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ABSTRACT 
The contradictions of TRIZ are now widespread and recognized as an effective inventive design tool. 
They make it possible to find solution concepts to problems that cannot be solved by optimization 
approaches. However, many contradictions could be formulated and it could be difficult to choose the 
priority one. The authors propose here two methods to formulate the contradictions and identify the 
priority contradiction: an experimental approach on the one hand, and a multiphysics approach on the 
other hand. This analysis, illustrated through an example of 3D printing of parts, shows that these two 
approaches are similar in terms of result, and indeed make it possible to formulate contradictions taking 
into account all the complexity of a system. 
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1 INTRODUCTION  

Einstein is reported to have said that if he had one hour to solve a problem, he will take 55 minutes 

just formulating it. Indeed, clarifying a problem could be seen as, at least as important, if not more, 

than solving it (Dewey, 1939, Simon, 1973). And then, formulating the problem that has to be solved, 

different ways to solve it can be considered.  Optimizing a system means searching for the best values 

for the different parameters of a system, in regard of the specs. In the contrary, inventing a new system 

means modifying the considered system, by the addition of new parameter, or by modifying the nature 

of the relationships between the parameters. When starting the design process, it is not possible to 

know a priori if the specs could be satisfied by optimization approaches, then in (Dubois et al., 2015), 

a method to make a continuum between both approaches has been proposed, based on TRIZ methods 

as inventive ones. This means that the problem, if not solved by optimization approaches will be 

formulated as a contradiction. But many contradictions could be formulated (Lin et al., 2014), and the 

question remains about the choice of the priority contradiction to consider.  

Several approaches exist to point out this priority contradiction, either based on the weight of design 

parameters on the satisfaction or not of the specs (Rousselot et al., 2012), but this weight is generally 

based on human experts' opinion; or based on a root cause analysis to highlight the origin of the 

problem (Souchkov, 2010). But these approaches are quite cartesian, analysing a linear chain of 

causes, and thus are not able to consider the complexity of a system, and all the inter-relationships 

between all the design parameters.  

In this article, the authors aim at exploring two ways to formulate and choose the priority 

contradiction, an experimental approach based on Design on Experiments, and a more formal one, 

based on the formulation of multiphysics equations. The objective is to present these two approaches 

as they tackle both systems in their whole, and then to compare them, in order to help in choosing 

which one is the more relevant. 

The first part of the article will present the pattern of System of Contradictions and of its 

generalization. Then the second part will be dedicated to describe Design of Experiments and one of 

the tool for relationships characterization, the Main Effects Plot. Then, an example will be described, 

related to the realization of 3D-printing parts and aiming at maximizing its mechanical properties and 

minimizing the printing time. The two proposed approaches to identify the priority System of 

Contradictions will be illustrated and compared. Then some conclusions and perspectives will be 

presented. 

2 SYSTEM OF CONTRADICTIONS 

2.1 Classical TRIZ system of contradictions 

In TRIZ, one of the main pattern to model the problems is the one of contradictions. In border of what is 

called classical TRIZ (TRIZ as has been defined by G. Altshuller), three models of contradictions have 

been defined: administrative, technical and physical contradictions (Altshuller, 1984). The administrative 

contradiction is only the recognition that no solution is known to satisfy the objectives of the considered 

problem. The two other ones (technical and physical) propose tools to solve the formulated 

contradiction. Whereas the technical contradiction points out the non-compatibility of two Evaluation 

Parameters (EP), specs of the problem, the physical contradiction elicits one specific design parameter 

(called Action Parameter, AP) that must be in two different states in order to satisfy the contradictory 

Evaluation Parameters. The link between these two models of contradictions has been clarified in 

(Khomenko et al., 2007), as illustrated in figure 1, in a so-called System of Contradictions (SoC).  

This link is important as it enables the clarification of the reason why some configurations of a system 

better satisfy the specs. Indeed, it elicits the influence of an Action Parameter on the Evaluation ones. 

So, it is a way to better point out means to act on the problematic situation if aiming at satisfying the 

two EPs implied in the SoC. 

2.2 Generalized system of contradictions 

In (Dubois et al., 2009) the authors presented the generalization of this SoC, to satisfy the equivalence 

of the existence of a problem and of a formal contradiction. Indeed, with the previously presented 

SoC, a solution of the Technical Contradiction (based only on two EPs) can exist whereas no solution 
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is known if considering all the specs, based on more than two EPs. This Generalized System of 

Contradictions (GSC, as illustrated on figure 1) also highlights more explicitly the link between the 

APs and the EPs, as any configuration of a system could be represented as a state of APs considered in 

a Generalized Physical Contradiction. In (Chibane et al., 2021) the authors also illustrated how this 

model of GSC enable to automatically extract contradictions out of table of influences.  

 

Figure 1. Classical TRIZ and Generalized System of Contradictions 

These Systems of Contradictions then clarify the means to act on a system when trying to satisfy 

different contradictory specs. The benefits of the generalized model has been clarifies in (Lin et al., 

2013) but also the fact that a huge number of GSC could be formulated for a given problem. Thus the 

question of the priority problem to consider arises. In this article the question of this priority GSC will 

be considered as identifying the GSC that implies the maximum number of EPs, and the most 

influential AP. 

3 DESIGN OF EXPERIMENTS ANALYSIS 

3.1 Design of experiments 

Experimental modelling first appeared between 1920 and 1930 thanks to the research work of the 

pioneer of statistics, Mr. Ronald A. Fisher. He demonstrated that flaws in the way the experiment that 

generated the data was performed often hampered analysis of the systems data. 

Fisher systematically introduced statistical thinking and principles into designing experimental 

investigations, including the factorial design concept and the analysis of variance. His two books 

(Fisher, 1958, Fisher, 1966) had profound influence on the use of statistics, particularly in agricultural 

and related life sciences.  

Fischer's work has been analyzed and expanded by George Edward Pelham Box (Box, 1978). A 

second important phase of experimental modeling begins with the introduction of the "response 

surface methodology" (RSM) to the industrial world by Box and Wilson (Box and Wilson, 1951). 

In recent years, RSM and other experimental modeling techniques have spread in industry mainly in 

research work of Box and more recent in (Box and Draper, 2007, Box et al., 2005). 

In parallel with the development of these statistical analysis methods, studies have been carried out to 

better organize the experiments and to optimize the number of experiments according to the desired 

results and the work on optimal design of experiments (DOE) began. 

Design of Experiments (DoE) is a powerful data analysis tool that allows the understanding and study 

of different complex processes, the use of a DoE also makes it possible to reduce the number of 

experiments necessary for understanding the process.  (Kiefer, 1961) proposed a formal approach to 

selecting a design based on specific objective optimality criteria. The work of Genichi Taguchi and 

Wu (1979), Kackar (1985), and Taguchi (1986) have a significant impact on the development of 

DOEs. Taguchi suggested highly fractionated factorial designs and other orthogonal arrays along with 

some novel statistical methods to solve these problems. 

DOEs are a powerful tool for analyzing the influence of process variables on specified properties. 

Appropriate data can be analyzed by statistical methods such as RSM and multiple linear regression 

analysis. The experimental data can be fitted using a second-order polynomial response surface model 

as expressed in Equation (1). 

Y = β0 +  ∑ βiXi +N
i=1 ∑ βiiXi

2 + ∑ βijXiXj + ωN
i≠j

N
i=1          (1) 

Action Parameter
Set of Action Parameters

Value 1
State 1

Value 2
State 2

J Evaluation Parameter 1
J Set of Evaluation Parameters 1

J Evaluation Parameter 2
J Set of Evaluation Parameters 2

L Evaluation Parameter 1
L Set of Evaluation Parameters 1

J Evaluation Parameter 2
J Set of Evaluation Parameters 2

Classical TRIZ System of Contradictions
Generalized System of Contradictions
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Where Y is the predicted response, the parameter β0 is the model constant, βi is the linear coefficient, 

βii is the quadratic coefficient and βij is the cross-product coefficient. Xi and Xj (i<j) are the 

independent variables that are known for each experimental run. ω is the experimental error term.  

3.2 Main effects plot  

An important tool in the analysis of experimental designs is the main effects plot, this is a plot of the 

mean response values at each level of a design parameter or process variable. One can use this plot to 

compare the relative strength of the effects of various factors. The sign and magnitude of a main effect 

would tell us the sign of a main effect, that is, whether the average response value increases or 

decreases. The magnitude tells us of the strength of the effect. If the effect of a design or process 

parameter is positive, it implies that the average response is higher at a high level rather than a low 

level of the parameter setting. In contrast, if the effect is negative, it means that the average response 

at the low-level setting of the parameter is more than at the high level 

Figure 2 illustrates the main effect of the filling rate and number of fiber layers on the printing time 

for a 3D printing process. One can see from the figure, that the printing time increases when the 

filling rate setting varies from low to high (i.e. 50  to 100), and the same for the number of fiber 

layers. 

 

Figure 2. Main effect plots example 

The effect of a process or action parameter can be mathematically calculated using the following 

simple equation 2: 

𝐸𝑓 = �̅�(+1) − �̅�(−1)   (2) 

where �̅�(+1) is the average response at high-level setting of a factor, and �̅�(−1) is the average response 

at low-level setting of a factor. 

An interactions plot is a powerful graphical tool which plots the mean response of two factors at all 

possible combinations of their settings. If the lines are parallel, this indicates that there is an 

interaction between the factors. Non-parallel lines are an indication of the presence of interaction 

between the factors. 

4 IDENTIFYING THE PRIORITY GSC 

The example that will be taken to illustrate how a link can be done to make a continuum between 

optimization analysis and inventive problem resolution will be based on analysing the benefits of fiber 

reinforcement parameters on the final mechanical properties and printing time of FDM 3D printed 

samples. The piece to produce is made of Onyx (a nylon material reinforced with chopped carbon) 

defined by a specified shape and volume (as illustrated on figure 3). Four kind of CFT have been 

considered: carbon, Kevlar, glass, and HSHT glass. 
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Figure 3. Piece of Onyx to be analyzed 

The objective here is to illustrate how the link between Action Parameters and Evaluation ones can 

be elicited and thus lead to the formulation of GSCs. A second task is to help in identifying the 

priority GSC, that has to be considered for resolution. Two approaches will be considered and 

compared: an experimental one based on Design of Experiments, and a multiphysics one. 

4.1 Design of experiments and main effects plot analysis 

Design of experiments (DOE) enables to investigate relationships between inputs and observed 

outputs. In the presented case a full factorial design has been realized in order to define how many 

experiments were necessary for the 3 inputs - infill density (ID), continuous fiber type (CFT) and 

number of fiber layer - and the 6 outputs - Young’s modulus (E), ultimate tensile strength (σ), 

elongation (A), weight (ω) and printing time (PT). The chosen values for the input are detailed in 

Table 1. 

Table 1. Values of inputs for the design of experiments 

Infill density (ID) Continuous fiber type (CFT) number of fiber layer (NFL) 

50% Carbon 0 

100% Kevlar 2 

 Glass 4 

 HSHT glass  

 

A set of 24 experiments have been conducted, and the result is illustrated on table 2.  
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Table 2. results of the DoE, with the satisfying values in green 

 

One can easily recognize, in Table 2, that no ideal solution was found (satisfying the best value for 

each of the Evaluation Parameter), then the question to find a concept enabling to overcome the Pareto 

frontier was tackled, by considering the GSC representing the limits of the system. To do so the 

consideration of the main effect plots analysis was conducted. 

The Main effect plots analysis has been conducted to identify the way each A.P. influences the E.P.s. 

The effect on Elongation is illustrated on figure 4. As the objective is to maximize this elongation, one 

can easily recognize that the filling rate has to be maximize whereas the number of fiber layers has to 

be minimized, and the type of fiber seems to have little influence on this E.P.. 

 

Figure 4. Main effect plots for Elongation 

Exp. N° filling rate (%)Nb Fiber LayersFiber Type Printing time [min]Weight [g] Elongation [A%] Youngs modulus [GPa]Tensile strength [MPa]

1 50 0 No Fiber 17 1,22 3,85 1,42 31

2 50 0 No Fiber 17 1,22 3,90 1,26 26

3 50 0 No Fiber 17 1,22 3,80 1,60 37

4 50 2 Carbon 17 1,46 0,75 2,73 69

5 50 2 Kevlar 19 1,37 0,94 1,50 10

6 50 2 HSHT Fiberglass 20 1,38 1,50 1,57 63

7 50 4 Carbon 17 1,48 0,75 4,08 111

8 50 4 Kevlar 20 1,4 0,99 2,27 80

9 50 4 HSHT Fiberglass 21 1,43 1,60 2,05 98

10 100 0 No Fiber 19 1,52 8,00 1,25 43

11 100 0 No Fiber 19 1,52 8,00 1,28 42

12 100 0 No Fiber 19 1,52 8,00 1,33 43

13 100 2 Carbon 17 1,52 0,72 2,73 14

14 100 2 Kevlar 20 1,52 1,00 1,83 41

15 100 2 HSHT Fiberglass 21 1,53 1,60 1,98 77

16 100 4 Carbon 18 1,54 0,73 4,24 114

17 100 4 Kevlar 21 1,52 0,99 2,32 17

18 100 4 HSHT Fiberglass 22 1,56 1,50 2,08 94

19 50 0 No Fiber 17 1,22 3,85 1,43 31

20 50 2 Fiberglass 19 1,38 1,50 1,35 20

21 50 4 Fiberglass 20 1,43 1,40 2,07 88

22 100 0 No Fiber 19 1,52 8,00 1,28 42

23 100 2 Fiberglass 20 1,53 1,40 1,37 32

24 100 4 Fiberglass 21 1,56 1,60 1,96 96

Action Parameters Evaluation Parameters
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On table 3, all the identified influences, out of the main effects plots have been summarized. A blank 

cell in the table means that no real influence of the A.P. can be recognized. 

Table 3. Results of the main effects plots analysis 

 

The table 3 highlights that one System of Contradictions could be interesting to consider, the one 

based on the number of fiber layers, as illustrated on figure 5. The choice of this GSC relies on the fact 

that this GSC implies all the EPs, and moreover that the Number of fiber layers is the most influential 

Action Parameter. 

 

Figure 5. GSC extracted from the main effect plots analysis 

4.2 Multiphysics analysis to extract the priority GSC 

An alternative approach has been considered, to compare the results in regard of trying to avoid the 

realization of experiments. To do such multiphysics analysis, it has been necessary to identify first, the 

mean to act on the formulated set of Evaluation Parameters, then to search for the equations governing 

the behavior of the identified parameters. 

For example, if trying to model the multiphysics equation for the printing time (tpart), it will imply the 

consideration of the volume of the piece (vpart), of the volume of the printed fiber (vfiber) and also the 

flow rates of the polymer (Qpoly) and of the fiber (Qfiber), as presented in equation 3: 

𝑡𝑝𝑎𝑟𝑡 =
(𝑣𝑝𝑎𝑟𝑡− 𝑣𝑓𝑖𝑏𝑒𝑟)∗𝐼𝐷

100∗𝑄𝑝𝑜𝑙𝑦
+

 𝑣𝑓𝑖𝑏𝑒𝑟

𝑄𝑓𝑖𝑏𝑒𝑟
      (3) 

Based on the elicitation of the multiphysics equations, a set of intermediary parameters has thus been 

identified, as have been characterized the influences between all the parameters. This enabled to build, 

as has been detailed for qualitative data in TFC21, a network of parameters, which is presented on 

figure 6. 

Number fiber layers

0

4

L (Young Modulus).(Tensile Strenght)=0

J (Elongation).(Printing Time).(Weight)=1

J (Young Modulus).(Tensile Strenght)=1

L (Elongation).(Printing Time).(Weight)=0

Desired Result

Printing time [min] Weight [g] Elongation [A%]  Youngs modulus [GPa] Tensile strength [MPa]

filling rate (%) - - +
Nb Fiber Layers - - - + +
Fiber Type Carbon Kevlar Carbon Kevlar

- A.P. has to decrease to satisfy E.P.

+ A.P. has to increase to satisfy E.P.

Carbon Specify the fiber type to satisfy E.P.

Evaluation Parameters

Act
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n P
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et
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s
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Figure 6. Network of parameters for the multiphysics analysis 

This Network of Parameters also highlights the most influential Action Parameter as being the number 

of fiber layers, the same conclusion than with the Main Effects Plot analysis. 

4.3 Comparative analysis 

The two proposed approaches, based on experimentations and on multiphysics modeling lead to the 

same priority Generalized System of Contradictions. This is quite reassuring, as it shows that both 

approaches are coherent, even more can be complementary. Then the question arise of which approach 

is the more relevant when facing a new problem? As both seem to highlight the same priority 

contradiction, the choice can be made in regard of available resources. In regard of the cost of the 

required experiments on one hand, and on the easiness to build the multiphysics model on the other 

hand, one can choose the approach that is the more convenient in accordance with these specific 

conditions. 

5 CONCLUSION AND FUTURE WORK 

The objective of this article was to compare two different ways to formalize the priority problem to 

consider when facing inventive design. The authors aimed at clarifying the importance of the influence 

relationships between the parameters modelling a system, and how the characterization of the weight 

of these influences can help in choosing the priority problem. The proposed approaches are based on 

the use of TRIZ contradictions patterns to formulate the problems. The interest of these patterns is that 

they enable an efficient search of concept solution, once the problem is clearly formulated. 

In this article the two proposed approaches differ by the way these influence relationships are 

highlighted, either through an experimental approach and the analyse of the Main Effects Plot, either 

through the definition of multiphysics models.  

The results show that both proposals aim to similar results, which could be obvious if considering the 

way DoE have been defined, but which tackled questions as it was clear that the list of Action 

Parameters considered in the definition of the DoE was not exhaustive, and the example showed 

indeed that intermediary parameters have been considered. The benefits of the graphical 

representations of the Network of Parameters have been illustrated in (Dubois et al., 2021), based on 

the collect of data from experts' interviews, and thus for much more Action Parameters.  

The fact that the choice between experimentations or multiphysics modelling relies only on the 

availability of knowledge for modelization, or on the cost of experimentations, tend to prove that the 

formulation of GSC and the choice of the priority one, based on any kind of influence table, could be 

performed.  

In this article, both qualitative and quantitative parameters have been considered, this situation was 

quite easy to manage here, as the impact of the nature of the fiber was quite clear, but this point could 

lead to difficulties to manage situations in another context. Then the authors will consider now how to 

treat influence relationships for qualitative parameters.  
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