] —• Xn such that/(0) = an 

and/(l) = bn for all n. 
Suppose that all X„'s are Euler graphs. We may assume that all considered irreducible 

mappings S —• X„, n = 1,2,..., are piecewise linear, i.e., for each k, the short subarc 
2kir • 2(fc+l)ir • 

from ea* to e <*« is mapped linearly onto an edge of Xw, where an denotes the number 
of edges of Xn and S is the unit circle of complex numbers (of course, we may assume 
that the set of vertices of each Xn is non-void, i.e., Xn it is not a copy of S itself). Clearly, 
for each n, there are only finitely many piecewise linear irreducible maps S —• Xn. 

Let/rt: S —> Xn be an irreducible map for each n. 
Since h\ : Xn —• X\ can be treated as g of Theorem 1, we get a monotone surjection 

mn
x\S —• S and an irreducible map/„i : S —• X\ such that h\ ofn = fn\ omï[. Clearly, fn\ may 

be assumed to be piecewise linear. Thus, a collection {fn\ : n = 1,2,...} of piecewise 
linear irreducible maps S —• X\ is obtained. Therefore, there exist an irreducible and 
piecewise linear map g\\S —• Xi and an infinite set Â i of integers > 2 such that gi =fn\ 
for all n E N\. 

Let i\ denote the first element of N\. By Theorem 1, for each n E N\ — {/i}, we 
get a monotone surjection m^'.S —• S and an irreducible map fnil : S —• X/, such that 
hn

ix ofn =fnjl owij. Thus, a collection |/mi : «6 iVi -{ i i}} of piece wise linear irreducible 
maps S —• X/j is obtained. Again, at least one member of that collection appears infinitely 
many often, i.e., there are an irreducible and piecewise linear map gix : S —> X^ and an 
infinite setA^ C N\ — {i\} such that/mi = gix for all n E N2. 

Let h denote the first element of N^ and proceed by induction. 
The inductive construction above gives an increasing sequenceN = {1, *i, 12,. • •} of 

integers, and irreducible maps gy. S —• X7 and monotone surjections mJ'.S —> S such that, 
by Lemma 6, M o gn = gj o mrt for all nj G Â  with n >j. 

Note that m" = m!l• o m" for all nj,i 6 Â  with n > j > i. Thus, (S,m!-,N) is an 
inverse sequence of copies of S with monotone bonding maps. Therefore, its inverse 
limit Z = liminv(5, m", N) is homeomorphic to S. 

Of course, (Xn, h", N) is an inverse sequence the inverse limit of which is homeomor­
phic to X. We may assume that liminv(Xn, h^N) = X. By Lemma 5, since hJogn = gjomj 
and all the maps gj are irreducible, the induced map g: Z —• X is irreducible. Since Z is 
a copy of 5, X € Irr0. 

COROLLARY 2. A completely regular continuum X belongs to Irr ( resp. to Irr0 ) if and 
only ifX is homeomorphic to liminv(Xn, hn), where all Xn 's are irr-graphs (resp. Euler 
graphs) and allfn 's are monotone surjections. 

EXAMPLE 4. Let C denote the Cantor ternary set constructed in the usual manner in 
[0,1] and let A be the two-point discrete space. Let Q be the decomposition of [0,1] x A 
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into the sets {c} xA,c E C, and points. Let K = [0,1] x A/ g denote the quotient space, 
see Figure 4. 

r\ _ £ ^ 

FIGURE 4 

Clearly, # is a completely regular continuum which is a cyclic chain. Let a denote 
an end-point of AT. Note that each non-degenerate cyclic element of AT is a simple closed 
curve and non-degenerate cyclic elements of K are pairwise disjoint. Let J denote the 
decomposition of AT into its non-degenerate cyclic elements and points. Then ^Fis upper 
semi-continuous and the quotient space Kj j is an arc. Let k denote the quotient map 
k:K —>Kjj. 

Let B be the three-point discrete space and let Zdenote the quotient space KxB/{ayxBt 

see Figure 5. Then Z is a completely regular continuum and Z € Irr0. The mapping k of 
K can be used to construct a monotone surjection of Z onto a triod. 

3 
FIGURE 5 

Exploring somewhat more, one can easily represent Z as the inverse limit of an inverse 
sequence (Zn,hn) of graphs Zn with monotone bonding surjections hn such that Zn £ In­
for n = 1,2, On the other hand recall that, by Theorem 4, there is another inverse 
limit representation of Z = liminv(Z^, hf

n), where all the graphs Z'n are Euler. 
Recall that if X is a regular continuum, then there exists a monotone mapping m: Z —• 

X of some completely regular continuum Z onto X (see [13, Remark on p. 232]). Further­
more, trivially, a monotone image of a regular continuum must be a regular continuum 
again. 

THEOREM 6. Suppose that X is a regular continuum. Then there exists a monotone 
mapping m:Y —• X of some completely regular continuum Y onto X such that Y G IrrG. 

PROOF. We sketch the basic ideas of the construction of Y as required. The details 
are left to the reader. 
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As remarked above, by a result of [13], there is a monotone map m\Z —• X of a 
completely regular continuum Z onto X. By Lemma 3, there is a O-dimensional set A in 
Z which is a strong T-set. 

Let K denote again the continuum constructed in Example 4. Let Y be the (unique) 
space formed from Z by replacing cl(7) by a copy of K, for all components JofZ — A. 
Then y is a completely regular continuum which admits a monotone map onto X. Observe 
that Y E Irr0. 
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