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Abstract
Using totally symmetric sets, Chudnovsky–Kordek–Li–Partin gave a superexponential lower bound on the cardi-
nality of non-abelian finite quotients of the braid group. In this paper, we develop new techniques using multiple
totally symmetric sets to count elements in non-abelian finite quotients of the braid group. Using these techniques,
we improve the lower bound found by Chudnovsky et al. We exhibit totally symmetric sets in the virtual and welded
braid groups and use our new techniques to find superexponential bounds for the finite quotients of the virtual and
welded braid groups.

1. Introduction

The braid group, Bn, is a versatile mathematical object which plays an important role in both topology
and algebra. In this paper, we focus on the size of the finite quotients of the braid group. Many useful
applications of the braid group rely on facts about finite quotients of the braid group. For example, the
structure of Jones representations of the braid group are understood due to the fact that Bn modulo the
relation σ 2

i = 1 is a finite group (the symmetric group, �n) [13]. Another example is the use of braid
group representations in models of topological quantum computing. To have a universal quantum gate
set, it is important to know the size and structure of the image of the braid group representation [11].

A guiding theory which motivates the work found in this paper is profinite rigidity, or the idea of
distinguishing groups by their finite quotients. More specifically, one would like to understand the
circumstances which allow finitely generated residually finite groups to have isomorphic profinite com-
pletions. If a residually finite group G is isomorphic to its profinite completion, we say that the group G
is profinitely rigid. In the context of braid groups and their generalizations, these groups are all residu-
ally finite, and the theory of profinite rigidity asks whether we can determine these groups by knowing
only what their finite quotients are. One step for studying whether a group G is profinitely rigid is to
determine which finite groups appear as finite quotients of the group G. The work done in this paper is a
step toward solving which subgroups appear as finite quotients of the braid group and its generalizations
as we are providing a lower bound on the size of the non-cyclic finite quotients. For more of an overview
of recent work and progress on profinite rigidity, see [21].

To study finite quotients of the braid group, we consider homomorphisms φ : Bn → G, where G is a
finite group. If G is a cyclic group, then the quotient of Bn will be a cyclic group. A homomorphism is
called cyclic (resp. abelian) if its image is a cyclic group (resp. an abelian group). One main focus of
this paper is to understand the non-cyclic quotients of Bn. Work by Chudnovsky–Kordek–Li–Partin [8],
and more recently by Caplinger–Kordek [7], proves a lower bound for the size of non-cyclic quotients
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of Bn. In this paper, we provide an improved lower bound for the size of non-cyclic quotients of Bn by a
factor of n to the result of Caplinger–Kordek, as found in Theorem 1.1.

Theorem 1.1. Let n ≥ 5, and let φ : Bn → G be a non-cyclic homomorphism to a finite group, G, so that
φ(Bn) is not isomorphic to the symmetric group, �n. Then,

|φ(Bn)| ≥
(⌊

n − 1

2

⌋
+ 1

) (
3� n

2 �−1
) ⌊n

2

⌋
!.

Moreover, if p is the smallest integer so that φ(σi)p = φ(σj)p for any i, j, then

|φ(Bn)| ≥
(
(lpf(p) − 1)

⌊
n − 1

2

⌋
+ 1

) (
3� n

2 �−1
) ⌊n

2

⌋
!,

where lpf(p) is the least integer greater than 1 that divides p.

A secondary motivation for Theorem 1.1 is the following conjecture.
Theorem 1.1, and the results by Chudnovsky–Kordek–Li–Partin and Caplinger–Kordek, attempt to

rule out smaller possible non-cyclic quotients of Bn. When n = 5, 6, and 7, Caplinger–Kordek used the
classification of finite groups to conclude that a non-cyclic quotient of Bn has size at least n! [7]. Since
Theorem 1.1 gives a lower bound on the size of the image of a non-cyclic homomorphism for n ≥ 5, it
gives the tightest known lower bound for the size of a finite non-cyclic quotient of Bn for n ≥ 8.

Theorem 1.1 shows that the existence of a non-cyclic homomorphism φ : Bn → G requires the group
G to be quite large or complicated. To see this, recall that all finite groups embed in a large enough
symmetric group, �k, which implies that we can consider the target group G in Theorem 1.1 to be �k.
When n ≥ 6, and k< n, homomorphisms Bn →�k must be cyclic [1]. Therefore, if the group G embeds
into a small enough symmetric group, the image of φ is cyclic. However, less is known when k ≥ n. One
step to understand the case where k ≥ n was provided by Lin who showed that for 6< n< k< 2n, all
transitive homomorphisms Bn →�k are cyclic [20]. Since there exist cyclic maps Bn →�k with k> n,
one could ask which other types of non-cyclic homomorphisms can exist.

We prove Theorem 1.1 using totally symmetric sets inside Bn. A totally symmetric set is a commuta-
tive set that satisfies a highly symmetric conjugation relation. The theory of totally symmetric sets was
first introduced by Kordek and Margalit when studying homomorphisms of the commutator subgroup
of Bn [19]. More recently, totally symmetric sets were used by Caplinger–Kordek [7] and Chudnovsky–
Kordek–Li–Partin [8] when studying finite quotients of the braid group. Totally, symmetric sets are
useful for counting arguments since the image of a totally symmetric set S under a homomorphism
φ has size |φ(S)| = |S| or |φ(S)| = 1. In this paper, our approach is novel in the sense that we create
counting arguments using multiple totally symmetric sets at once.

There is a topological generalization of knot theory in S3 to knot theory in a thickened surface of
higher genus, known as virtual knot theory. Virtual knot theory was introduced by Louis H. Kauffman
in the 1990s [17, 18]. From this perspective, Bn can be generalized to the virtual braid group, vBn,
where every virtual knot is ambient isotopic to the closure of a virtual braid [15]. One way to think
of vBn is as an extension of Bn by the symmetric group �n, where the added permutations are the vir-
tual crossings. The welded braid group, wBn, is an infinite quotient of vBn and was first described by
Fenn–Rimányi–Rourke in [10]. Similar to the pure braid group, the virtual and welded braid groups have
“pure” subgroups, denoted PvBn and PwBn, respectively, which fix the strands of the braids pointwise.
Inside both the virtual and welded braid groups, we find totally symmetric sets. One particularly useful
type of totally symmetric set in wBn is denoted by Ai in the theorems below; see Section 4.2.1. Using
the totally symmetric sets, Ai, we proved classification theorems on the size of finite images of homo-
morphisms for both the virtual and welded braid groups. First, we state the classification theorem for the
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welded braid group, wBn. We hope that this is the first step in classifying non-cyclic homomorphisms
wBn → G.

Theorem 1.2. Let n ≥ 5, and let φ : wBn → G be a group homomorphism to a finite group, G, so that
φ(wBn) is not isomorphic to the symmetric group, �n. One of the following must be true:

(1) φ is abelian.
(2) φ restricted to PwBn is cyclic.
(3) |φ(wBn)| ≥ 2n−2(n − 1)!
(4) For all i and j, φ maps each Ai to a single element with φ(Ai)2 �= φ(Aj)2, and

|φ(wBn)| ≥
(⌊

n − 1

2

⌋
+ 1

) (
3� n

2 �−1
) ⌊n

2

⌋
!.

For the case of the virtual braid group, Bellingeri and Paris classified all homomorphisms from vBn →
�k where n ≥ 5, k ≥ 2 and n ≥ k [4]. However, similar to the story for Bn, not much is known about non-
cyclic homomorphisms vBn →�k when k> n. Theorem 1.3 is a step in the right direction toward this
classification as it provides a necessary condition for the existence of a non-abelian homomorphism
vBn → G.

Theorem 1.3. Let n ≥ 5, and let φ : vBn → G be a group homomorphism to a finite group, G, so that
φ(vBn) is not isomorphic to the symmetric group, �n. One of the following must be true:

(1) φ is abelian.
(2) φ factors through wBn, and either

a. φ restricted to PwBn is cyclic.
b. |φ(vBn)| ≥ 2n−2(n − 1)!
c. For all i and j, φ does not split Ai, φ(Ai)2 �= φ(Aj)2, and

|φ(vBn)| ≥
(⌊

n − 1

2

⌋
+ 1

) (
3� n

2 �−1
) ⌊n

2

⌋
!.

(3) φ does not factor through wBn and

|φ(vBn)| ≥
(⌊

n − 1

2

⌋
+ 1

) (
3� n

2 �−1
) ⌊n

2

⌋
!.

Outline of the paper. Section 2 provides the background information about totally symmetric sets.
Section 3 applies these ideas to Bn and gives a proof of Theorem 1.1. Section 4 provides the back-
ground about the virtual and welded braid groups and introduces some totally symmetric sets inside of
these groups. Section 5 contains the proofs of Theorems 1.2 and 1.3.

2. Totally symmetric sets

Kordek and Margalit introduced the theory of totally symmetric sets to give a complete classification of
homomorphisms B′

n → B′
n for n ≥ 7, where B′

n is the commutator subgroup of Bn [19]. Totally symmetric
sets are useful because they behave predictably under homomorphisms and group closures, as will be
described in detail below.

Definition 2.1. A totally symmetric set of a group G is a nonempty finite subset {g1, . . . , gn} of G which
satisfies the following two relations:

(1) The elements gi pairwise commute (Commutativity Condition)
(2) For every permutation σ , there exists an element hσ ∈ G

so that for each i, hσgih−1
σ

= gσ (i) (Conjugation Condition)
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Remark. While in our context we consider only finite totally symmetric sets, we note that totally
symmetric sets need not be finite as seen in [19].

The conjugation condition states that each permutation of {g1, . . . , gn} can be achieved via the con-
jugation of an element in G. An important fact about totally symmetric sets is that if f : G → H is a
homomorphism and S is a totally symmetric set of G, then f (S) is a totally symmetric set of H.

A standard example of a group which contains totally symmetric sets is the braid group [19].
We begin by defining the braid group.

Definition 2.2. The braid group on n strands, Bn, is the group generated by the half-twists σ1, . . . , σn−1

with the following two relations:

(1) σiσj = σjσi if |i − j| ≥ 2 (Far Commutativity)
(2) σiσi+1σi = σi+1σiσi+1 if 1 ≤ i ≤ n − 2 (Braid Relation)

In Bn, the subsets Sodd = {σ2i−1}�n/2�
i=1 and Seven = {σ2i}�(n−1)/2�

i=1 are both totally symmetric sets [8, 19].

Remark. The braid group is equivalent to the mapping class group of an n-times punctured disk. As the
elements of Sodd (resp. Seven) have disjoint domains, we can apply the change-of-coordinates principle
to see that the conjugation condition holds for each of the two sets. See Section 1.3 of “A primer on
mapping class groups” for a detailed discussion [9].

2.1. The image of a totally symmetric set

The following lemma, due to Kordek and Margalit [19] (Lemma 2.1), is the crux of how totally
symmetric sets are used throughout this paper.

Lemma 2.3 (Kordek−Margalit). Let f : G → H be a group homomorphism. Suppose that S ⊆ G is a
totally symmetric set of size k. Then |f (S)| is equal to either 1 or k.

In this paper, we often consider whether |φ(S)| = |S| or not. We say that φ splits S if |φ(S)| = |S|.

Remark. By Lemma 2.3, if |S|> 1, then φ splits S if and only if |φ(S)|> 1.

Remark. The proof by Kordek and Margalit of Lemma 2.3 only makes use of the conjugation condition
from the definition of a totally symmetric set. Therefore, Lemma 2.3 holds for all sets which satisfy the
conjugation condition from the definition of a totally symmetric set. For a set that only satisfies the
conjugation condition, it makes sense to say whether φ splits the set or not.

2.2. Totally symmetric sets with finite order elements

Let S = {si}n
i=1 be a totally symmetric subset of a group G. Since all elements of S are conjugate, every

element of S has the same order. Therefore, if one element of S has finite order k ∈N, every element of
S has order k.

Remark. In fact, if there exists p so that sp
i = sp

j for any i, j, then sp
i = sp

j for all i, j. This follows imme-
diately from the conjugation condition in the definition of a totally symmetric set and is also true in
noncommutative sets which satisfy the conjugation condition.

Since the elements of a totally symmetric set commute, if a totally symmetric set consists of a finite
number of elements each of finite order, then 〈S〉 is a finite group. The following lemma gives a lower
bound of the size of this group. A first bound was obtained by Chen, Kordek, and Margalit (a proof

https://doi.org/10.1017/S0017089523000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000022


434 Nancy Scherich and Yvon Verberne

of which can be found in [8]), but we will use an improvement of this bound by Caplinger–Kordek [7]
(Lemma 6).

Lemma 2.4 (Caplinger−Kordek). Let S be a totally symmetric set of size k in a group, G. Suppose
further that each element of S has finite order and let p be the minimal integer such that sp

i = sp
j for all

si, sj ∈ S. Then, 〈S〉 is a finite group and |〈S〉| ≥ pk−1.

Combining Lemma 2.4 with work of Chudnovsky–Kordek–Li–Partin, one obtains a lower bound on
the size of a group based on the size of a totally symmetric subset consisting of finite order elements [8].

Proposition 2.5 (Chudnovsky–Kordek−Li−Partin, Caplinger−Kordek). Let S be a totally symmetric
set of size k in a group, G. If the elements of S have finite order and p is the minimal integer such that
sp

i = sp
j for all si, sj ∈ S, then |G| ≥ pk−1k!.

A restatement of Proposition 2.5 in terms of group homomorphisms is the following: let S be a totally
symmetric set of a group G and φ : G → H a group homomorphism to a finite group H. If φ splits S,
then |φ(G)| ≥ p|S|−1|S|!, where p is the minimal integer such that sp

i = sp
j for all si, sj ∈ S.

3. Applications to the braid group

In this section, we utilize totally symmetric sets to determine a necessary condition for the existence of
a non-cyclic homomorphism from the braid group into a finite group. We begin with an overview of
existing results and then we discuss how to strengthen previous results.

3.1. Precursory results

Recall the two totally symmetric sets in Bn of Sodd = {σ2i−1}�n/2�
i=1 and Seven = {σ2i}�(n−1)/2�

i=1 . Chudnovsky,
Kordek, Li, and Partin used these totally symmetric sets to determine a necessary condition for the exis-
tence of a non-cyclic homomorphism of the braid group [8]. Recently, Caplinger and Kordek obtained
a stronger necessary condition than the one found by Chudnovsky–Kordek–Li–Partin [7].

Lemma 3.1 (Caplinger−Kordek). Let G be a finite group and let n ≥ 5. If the homomorphism Bn → G
is non-cyclic, then,

|G| ≥ 3�n/2�−1 (�n/2�)!.
In Section 3.2, we strengthen the lower bound found in Lemma 3.1. Before we strengthen this lower

bound, we introduce the following well-known facts about the braid group, which can be found in [1].
This lemma provides sufficient conditions for when then image of a homomorphism of the braid group
is cyclic.

Lemma 3.2. For n ≥ 5, and let φ : Bn → G be a group homomorphism where G is any group. If there
exists i, i + 1 ≤ n − 1 so that φ(σi) commutes with φ(σi+1) then φ is cyclic.

Lemma 3.3. For n ≥ 5, if φ : Bn → G is a non-cyclic group homomorphism, then φ must split both Seven

and Sodd.

Proof. Since n ≥ 5, both Seven and Sodd have cardinality at least 2. Suppose that φ does not split Seven.
Then φ(σ2) = φ(σ4). Since σ4 commutes with σ1, then φ(σ2) commutes with φ(σ1). By Lemma 3.2, φ
must be cyclic, a contradiction.
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By a similar computation, if φ does not split Sodd, then φ(σ4) commutes with φ(σ3), ultimately forcing
φ to be cyclic.

Notice that both Lemmas 3.2 and 3.3 fail for n = 4 as there exists the folding homomorphism from
B4 → B3 which maps σ1, σ3 �→ σ1 and σ2 �→ σ2.

3.2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1, which provides a strengthened lower bound for the smallest
non-cyclic finite quotient of Bn.

We begin by following the proof of Chudnovsky–Kordek–Li–Partin, then further their ideas by
applying Lemma 3.2.

Theorem 1. Let n ≥ 5, and let φ : Bn → G be a non-cyclic homomorphism to a finite group, G, so that
φ(Bn) is not isomorphic to the symmetric group, �n. Then,

|φ(Bn)| ≥
(⌊

n − 1

2

⌋
+ 1

) (
3� n

2 �−1
) ⌊n

2

⌋
!.

Moreover, if p is the smallest integer so that φ(σi)p = φ(σj)p for any i, j, then

|φ(Bn)| ≥
(
(lpf(p) − 1)

⌊
n − 1

2

⌋
+ 1

) (
3� n

2 �−1
) ⌊n

2

⌋
!,

where lpf(p) is the least integer greater than 1 that divides p.

Proof of Theorem 1.1. Denote Oφ = φ(Sodd), Eφ = φ(Seven), si = φ(σi), k = �n/2�, B = φ(Bn), let d be
the order of the si’s and let p be the smallest integer so that φ(σi)p = φ(σj)p for any i, j.

Since we aim for a lower bound, we may assume that φ(Bn) is the smallest possible quotient not
isomorphic to �n. In this case, Caplinger and Kordek prove that p = d in Lemma 7 of [7]. If d = 1, then
φ is trivial (hence cyclic). If d = 2, φ factors through the symmetric group �n, and the image is either
�n or cyclic (since the alternating group is the only proper normal subgroup of �n for n ≥ 5).

Therefore, we may assume that d = p ≥ 3.
As φ is not cyclic and n ≥ 5, each si is distinct by Lemma 3.3. Thus, Oφ is a totally symmetric subset

of size k in B as the injective image of a totally symmetric subset of size k in Bn.
Notice that B acts by conjugation on the set of totally symmetric subsets of B of size k, and let

� = FixB(Oφ). This gives us a surjection ψ : �→�k, where �k is the symmetric group on k elements.
Under this action by B, Oφ fixes Oφ pointwise since the elements of a totally symmetric set pairwise

commute. This shows that 〈Oφ〉 ⊆ � and, in fact, 〈Oφ〉 ⊆ ker(ψ). By Lemma 2.4, we have that |〈Oφ〉| ≥
pk−1, and since p ≥ 3, |ker(ψ)| ≥ 3k−1. It follows that

|B| ≥ |�| = |�k| · |ker(ψ)| ≥ k!(|〈Oφ〉|) ≥ k!3k−1. (3.1)

We now begin improving the bound on |B|. Notice that Eφ = {s2i}�(n−1)/2�
i=1 is a second totally symmetric

set which consists of the images of the remaining generators of Bn. The elements in Eφ are currently not
accounted for in Equation 3.1. To include these elements in the bound of |B|, we consider when elements
of 〈Eφ〉 are not in �. The following observations lead us to find elements of 〈Eφ〉 that are not in �.
We then count distinct cosets of � in B.

Observation 1. Suppose there exists an m ∈ {1, . . . , p − 1} so that sm
i ∈ �, then sm

i ∈ kerψ .
By definition of �, sm

i acts on Oφ by conjugation, fixing Oφ setwise. By the relations of the braid
group, sm

i commutes with every element of Oφ except for si±1. Since Oφ is fixed setwise, then either
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conjugation by sm
i swaps the elements si+1 and si−1, or fixes the elements pointwise. Suppose first that

conjugation by sm
i swaps the elements si+1 and si−1, meaning sm

i si−1s−m
i = si+1. Then,

si+2(si+1)s
−1
i+2 = si+2

(
sm

i si−1s
−m
i

)
s−1

i+2 = sm
i si−1s

−m
i = si+1,

which shows that si+2 and si+1 commute. By Lemma 3.2, φ must be cyclic. If i is large enough so that
either i + 1> n − 1 or i + 2> n − 1, an analogous argument shows that si−2 and si−1 commute and that
φ is cyclic. In both cases, we have contradicted our assumption that φ is non-cyclic. Thus, conjugation
by sm

i does not swap the elements si+1 and si−1 but rather fixes these elements pointwise. Therefore, for
all i, conjugation by sm

i fixes every element of S pointwise. This implies that if sm
i ∈ �, then sm

i ∈ kerψ .

Observation 2. si �∈ � for i even.
Suppose that si ∈ �. Observation 1 implies that si ∈ kerψ and si commutes with every other sj.

Lemma 3.2 implies that φ is a cyclic map, a contradiction. Therefore, si �∈ �.

Observation 3. sm
i �∈ � for i even and m relatively prime to p.

Suppose that sm
i ∈ � for some m ≥ 2 and i even. By Observation 1, sm

i ∈ kerψ and commutes with
every element of Oφ and Eφ . Since sm

i commutes with every sj, this implies that sm
i is central in the image

of φ. If there exists an integer r so that (sm
i )r = si, then this implies si is also central in the image of φ,

which by Lemma 3.2, implies that φ is cyclic, a contradiction. Thus, for integers m that are relatively
prime to p = ord(si), the elements sm

i cannot be elements of kerψ and hence are not elements in �. For
the powers m that are not relatively prime to p, there is no contradiction, and it is possible for sm

i to be
in kerψ .

Observation 4. sm1
i � �= sm2

j � when i and j are even, m1 and m2 are relatively prime to p, and m1 − m2 is
relatively prime to p.

From Observation 3, sm1
i , sm2

j /∈ � for every i, j even and m1, m2 relatively prime to p. Suppose that
sm1

i � = sm2
j �. This implies that s−m1

i sm2
j ∈ �.

If i = j, then s−m1
i sm2

j ∈ � implies that sm2−m1
i ∈ �. Then, m2 − m1 is not relatively prime to p, a

contradiction.
If i< j, then sj commutes with si−1. Consider the action of s−m1

i sm2
j on si−1 by conjugation:

s−m2
j sm1

i si−1s
−m1
i sm2

j = sm1
i si−1s

−m1
i .

Since we supposed that s−m1
i sm2

j ∈ �, then conjugation by s−m1
i sm2

j fixes the set Oφ setwise. Therefore, the
above equation shows that sm1

i si−1s
−m1
i ∈ Oφ . The exponent m1 was chosen so that sm1

i �∈ �, which means
that Oφ is not closed under conjugation by sm1

i . As described in Observation 1, sm1
i si−1s

−m1
i is not an

element of Oφ when φ is non-cyclic, a contradiction. Hence, s−m1
i sm2

j �∈ �.

Observation 5. Counting the cosets of �.
Let lpf(p) be the least integer greater than 1 that divides p. Notice that the set {2, . . . , lpf(p) − 1,

lpf(p) + 1} is a set of lpf(p) − 1 integers which are each relatively prime to p, and pairwise their differ-
ences are relatively prime to p. Together with Observation 4, this shows that there are lpf(p) − 1 distinct
non-intersecting cosets of � for each si with i even. Since there are |Eφ| distinct elements si with i even,
we get (lpf(p) − 1)|Eφ| distinct cosets of �.

By counting the distinct cosets of �, we obtain a lower bound for the complement of � in the image
of φ:

|φ(Bn) − �| ≥ (lpf(p) − 1)|Eφ| · |�|
Combining all of these observations, we arrive at the following lower bound for |φ(Bn)|:

|φ(Bn)| ≥ |�| + ((lpf(p) − 1)|Eφ|)|�| = ((lpf(p) − 1)|Eφ| + 1) · |�|
≥ ((lpf(p) − 1)|Eφ| + 1)(|〈Oφ〉|)k!.
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Figure 1. A virtual knot in a thickened torus, a projection of this virtual knot, and a virtual braid whose
closure is the knot

By substituting the values of k, |〈Oφ〉|, and |Eφ|, we arrive at our final result:

|φ(Bn)| ≥
(
(lpf(p) − 1)

⌊
n − 1

2

⌋
+ 1

) (
3� n

2 �−1
) ⌊n

2

⌋
!.

For all even values of p, we have that lpf(p) − 1 = 1, which gives the minimal bound:

|φ(Bn)| ≥
(⌊

n − 1

2

⌋
+ 1

) (
3� n

2 �−1
) ⌊n

2

⌋
!.

4. Totally symmetric sets in the virtual and welded braid groups

In this section, we motivate and introduce two generalizations of the braid group, namely, the virtual
braid group and the welded braid group. For each group, we give examples of totally symmetric sets as
well as provide the important lemmas required to prove the main results, Theorems 1.2 and 1.3.

Classical knot theory is the study of embedded circles in S3 up to ambient isotopy and planar projec-
tions of these knots up to classical Reidemeister moves. Virtual knot theory is a natural generalization of
classical knot theory by instead studying embedded circles in thickened surfaces of higher genus, which
are called virtual knots.

Due to the higher genus, projections of these virtual knots have two types of crossings: classical
crossings coming from arcs crossing in the thickness of the surface, and virtual crossings arising from an
arc in a handle that pass over another arc of the knot, as shown in Figure 1. Virtual crossings are denoted
as a circled crossing, and a virtual knot diagram can have both classical and virtual crossings. Like the
classical setting, virtual knot diagrams are considered up to virtual Reidemeister moves, as described by
Kauffman [17, 18]. There are virtual analogs of Alexander’s theorem, first proved by Kamada [15], and
Markov’s theorem, proved by Kauffman–Lambropolou [16]. These theorems give rise to a rich study of
virtual braid groups, which we describe below.

4.1. The virtual braid group

Let vBn denote the virtual braid group on n strands. This group has generators σ1, . . . , σn−1 and
τ1, . . . , τn−1. The generators σ1, . . . , σn−1 satisfy the classical braid group relations, and the generators
τ1, . . . , τn−1 generate the symmetric group. There are also some mixing relations. We list all relations in
the virtual braid group, below:

(1) σiσj = σjσi for |i − j|> 1 (Far Commutativity)
(2) σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2 (Braid Relation)
(3) τ 2

i = 1 for 1 ≤ i ≤ n − 1 (τ is a Transposition)
(4) τiτj = τjτi for |i − j|> 1 (τ Far Commutativity)
(5) τiτi+1τi = τi+1τiτi+1 for 1 ≤ i ≤ n − 2 (τ Braid Relation)
(6) σiτj = τjσi for |i − j|> 1 (Mixed Far Commutativity)
(7) τi+1σiτi+1 = τiσi+1τi for 1 ≤ i ≤ n − 2 (Mixed Braid Relation)
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Figure 2. (a) The element σi,j when j< i. (b) The element σi,j when i< j

We note that these relations encode the virtual (or extended) Reidemeister moves. From this point of
view, vBn is the free product of the braid group and the symmetric group modulo relations (6) and (7),
vBn = Bn ∗�n (6),(7). This presentation is nice in the sense that you can “see” the braid group as a subgroup
of the virtual braid group. Bn embeds into vBn, as was first proven by Kamada [14]; see also Gaudreau
[12] and Bellingeri–Paris [4]. The canonical embeddings of Bn and �n in vBn are Bn = 〈σ1, · · · , σn−1〉
and �n = 〈τ1, · · · , τn−1〉.

Another presentation of vBn highlights a key difference between the virtual braids and the classical
braids. The pure virtual braid group, PvBn, is a subgroup of vBn which is the kernel of the projection
vBn →�n by sending σi �→ τi and τi �→ τi. Unlike the classical braid group, vBn splits as a semidirect
product, vBn

∼= PvBn ��n [3].
The subgroup PvBn is generated by elements denoted σi,j of the form:

σi,j = τiτi+1 . . . τj−2τj−1σj−1τj−2 . . . τi+1τi when i< j, and
σi,j = τi−1τi−2 . . . τj−2τj−1σjτjτj−1 . . . τi−1 when j< i.

These generators are depicted in Figure 2. A presentation for PvBn is generated by the σi,j, for i �= j
elements and the following two relations [3]:

Commutativity Relation: σi,jσk,l = σk,lσi,j where |{i, j, k, l}| = 4

Braid Relation: σi,jσi,kσj,k = σj,kσi,kσi,j where |{i, j, k}| = 3

4.1.1. Totally symmetric sets in the virtual braid group
Since Bn is a subgroup of vBn, the sets Sodd = {σ2i−1}�n/2�

i=1 and Seven = {σ2i}�n/2�
i=1 are also totally symmetric

subsets of vBn. Additionally, the sets Todd = {τ2i−1}�n/2�
i=1 and Teven = {τ2i}�n/2�

i=1 are totally symmetric subsets
of vBn. A fun way to see why Todd and Teven are totally symmetric is that they are the homomorphic image
of Seven and Sodd under the canonical projection map from Bn →�n.

The sets {τiσi}even and {τiσi}odd are totally symmetric sets in vBn. The sets are commutative by a com-
bination of relations (1), (5), and (7). The conjugation condition holds since you can swap τiσi with
τi+2σi+2 by conjugation under τi+1τi+2τiτi+1, which leaves all other elements of the set fixed.

4.2. The welded braid group

The welded braid group, wBn, is a quotient of vBn by the Over Crossings Commute relation, or
“OC” relation, defined as τiσi+1σi = σi+1σiτi+1 [5]. The welded braid group has also been called the
braid-permutation group by Fenn–Rimányi–Rourke [10], a finite-index subgroup of the ring group by
Brendle–Hatcher [6], and the loop braid group by Baez–Crans–Wise [2].

Recall from Section 4.1.1, a presentation for PvBn is generated by the elements denoted σi,j. These
elements also generate the pure welded braid group, PwBn. Analogous to the virtual braid group, wBn

is a semidirect product of the pure welded braid group and the symmetric group, wBn = PwBn ��n.
Through communication with Dror Bar-Natan, we learned the folklore result that the OC relation implies
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that σi,kσi,j = σi,jσi,k, and a proof of this fact can be found in [22]. It follows that PwBn is a quotient of
PvBn by the OC relation, and PwBn has the following presentation:

Generators: {σi,j} for 1 ≤ i, j ≤ n with i �= j

Commutativity Relation: σi,jσk,l = σk,lσi,j where |{i, j, k, l}| = 4

Braid Relation: σi,jσi,kσj,k = σj,kσi,kσi,j where |{i, j, k}| = 3

OC Relation: σi,kσi,j = σi,jσi,k

4.2.1. Totally symmetric sets in wBn

All of the totally symmetric sets in vBn are also totally symmetric in wBn. Due to the OC relation, wBn

has additional totally symmetric sets coming from subsets of the σi,j elements.
If i< j, we call σi,j a right generator and is shown in Figure 2(b). We denote the set of right generators

with fixed i as Ri = {σi,j}n
j>i. If i< j, we call σi,j a left generator and is shown in Figure 2(a). For a fixed

i, the set of left generators is denoted by Li = {σi,j}n
i>j. Let Ai = Li ∪ Ri be the set of all elements of the

form σi,j which have the same first index. The sets Ai, Ri, and Li are totally symmetric sets in wBn.

Lemma 4.1. For each integer 1 ≤ i ≤ n,

(1) Ai is a totally symmetric set in wBn of size n − 1.
(2) Ri is a totally symmetric set in wBn of size n − i.
(3) Li is a totally symmetric set in wBn of size i − 1.

Proof. Fix i. By definition, |Ri| = n − i, |Li| = i − 1, and |Ai| = |Ri| + |Li| = n − 1. Since Ri and Li are
subsets of Ai, it suffices to show that Ai is a totally symmetric set in wBn. The elements in Ai all have the
same first index i and commute by the OC relation.

From the semidirect product decomposition wBn = PwBn ��n, �n acts on PwBn by conjugation
which results in permutation of the indices. That is, for s ∈�n, sσi,js−1 = σs(i),s(j).

The OC relation is required for the sets Ri, Li, and Ai to satisfy the commutation condition. These
sets are not totally symmetric in vBn but do satisfy the conjugation condition in vBn.

4.2.2. Important lemmas
The classical braid group Bn and the symmetric group �n are subgroups of vBn, and also wBn, under
the canonical embeddings Bn = 〈σi〉n−1

i=1 ⊆ vBn and �n = 〈τi〉n−1
i=1 ⊆ vBn. This was proven by Kamada [15]

for the virtual case and Fenn–Rimányi–Rourke [10] for the welded case. The pure subgroup has the
canonical presentation PvBn = 〈σi,j〉i �=j ⊆ vBn, similarly for PwBn. From here on, the restriction of a map
on vBn (resp. wBn) to Bn, �n or PvBn (resp. PwBn) refers to the canonical embeddings of these groups.
Recall from the introduction that a map φ is called cyclic (resp. abelian), if its image is cyclic (resp.
abelian).

Lemma 4.2. If φ : vBn → G is a group homomorphism so that φ restricted to either�n or Bn is abelian,
then φ abelian.

Proof. Suppose that φ restricted to �n is abelian. The τ braid relation gives that φ(τi) = φ(τi+1) for
all i, and so φ is cyclic on �n. Denote φ(τi) = g. Applying φ to the mixed braid relation yields

φ(τi+1σiτi+1) = φ(τiσi+1τi)

gφ(σi)g = gφ(σi+t)g

φ(σi) = φ(σi+1)

This shows that φ restricted to Bn is also cyclic, and therefore φ is abelian.
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Figure 3. Schematic diagram for Lemma 4.3

Suppose that φ restricted to Bn is abelian. A similar argument using the braid relations shows that φ
is cyclic on Bn, and the mixed braid relation shows that φ is cyclic on �n.

Corollary. If φ : wBn → G is a group homomorphism so that φ restricted to either �n or Bn is abelian,
then φ is abelian.

Proof. Let p : vBn → wBn be the quotient map which sends a virtual braid to its equivalence class
modulo the the OC relation. Apply Lemma 4.2 to the map φ ◦ p.

The following lemma is a key step to proving Theorems 1.2 and 1.3. To use totally symmetric sets
to count the cardinality of the image of a homomorphism, the homomorphism needs to split a totally
symmetric set. This lemma shows that, under the right conditions, when some subset of the totally
symmetric sets {Ai}n

i=1 do not split under a map φ : wBn → G, the images of the Ai’s which do not
split create a new totally symmetric set in the image. A schematic diagram for Lemma 4.3 is shown in
Figure 3.

Lemma 4.3. Let {Ai1 , · · · , Aim} be a subset of {A1, · · · , An}, the totally symmetric sets in wBn. Let
φ : wBn → G be a non-abelian group homomorphism. Suppose φ does not split Aij for all ij, and each
φ(Aij )

2 is a distinct element in the image. Then the set {φ(Aij )
2}m

j=1 is a totally symmetric set in φ(wBn) of
size m.

Proof. We will prove this lemma for the case where {Ai1 , · · · Aim} = {A1, · · · , Am}, as all other cases
follow from an analogous proof with possible re-indexing.

Let gi = φ(Ai). We will show that the set {g2
i }m

i=1 is a totally symmetric set in φ(wBn) of size m.
By assumption, the g2

i ’s are distinct so the set {g2
i }m

i=1 has m elements. Notice that every element of
Ai is of the form σi,j, where the first index, i, remains fixed. Since φ does not split any of the totally
symmetric sets Ai, φ(σi,j) is determined by its first index i, that is, φ(σi,j) = gi.

For the commutation condition, applying φ to the braid relation in wBn shows

σi,jσi,kσj,k = σj,kσi,kσi,j

φ(σi,j)φ(σi,k)φ(σj,k) = φ(σj,k)φ(σi,k)φ(σi,j)

gigigj = gjgigi,

which shows that for each i and j, g2
i and gj commute. In turn, this implies that g2

i and g2
j commute.
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To show the conjugation condition holds, notice that if fgi f −1 = gj then fg2
i f −1 = g2

j . Therefore, it
suffices to show the conjugation condition holds for the set {gi}. The following computations show that
conjugation by φ(τi) swaps gi and gi+1 but fixes all other gk.

First, we show that conjugation by φ(τi) swaps gi and gi+1. There are two cases to consider:

Case 1: Suppose i ≤ n − 2. A similar computation described in Lemma 4.1 shows that conjugation
by τi swaps σi,i+2 with σi+1,i+2. Thus,

φ(τiσi,i+1τi) = φ(σi+1,i+2)

φ(τi)giφ(τi) = gi+1.

Case 2: Suppose i> n − 2, which implies that i = n − 1. A similar computation to the one above
shows that conjugation by τi−1 swaps σi,i−1 and σi+1,i−1 and that conjugation by φ(τi) swaps gi and gi+1.

Next, we show that gk is fixed under conjugation by τi, when k �= i, i + 1. Recall that conjugation by τi

on σj,k permutes the indices: τiσj,kτi = στi(j),τi(k). So, when k �= i, i + 1, gk remains fixed under conjugation
by φ(τi) as follows:

φ(τi)gkφ(τi) = φ(τiσk,−τi) = φ(στi(k),τi(−)) = φ(σk,−) = gk.

This proves the conjugation condition in the definition of a totally symmetric set holds, and we have
proven our claim.

Remark. The Lemma 4.3 is stated for wBn; however, it is also true for vBn. In vBn, the sets Ai are not
totally symmetric, but they do satisfy the conjugation condition, which is the only condition needed in
the proof.

5. Finite image homomorphisms of the virtual and welded braid groups

In this section, we prove the classification theorems on the size of finite images of homomorphisms of
both wBn and vBn.

5.1. Proof of Theorem 1.2

First, we prove the classification theorem for the welded braid group, wBn. This is a first step in
classifying non-cyclic homomorphisms wBn → G, where G is a finite group.

Theorem 1.2. Let n ≥ 5, and let φ : wBn → G be a group homomorphism to a finite group, G, so that
φ(wBn) is not isomorphic to the symmetric group, �n. One of the following must be true:

(1) φ is abelian.
(2) φ restricted to PwBn is cyclic.
(3) |φ(wBn)| ≥ 2n−2(n − 1)!
(4) For all i and j, φ maps each Ai to a single element with φ(Ai)2 �= φ(Aj)2, and

|φ(wBn)| ≥
(⌊

n − 1

2

⌋
+ 1

) (
3� n

2 �−1
) ⌊n

2

⌋
!.

In the statement of Theorem 1.2, the requirement that n ≥ 5 is only necessary for Part (3) due to the
applications of Lemma 3.3 and Theorem 1.1. All other conditions hold for n ≥ 4.

The proof of Theorem 1.2 is inspired by Figure 4. We consider cases on whether φ splits various
rows and columns of the diagrams. The rows of the Full diagram, as seen in Figure 4(b), are the totally
symmetric sets, Ai, from Lemma 4.1. In the Left diagram, the rows of the outlined triangle are the
totally symmetric sets, Li. The rows above the outlined triangle are the inverses of the columns within
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(a) (b) (c)

Figure 4. (a) Left diagram. (b) Full diagram. (c) Right diagram

the outlined triangle. Both the columns in the outlined triangle and the rows above the outline are not
totally symmetric sets but satisfy the conjugation condition. This can be verified by similar computations
described in Lemma 4.1. The Right diagram has an analogous form. The rows of the outlined triangle
are the totally symmetric sets, Ri. The columns below the outlined triangle are the inverses of the rows
within the triangle, and both satisfy the conjugation condition.

Proof of Theorem 1.2. Let us suppose that φ is non-abelian and that φ restricted to PwBn is non-cyclic.
We consider cases on whether or not φ splits the totally symmetric sets Ai.

Case 1: Suppose that there exists an i so that φ splits Ai. Since Ai is a totally symmetric set with size
n − 1, applying Proposition 2.5 yields

|φ(wBn)| ≥ 2n−2(n − 1)!.
Case 2: Suppose φ does not split any of the Ai’s. Denote φ(Ai) = {gi}. Further suppose that there

exists i0 and j0 so that g2
i0

�= g2
j0
. Notice this implies gi0 �= gj0 . Since φ is non-abelian, we may assume by

Lemma 4.2 that φ is non-cyclic on �n and that φ(τi) �= id. We consider cases on i0 and j0 with the goal
to apply Lemma 4.3.

Subcase 1: Suppose i0, j0 < n. We will use the Right diagram in Figure 4 to conclude that g1, · · · , gn−1

are distinct. By assumption, gi0 �= gj0 which implies that φ
(
σi0,n

) �= φ
(
σj0,n

)
, and therefore φ

(
σ−1

i0,n

) �=
φ

(
σ−1

j0,n

)
. The bottom row of the Right diagram contains both σ−1

i0,n and σ−1
j0,n. Even though the bottom

row of the Right diagram is not a totally symmetric set, it does satisfy the conjugation condition. Since
φ

(
σ−1

i0,n

) �= φ
(
σ−1

i1,n

)
, Remark 2.1 implies that φ splits the bottom row. Thus, φ

(
σ−1

i,n

) �= φ
(
σ−1

j,n

)
for all

i, j< n, which shows that gi �= gj, for all i, j< n. Since g2
i0

�= g2
j0

by assumption, Remark 2.2 shows the
each of the g2

i are unique. Thus, we have shown all of the hypotheses of Lemma 4.3 are satisfied, and{
g2

1, · · · , g2
n−1

}
is a totally symmetric set in the image of φ of size n − 1. Proposition 2.5 yields

|φ(wBn)| ≥ 2n−2(n − 1)!.

Subcase 2: Suppose i0, j0 > 1. An analogous argument to Subcase 1 using the Left diagram from Figure 4
concludes that

{
g2

2, · · · , g2
n

}
is a totally symmetric set in the image of φ of size n − 1. Proposition 2.5

yields

|φ(wBn)| ≥ 2n−2(n − 1)!.
Subcase 3: Suppose i0 = 1 and j0 = n, which implies that g1 �= gn, and further that φ(σ1,−) �= φ(σn,−).
Looking at the Full diagram in Figure 4(b), Subcase 3 analyzes when the top and bottom rows of the
Full diagram are mapped to different elements.

We now analyze where φ can send the second row.
Suppose first that φ maps A2, or all the elements of the second row, to g1. Then in Figure 4(a), the

Left diagram, we notice that L2 and Ln map to different elements. Therefore, two elements in the top
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row of Figure 4(a) map to different elements. Since the top row satisfies the conjugation condition, we
have that the top row must split. Since g2

i0
�= g2

j0
by assumption, Remark 2.2 shows that each g2

i is unique.
Therefore, by Lemma 4.3, the set

{
g2

2, g2
3, . . . , g2

n

}
is a totally symmetric set of size n − 1. Proposition

2.5 yields

|φ(wBn)| ≥ 2n−2(n − 1)!.
A similar argument follows for when φ maps A2, or all the elements of the second row, to gn, but this

time we consider Figure 4(c), the Right diagram. Since R1 and R2 map to different elements, the bottom
row of the Right diagram must split as it satisfies the conjugation relation. Since g2

i0
�= g2

j0
by assumption,

Remark 2.2 shows that each g2
i is unique. Therefore, by Lemma 4.3, the set

{
g2

1, g2
2, . . . , g2

n−1

}
is a totally

symmetric set of size n − 1. In this case, Proposition 2.5 will again yield

|φ(wBn)| ≥ 2n−2(n − 1)!.
Finally, suppose that φ sends A2 to an element g2 where g2 �= g1, gn. Then in Figure 4(a), the Left

diagram, we notice that L2 and Ln map to different elements. Therefore, two elements in the top row of
Figure 4(a) map to different elements. Since the top row satisfies the conjugation condition, we have
that the top row must split. Similarly, in Figure 4(c), the Right diagram, we notice that R1 and R2 map to
different elements. Therefore, two elements in the bottom row of Figure 4(c) map to different elements,
and since the bottom row satisfies the conjugation condition the bottom row must split. Notice that we
must have that φ sends each Ai to a unique element. Indeed, suppose that gi = gj for some i, j. This
implies that either the top row of the Left diagram or the bottom row of the Right diagram cannot split,
since these rows have the conjugation relation, which is a contradiction to the above. Since g2

i0
�= g2

j0
by

assumption, Remark 2.2 shows the each g2
i is unique. By Lemma 4.3, the set

{
g2

1, g2
2, . . . , g2

n

}
is a totally

symmetric set of size n. In this case, Proposition 2.5 will yield that

|φ(wBn)| ≥ 2n−1(n)!.
Case 3: Suppose φ does not split any of the Ai’s, and φ(Ai)2 = φ(Aj)2 for all i and j. Notice that

Lemma 4.3 does not apply, and that none of the Ai’s are split by φ. In this case, we use the fact that φ
restricted to Bn is non-cyclic. Applying Theorem 1.1 to φ restricted to Bn, we get

|φ(wBn)| ≥ |φ(Bn)| ≥
(⌊

n − 1

2

⌋
+ 1

) (
3� n

2 �−1
) ⌊n

2

⌋
!.

5.2. Proof of Theorem 1.3

In this section, we provide a proof for Theorem 1.3 which gives a lower bound on the size of vBn’s
smallest non-cyclic finite quotient. By considering whether or not a homomorphism factors through
wBn, we may apply our classification of homomorphisms from wBn → G, or the necessary condition for
the existence of a homomorphism Bn → G, to determine a classification of the size of finite images of
homomorphisms from vBn.

Theorem 1.3. Let n ≥ 5, and let φ : vBn → G be a group homomorphism to a finite group, G, so that
φ(vBn) is not isomorphic to the symmetric group, �n. One of the following must be true:

(1) φ is abelian.
(2) φ factors through wBn, and either

a. φ restricted to PwBn is cyclic.
b. |φ(vBn)| ≥ 2n−2(n − 1)!
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c. For all i and j, φ does not split Ai, φ(Ai)2 �= φ(Aj)2, and

|φ(vBn)| ≥
(⌊

n − 1

2

⌋
+ 1

) (
3� n

2 �−1
) ⌊n

2

⌋
!.

(3) φ does not factor through wBn and

|φ(vBn)| ≥
(⌊

n − 1

2

⌋
+ 1

) (
3� n

2 �−1
) ⌊n

2

⌋
!.

Proof of Theorem 1.3. Suppose φ is not abelian. If φ factors through wBn, then by Theorem 1.2, one
of either (2)(a), (2)(b), or (2)(c) must be true. If φ does not factor through wBn and φ is non-abelian,
Lemma 4.2 gives that φ restricted to Bn is non-abelian, and hence non-cyclic. Applying Theorem 1.1 to
φ restricted to Bn gives that (3) must be true.
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