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ON PRODUCTS OF CONDITIONAL EXPECTATION OPERATORS 

BY 

RADU ZAHAROPOL 

ABSTRACT. Let (X, Z, /z) be a probability space, let J\, fa, • • •, !Fk be 
k er-subalgebras of X, and let p e R be such that 1 < p < +oo. Let 
Pi :LP(X, X, p,) —> LP(X, Z, p) be the conditional expectation operator cor
responding to Ji for every / = 1,2,..., k, and set T = P\ . . . P^. Our goal 
in the note is to give a new and simpler proof of the fact that for every 
/ 6 LP(X,I,,p), the sequence (Tnf)ne^ converges in the norm topology 
of LP(X,I,, p), and that its limit is the conditional expectation off with 
respect to fx D J 2 H . . . Pi ?k. 

1. Introduction. Let (X,Z, //) be a probability space, let p G R be such that 
1 < p < +oo, and let P,: Z/(X, £, /x) —• Z/(X, Z, /x) , i = 1,2,..., k be ifc conditional 
expectation operators. Let ft be the a-subalgebra of S which defines P; for every 
/ = 1,2,...,*. Set T = PlP2...Pk. 

In [5] Halperin proved that if /? = 2, then for every/ G L2(X,Z,/x), the sequence 
(Tnf)neN converges in the norm topology of L2(X, Z, //) to the conditional expectation 
of/ with respect to J\ Pi ̂ 2 H . . . Pi ̂ . Our purpose in the present note is to give a 
simpler exposition of Halperin's proof, applicable for all p. The case k = 2 has been 
known for a long time (see [5]), and has been extended to a more general situation by 
Akcoglu and Sucheston [1]. Extensions and applications of Halperin's result can be 
found in the papers of Amemiya and Ando [3], Hildebrandt [6], [7], and Hildebrandt 
and Schmidt [8]. 

As expected, the question whether or not (Tnf)neN converges a.e. is more difficult. 
If k — 2, and p — 2, then Burkholder and Chow [4] proved that (Tnf)nE^ converges 
a.e. for every/ G L2(X, Z, /x). Using a beautiful construction of Rota [11] or a delicate 
argument of Stein [12], it follows that if k = 2, and p > 1, then (Tnf)ne^ converges 
a.e. for every/ G LP(X,Z,/x). To everyone's Ornstein [10] was able to construct an 
example proving that it is not true, in general, that if k = 2, then (Tnf)neH converges 
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a.e. for every/ G Z/(X,Z,/i). If k ^ 3, it is still an open problem whether or not 
(Tnf)neM converges a.e. for every/ G Z/(X,Z,/z), 1 <p < +oo. 

2. Preliminaries. The following lemma has been obtained independently by 
Zbâganu [14] and by Akcoglu and Sucheston [2]. 

LEMMA 1. Let (X, Z, /i) /?£ « probability space, let p G R &e swc/i t̂ftf 1 < /? < +oo, 
to y°: LP(X, Z, //) —> LP(X, Z, /i) £e a conditional expectation operator, and let (fn)neN 
be a sequence of elements of LP'(X, Z, /x) swc/z £/ztftf ||/w|| = 1 /or ^very /? G N. If 

lim ||P/n|| = 1, rte* lim ||/„ - / % | | = 0. 
n —+ +oo « —-+ +oo 

Let (X, Z, /x) be a probability space, let p G R be such that 1 < /? < +oo, and let 
5 be a contraction of LP(X, Z, /x). 

Set Mn = (l/n) Y^IZo S* for every « E N . 
The Banach space Z/(X, Z, /i) is reflexive. Hence, by the mean ergodic theorem 

(see Chap. 2 of Krengel's book [9]), the sequence (Mnf)ne^ is convergent in the norm 
topology of LP(X,Z, p) for every/ G If(X,Z, /x). 

The next lemma has been noticed independently by Wittmann [13]. We state it 
here in Wittmann's formulation (our form is slightly weaker). 

LEMMA 2. Assume that for every f G LPÇX, Z, p), one has that lim \\Sn+lf-Snf\\ = 
n—>+oo 

0. Then, for every f G LP(X,Z, /i), ^ sequence (Snf)neM converges in the norm 
topology of LP(X, IL, p), and lim Snf = lim M„/\ 

« —> +00 /i —-> +oo 

PROOF. Le t / G Z/(X,Z,/x), and set g = lim M r t/, the limit being taken in the 
n—->+oo 

norm topology of Z/(X, Z, /i). 
Let e > 0. Obviously, there exists m G N such that HM^/ — g|| < e/2. 
It is easy to see that for every n G N, Sn~~l — Mn = (/ — S)Rn for some linear 

bounded operator Rn. 
It follows that 

lim \\Sn(Sm-l-Mm)f\\= lim \\Sn(I - S)Rmf\\ = 0. 
n—*+oo n—y+oo 

Accordingly, there exists l G N such that for every n G N , n ^ t 
\\S»(Sm~l -Mm)f\\<e/2. 

Set «€ = m + £. 
Since Sg = g, we obtain that for every n^ ne 

\\Snf-g\\^\\S"f-S"-m+lMmf\\ 

+ | |S" - m + 1 M m / -g | | 

= \\S"-m+\Sm-l-Mm)f\\ 

+ \\S"-m+,(Mmf - g)\\ <e/2 + e/2 = e. 

We have therefore proved that for every e > 0 there exists ne G N such that for 
every n ^ ne one has that \\Snf - g\\ < e. Q.E.D. 
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REMARK. Lemma 2 can be stated in a much more general form; that is, the space 
Z/(X,X,//) can be replaced by any reflexive Banach space. 

3. The convergence of the iterates of a product of conditional expectation 
operators. Let (X, X, p) be a probability space, let p G R be such that 1 < p < 

+oo, and let P\,P2,...,Pk'Lp(XJH,p,) —• Z/(X,Z,/i) be k conditional expectation 

operators. Set T = P1P2 • • Pk-

LEMMA 3. For every f G LP(X, Z, p), one has that lim \\(Tn+l - Tn)f\\ = 0. 
« — • + 0 0 

PROOF. Le t / G LPQL, Z, p). Obviously, we may assume that lim | |rn/ | | ^ 0. 
n—n-oo 

S e t a = lim \\Tnf\\. 
n—>+oo 

It follows that ||:r+1/"|| ^ llP/Pi+i. ..PkT
nf\\ £ \\Tnf\\ for every n G N U {0}, and 

/ = 1,2,... , &. 
Accordingly, lim ||/>//>

/-+i... PkTnf\\ — a for every / = 1,2,..., k. 
n—++oo 

Using Lemma 1, we obtain that 

k-\ 

iim ||r+1/-r/||^y) lim ||p^+1...p*r/ 

-PMPi+2...PkT
nf\\ 

+ lim \\PkT
nf-Tnf\\=0. 

n—++oo 

Q.E.D. 

Let fi be the a-subalgebra of Z which defines Pi for every / = 1,2,..., &. 

THEOREM 4. For every f G LP(X,Z,//), f/ie sequence (Tnf)ne^ converges in the 

norm topology of Z/(X,Z,/x) to the conditional expectation of f with respect to 

finf2n...nfk. 

PROOF. Using Lemma 3 and Lemma 2, we obtain that for every/ G LP(X, Z, //), the 
sequence (Tnf)ne^ converges in the norm topology of LP(X1 Z, //), and that lim Tnf = 

n—>+oo 

lim (l/n)^T'f. 
n—^+00 

Set g = lim Tnf. 
Notice that g is measurable with respect to Jx n ^2 H. . . Pi %. Clearly, we may and 

do assume that g ^ 0. Taking into consideration that ||7V,+1/|| ^ \\PiPi+\. ..PkTnf\\ ^ 
| |rw/1| for every / = 1,2,..., &, and every « G N U {0}, it follows (using Lemma 1) 
that g=Pkg= Pk-xPkg = •-• = PXP2 -~Pkg\ hence, g = Pxg = P2g = • • • = Pkg. 

To complete the proof of the theorem, it is enough to prove that for every 
A G 7\ PI... PI %, one has that JA fdp — JA gdp. 
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To this end, let A G J\ n f 2 n . . . D Jk. Then, 

[gdn= [I lim (l/^TrAdfi 

= lim /[(l/#t)Vr/]rf/i 

= /jw/i. 
./A 

Q.E.D. 
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