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Asymptotic Existence of Resolvable Graph
Designs

Peter Dukes and Alan C. H. Ling

Abstract. Let v ≥ k ≥ 1 and λ ≥ 0 be integers. A block design BD(v, k, λ) is a collection A of

k-subsets of a v-set X in which every unordered pair of elements from X is contained in exactly λ
elements of A. More generally, for a fixed simple graph G, a graph design GD(v, G, λ) is a collection A

of graphs isomorphic to G with vertices in X such that every unordered pair of elements from X is an

edge of exactly λ elements of A. A famous result of Wilson says that for a fixed G and λ, there exists a

GD(v, G, λ) for all sufficiently large v satisfying certain necessary conditions. A block (graph) design as

above is resolvable if A can be partitioned into partitions of (graphs whose vertex sets partition) X. Lu

has shown asymptotic existence in v of resolvable BD(v, k, λ), yet for over twenty years the analogous

problem for resolvable GD(v, G, λ) has remained open. In this paper, we settle asymptotic existence of

resolvable graph designs.

1 Introduction

Let G be a finite undirected simple graph. A G-block (or simply block) on a set X is an
embedding G →֒ X. For convenience, a G-block may be regarded as either a function
from V (G) to X or as a graph isomorphic to G with vertices in X. A G-decomposition

of a multigraph H is a collection of G-blocks on X = V (H) whose edge sets partition

E(H). Let λ be a nonnegative integer. A G-decomposition of λKv (the multigraph
with v vertices and λ edges between every pair of vertices) is also known as a G-design

of order v and index λ, or GD(v, G, λ). In such a G-design on X, every unordered pair
of distinct points in X appears as an edge of exactly λ blocks. A GD(v, Kk, λ) is usually

called a block design, or BIBD, or BD(v, k, λ).

A set of G-blocks on X whose vertex sets partition X is called a resolution class.

A G-decomposition is said to be resolvable if its collection of blocks can be parti-
tioned into resolution classes. A resolvable G-decomposition of λKv is called a re-
solvable G-design, or RGD(v, G, λ). When G is the complete graph Kk, this is denoted
RBD(v, k, λ).

For example, RBD(v, 2, 1) are one-factorizations of the complete graph Kv, and
RBD(v, 3, 1) are the Kirkman triple systems. It is well known that each of these objects
exists “whenever possible”; refer below to (1.2) and (1.3). We note, however, that the

existence of any v for which there exists an RGD(v, G, λ) is presently unknown for all
but specific families of graphs or trivial indices.
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Suppose G has n vertices, e edges, and degree sequence d1, d2, . . . , dn, so that
∑

i di = 2e. Let D = gcd{d1, . . . , dn}. By counting in two ways the number of

edges of λKv, and the degree of each vertex in λKv, it follows that

λv(v − 1) ≡ 0 (mod 2e),(1.1)

λ(v − 1) ≡ 0 (mod D)(1.2)

are necessary conditions for the existence of a GD(v, G, λ). When e = 0, we regard
these congruences as degenerating to equality, in which case v = 1 or λ = 0.

For a GD(v, G, λ) to have a resolution class, it is, of course, also necessary that

(1.3) v ≡ 0 (mod n).

Moreover, resolvable G-designs on a set X are equireplicate, that is, every point of X

appears in the same number r = λ(v− 1)n/2e of blocks of the design. So a necessary
condition for a GD(v, G, λ) to be equireplicate is that there is a (nonnegative) integer
combination of degrees, say

∑

tidi = λ(v − 1) such that
∑

ti = r, the common
number of blocks through any point. In other words, it is necessary that

(1.4) λ(v − 1) ≡ 0 (mod γ),

where γ = γ(G) is the least positive integer satisfying

(1.5) γ
[ 1

n/2e

]

∈ span
Z

{[ di

1

]}

.

Note that (1.3) and (1.4) together imply (1.1) and (1.2), since D ∈ span
Z
{di}.

Given a fixed graph G, we say integers v and λ satisfying (1.3) and (1.4) are ad-

missible. It should be mentioned that conditions (1.3) and (1.4) are not in general

sufficient for the existence of an RGD(v, G, λ). For instance, let P be the Petersen
graph (so n = 10, e = 15, and di = 3 for all i). Then with v = 10, λ = 1 is admis-
sible, yet there is no GD(10, P, 1), [1]. Indeed, several exceptions are known even for
RBD(v, k, λ); see [3].

Based on the famous work of R. M. Wilson, it is known that if (1.1) and (1.2) are

satisfied and v is sufficiently large, then there exists a GD(v, G, λ). The main result
of [4] is in fact much more general, showing asymptotic existence (in v) of “edge-
colored graph decompositions”. Details are given in Section 5, where one important
application for our purposes is considered. Another result we use is based on similar

techniques and given below for later reference.

Theorem 1.1 Let λ ∈ Z, λ ≥ 0. Suppose G is a simple graph with n vertices, e

edges, and degrees d1, d2, . . . , dn. Then there exists an equireplicate GD(v, G, λ) for all

sufficiently large v satisfying (1.1) and (1.4).

It is also known that RBD(v, k, λ) exist asymptotically in v.
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Theorem 1.2 ([5]) Let λ, k ∈ Z with λ ≥ 0 and k ≥ 1. There exists RBD(v, k, λ)
for all sufficiently large v satisfying (1.3) and (1.2) with n = k, 2e = k(k − 1), and

D = k − 1.

In this paper, we prove a common generalization of these results.

Theorem 1.3 Let λ ∈ Z, λ ≥ 0. Suppose G is a simple graph with n vertices, e edges,

and degree sequence d1, d2, . . . , dn. Then there exists v0 such that RGD(v, G, λ) exist for

all v ≥ v0 satisfying (1.3) and (1.4).

The proof of Theorem 1.3 will be done in several steps. In Section 2, we show that
given G with n vertices, (resolvable) GD(n, G, λ) exist for all sufficiently large admis-
sible λ. This follows earlier work of Wilson [10]. In Section 3, we use cyclotomy in

finite fields and a standard inflation construction for designs to produce equirepli-
cate G-designs of any index λ having arbitrarily many resolution classes. This forms
an ingredient for our main construction, given in Section 4. An intricate blend of
block design constructions by Wilson [6] and Rees [7] produces a G-design of in-

dex λ which is resolvable from one with merely “enough” resolution classes. At that
point, our first example of a resolvable G-design with fixed index λ will have been
constructed. In Section 5, we apply the method of edge-colored graph decomposi-
tions [4] to establish asymptotic existence of special G-decompositions of complete

multipartite graphs called G-frames. Section 6 completes the proof by filling exam-
ples in the “holes” of G-frames obtained by Wilson’s fundamental construction.

In Sections 2 and 5, we will have occasion to use the following well-known result.
See [8], for example.

Lemma 1.4 Given an m × n rational matrix M and some c ∈ Qm, the equation

Mx = c has an integral solution x if and only if y⊤c is integral whenever y ∈ Qm is

such that y⊤M is integral.

We now introduce an important tool for our main construction (Theorem 4.1)
and for the recursive methods in Section 6. Let X and Y be sets with |X| = k and

|Y | = m. The triple (X,Y, B) is called a transversal design, abbreviated TD(k, m), if
B is a set of subsets of X × Y such that

(i) for any B ∈ B and x ∈ X, |B ∩ ({x} × Y )| = 1,
(ii) any two points (x, y), (x ′, y ′) ∈ X × Y with x 6= x ′ are contained in exactly

one element of B.

A TD(k, m) is resolvable, abbreviated RTD(k, m), if B can be partitioned into par-
titions of X × Y , each called a resolution class. There is a standard finite field con-
struction for RTD(k, q), where q is a prime power and k ≤ q. If Y is a finite field of
order q, there is such an RTD having the automorphism (x, y) 7→ (x, y + 1). More

generally, the existence of r mutually orthogonal latin squares of order m is equiva-
lent to the existence of a TD(r + 2, m), which is in turn equivalent to the existence of
an RTD(r + 1, m); see [3] for details. For later use, we state a well-known asymptotic
existence result for RTD.
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Lemma 1.5 ([2]) For every k ∈ Z+, there exists an RTD(k, m) for all but finitely

many m ∈ Z+.

2 Existence for Sufficiently Large Index

Let X be an n-set. A signed multigraph on X is a mapping A :
(

X
2

)

→ Z from unordered
pairs in X to the set of integers. We may view an ordinary graph G with vertex set
X as a signed multigraph with A(T) = 1 if T ∈

(

X
2

)

is an edge of G and A(T) =

0 otherwise. Let Sn denote the symmetric group on X and Z[Sn] the group ring
of sums of integer multiples of permutations in Sn. We view the collection of all
signed multigraphs on X as a module over Z[Sn]; for σ =

∑

c(π)π ∈ Z[Sn] and
A :

(

X
2

)

→ Z, we have (σA)(T) = σ(A(T)) =
∑

π∈Sn
c(π)A(π(T)).

The following is adapted from a very similar result in [10].

Lemma 2.1 Let G be a simple graph with n vertices, e edges and gcd of degrees D.

Suppose neither G nor G is a complete bipartite graph Km,n−m. If λ is any integer such

that D | λ(n − 1) and 2e | λn(n − 1), then there is an element σ ∈ Z[Sn] such that

σG = λKn.

Proof If G = Kn, we simply take σ = λπ for any integer λ and any π ∈ Sn. If
G = Kn (and n ≥ 2), only λ = 0 is admissible, and there is nothing to prove. For

the remainder of the proof, suppose G and G both have at least one edge and are
neither complete nor complete bipartite. It follows that G has an induced subgraph
on 4 vertices which is none of K4, K1,3, K2,2, K4, K1,3, K2,2. In other words, there exist
T ∈

(

X
2

)

and disjoint transpositions τ1, τ2 ∈ Sn such that

(2.1) A(T) − A(τ1T) − A(τ2T) + A(τ1τ2T) = 1.

Let f :
(

X
2

)

→ Z, be an arbitrary integer weighting and let f (G) denote the sum of
weights of all edges of G. In view of Lemma 1.4, it is enough to show that whenever
d is some integer dividing f (πG) for all π ∈ Sn, then d divides f (λKn). Computing

modulo d,

0 ≡ f (G) − f (τ1G) − f (τ2G) + f (τ1τ2G)

= f (T) − f (τ1T) − f (τ2T) + f (τ1τ2T),

where the last equality is a consequence of (2.1). Since this holds with G replaced by
any ρG, ρ ∈ Sn, we have f ({x, y}) + f ({x ′, y ′}) ≡ f ({x ′, y}) + f ({x, y ′}) for any

distinct x, y, x ′, y ′ ∈ X. It follows that there exist integers ǫ and ax, x ∈ X, such that
f ({x, y}) ≡ ax + ay + ǫ for all x, y ∈ X. Then

f (λKn) = λ
∑

{x,y}∈(X
2)

f ({x, y}) ≡ λ(n − 1)
∑

x∈X

ax +
λn(n − 1)

2
ǫ.

But, as in [10], Dax ≡ Day for all x, y ∈ X. Since D | λ(n − 1) and e | λn(n − 1)/2,

f (λKn) ≡
λn(n − 1)

2
(ax + ay + ǫ) ≡ f (G) ≡ 0.
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Roughly speaking, this provides, for each integer λ, a “signed G-decomposition”
of λKn which is admissible for v = n points. Following [11], it is easy to see that

this yields G-designs of order n with sufficiently large admissible index λ. For conve-
nience, define

(2.2) λmin =
γ(G)

gcd{γ(G), n − 1}
,

which by (1.4) generates the ideal of admissible λ for n points.

Lemma 2.2 Suppose neither G nor G is complete bipartite. Then there is an integer

λ0 such that there exists RGD(n, G, λ) for all λ ≥ λ0 satisfying λmin | λ.

Proof For each admissible λ, it follows from Lemma 2.1 that there exists σλ =
∑

π cλ(π)π ∈ Z[Sn] such that σλG = λKn. Put λ ′ = 2e(n − 2)! and let Λ denote the
set of admissible integers λ with −λ ′ ≤ λ < 0. Define

λ0 = 2e(n − 2)! · max{−cλ(π) : π ∈ Sn, λ ∈ Λ}.

Now let λ ≥ λ0. Write λ = 2e(n − 2)!t − ν, where t is an integer and ν ∈ Λ.

Let σ =
∑

π(t − cν(π))π. Observe that σ has nonnegative coefficients and σG =

t(
∑

π π)Kn − νKn = λKn.

By applying this lemma to the disjoint union of possibly several copies of G, we
may drop the restriction of G and G not being complete bipartite.

Theorem 2.3 Let G be any simple graph on n vertices, and let n ′ = nk, where k ∈ Z+

is chosen such that k = 1 + γ(G) if G or G is complete bipartite but not edgeless, and

k = 1 otherwise. There is an integer λ0 such that there exists RGD(n ′, G, λ) for all

λ ≥ λ0 satisfying λmin | λ.

Proof The disjoint union G ′ of k copies of G is never complete bipartite or the
complement of a complete bipartite graph. Note that condition (1.4) on λ is the
same for G ′ as for G. So the result follows by Lemma 2.2 applied to G ′.

To close this section, we note that for any k ≥ 2, using k copies of G as in The-
orem 2.3 provides RGD(nk, G, λ) for some λ. However, there will usually be ad-

missible λ for which the results of this section fail to produce RGD(v, G, λ). In fact,
there may be admissible values of λ for v which are not even multiples of λmin. The
next two sections provide constructions of resolvable graph designs with arbitrary
index λ.
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3 Inflation and Reduction of Index

We will use Fq to denote a finite field of order q. If q ≡ 1 (mod m), then Fq contains
a multiplicative subgroup C0 of index m. Here, the cosets C0,C1, . . . ,Cm−1 of C0 are
assumed to be indexed so that x ∈ Ci and y ∈ C j implies xy ∈ Ci+ j , where the latter

subscript is reduced mod m. These cosets are the cyclotomic classes of index m.
The following result has been extensively used in the literature on asymptotic ex-

istence of designs.

Lemma 3.1 ([9]) Let m, k ≥ 2 be integers. Let µ be any mapping from the unordered

pairs in {1, . . . , k} to {0, 1, . . . , m − 1}. Suppose q is a prime power with q > mk2

and q ≡ 1 (mod m). Then there exist a1, . . . , ak ∈ Fq such that for 1 ≤ i < j ≤ k,

ai − a j ∈ Cµ({i, j}), where C0,C1, . . . ,Cm−1 are the cyclotomic classes of index m in Fq.

Let Γu,w be the graph with vertex set X × Y , where |X| = u, |Y | = w, and
{(x, y), (x ′, y ′)} is an edge if and only if x 6= x ′ and y 6= y ′. A G-decomposition
of λΓu,w is called a G-grid design of type u × w and index λ.

Lemma 3.2 Let λ ∈ Z+. Suppose G is a simple graph with n vertices, and suppose

there exists RGD(n ′, G, λ∗) for λ∗ ≡ 0 (mod λ). Let l = λ∗/λ. For sufficiently large

prime powers q ≡ 1 (mod l), there exists a resolvable G-grid design of type n ′ × q and

index λ.

Proof Let the hypothesized G-design be on points X = {x1, . . . , xn ′}, with block

collection B. Let S = {(x, β) : x ∈ β ∈ B}. There are λ∗nn ′(n ′ − 1)/2e ele-
ments in S. Let µ :

(

S
2

)

→ {0, 1, . . . , l − 1} be defined so that, for each fixed pair
(i, j) with 1 ≤ i < j ≤ n ′, the collection of all µ({(xi , β), (x j , β)}), where β is
such that {xi , x j} ∈ E(β) varies over every element of {0, 1, . . . , l − 1} exactly λ
times. Pick q ≡ 1 (mod l) with C0,C1, . . . ,Cl−1 as the cyclotomic classes of index
l in Fq. By Lemma 3.1, if q is chosen sufficiently large, then there exists a mapping
φ : S → Fq so that, for all β ∈ B and i ≤ j, φ((xi , β)) − φ((x j , β)) ∈ Ch, where
h = µ({(xi , β), (x j , β)}). It will be convenient to define a(x, b) + c = (x, ab + c)

whenever (x, b) ∈ X × Fq and a, c ∈ Fq. For each block β ∈ B, define β∗(i) =

(β(i), φ(β(i), β)), an embedding of G in X × Fq. Given a resolution class R of B

and any a ∈ C0, let Ra = {aβ∗ + c : β ∈ R and c ∈ Fq}. Suppose aβ∗(i) + c =

a(β ′)∗(i ′) + c ′ for some β, β ′ ∈ R and c, c ′ ∈ Fq. Then

(β(i), aφ(β(i), β) + c) = (β ′(i ′), aφ(β ′(i ′), β ′) + c ′).

Since R is a resolution class on X, the first coordinates force β = β ′ and i = i ′. But

then the second coordinates force c = c ′. This shows that each Ra is a resolution class
of blocks on X × Fq. It is routine to check from the defining property of φ that the
union of all Ra, where R is a resolution class of B and a ∈ C0, is the block collection
of a G-grid design of type n ′ × q and index λ.

By standard design-theoretic constructions, we may place G-grid designs on the
blocks of a resolvable block design and “fill in holes” with other G-designs. This
establishes the following.
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Theorem 3.3 Let λ ∈ Z+. Suppose G is a simple graph with n vertices and e > 0
edges and that there is an RGD(n ′, G, λ∗) with λ∗ ≡ 0 (mod λ). Given any positive

integer r and sufficiently large u and q (q a prime power) with

u ≡ n ′ (mod n ′(n ′ − 1)), λ(u − 1) ≡ 0 (mod γ),(3.1)

q ≡ 1 (mod λ∗/λ), λ(q − 1) ≡ 0 (mod γ), λq(q − 1) ≡ 0 (mod 2e),(3.2)

there exists an equireplicate GD(uq, G, λ) with at least r distinct resolution classes.

Proof Apply Lemmas 2.3 and 3.2 to obtain a resolvable G-grid design, say with
block collection A, of type n ′ × q and index λ for sufficiently large q satisfying (3.2).
Suppose A partitions into r ′ resolution classes. By Theorems 1.1 and 1.2 and (3.1),
we may take an RBD(u, n ′, 1), say with block collection B, with u sufficiently large

so that (i) B has at least r/r ′ resolution classes; and (ii) there exists an equireplicate
GD(u, G, λ). For (ii), note that λu(u − 1) ≡ 0 (mod 2e) follows from (3.1) since
2e | nγ. Now form a resolvable G-grid design of type u × q and index λ on points
X × Fq by replacing every block B of the RBD(u, n ′, 1) by a copy of A on B × Fq. To

this block collection, add blocks of an equireplicate GD(u, G, λ) on each X × {a},
a ∈ Fq, and of an equireplicate GD(q, G, λ) on each {x} × Fq, x ∈ X. The result is
an equireplicate G-design of order uq having at least r ′ · (r/r ′) = r resolution classes.

4 The First Examples

For a given graph G, we have so far merely constructed (large) equireplicate G-designs

guaranteed to have many resolution classes. Here, we present another finite field
construction which results in a (much larger) resolvable G-design, provided a minor
requirement holds on the number of resolution classes in the ingredient G-design.
This serves as our first example of a resolvable G-design with a given index λ. Our

method is adapted from resolvable block design constructions in [6, 7], where the
reader is directed for more details.

Theorem 4.1 Let G be a simple graph with n vertices and e > 0 edges. Let s = ⌈n/e⌉.

Suppose there exists an equireplicate G-design of order v and index λ with at least λs + 1
distinct resolution classes. Let m = λn(v− 1)/2e−λs− 1 and L = lcm{2es, m}. Then

for sufficiently large prime powers q ≡ 1 (mod L), there exists an RGD(vq, G, λ).

Proof First, we set up some notation. Take the vertex set of G to be {1, . . . , n}. Let
the given G-design be on the set X with |X| = v and with blocks A. Regard each
β ∈ A as an injection from {1, . . . , n} to X. For sufficiently large prime powers

q = 2es f + 1, there exist mappings ξh : {1, . . . , n} → Fq with

s
⋃

h=1

{ξh(i) − ξh( j) : i < j and {i, j} ∈ E(G)}

forming a set of representatives for the cyclotomic classes of index es in Fq, and with
ξh(i), i ∈ {1, . . . , n}, in distinct classes for each h. This follows from Lemma 3.1 and
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the fact that n ≤ es. We now construct a resolvable G-design of index λ on X × Fq in
two pieces, mirroring constructions in [6, 7], respectively.

Piece 1: Let Π be a collection of λs different resolution classes in A, and suppose
θ : Π → {1, . . . , s} is a labeling with |θ−1(h)| = λ for 1 ≤ h ≤ s. Fix R ∈ Π and
suppose h = θ(R). In what follows, we write ξ for ξh as defined above. Let ω be a
generator of Fq and define

K = {ωestξ(i) : 1 ≤ i ≤ n and 0 ≤ t < f }.

By choice of ξ, we have |K| = n f .

For i ∈ {1, . . . , n} and β ∈ R, define βi : {1, . . . , n} → X × Fq by βi( j) =

(β(i), ξ( j)). Define β∗ : {1, . . . , n} → X × Fq by β∗( j) = (β( j), ξ( j)). The βi and
β∗ are to be regarded as G-blocks on X × Fq. For every c ∈ Fq, put

Rc =

n
⋃

i=1

f−1
⋃

t=0

{ωestξ(i)βi + c : β ∈ R} ∪
⋃

a∈F
×

q \K

{aβ∗ + c : β ∈ R}.

Note |Rc| = (n f + (q − n f ))|R| = vq/n.

We show that each Rc is a resolution class on X × Fq. It suffices to consider R0.
Suppose first that ωestξ(i)βi( j) = ωest ′ξ(i ′)(β ′)i ′( j ′). Then β(i) = β ′(i ′), and
we must have β = β ′, i = i ′ by virtue of R being a resolution class. But then

ωestξ( j) = ωest ′ξ( j ′), which, since |K| = n f , forces t = t ′ and j = j ′. Suppose
next that ωestξ(i)βi( j) = a(β ′)∗( j ′). Then β(i) = β ′( j ′), and we must have β = β ′,
i = j ′. So ωestξ( j) = a 6∈ K, which is absurd. Finally suppose aβ∗( j) = a ′(β ′)∗( j ′).
Then β( j) = β ′( j ′), and it follows that β = β ′, j = j ′, and a = a ′.

Now for every a ∈ K, put R ′
a =

⋃

c∈Fq
{aβ∗ + c : β ∈ R}. Each R ′

a is also a

resolution class, since aβ∗( j) + c = a(β ′)∗( j ′) + c ′ implies β = β ′, j = j ′ as R is a
resolution class. Then c = c ′ is clear on inspecting the second coordinate.

In total, there are λs(q + n f ) resolution classes in Piece 1, with any two points
in X × Fq of the form (x, a), (x, a ′) appearing in exactly λ G-blocks, as well as cov-
ering any two points of the form (β( j), a), (β( j ′), a ′), where { j, j ′} ∈ E(G) and
β ∈ R ∈ Π.

Piece 2: Consider the blocks P = A \
⋃

R∈Π
R. Let Q ⊂ P be a resolution class.

Then every point in X appears in exactly m = λn(v − 1)/2e − λs − 1 blocks of
P \ Q. Fix any M ⊂ Fq \ {0} with |M| = m. If q ≡ 1 (mod m), the family of sets
Θ =

⋃

a∈Fq
{M + a, {a}} can be partitioned into m + 1 partitions Θ0, . . . , Θm of Fq

(where, say, Θ0 contains q − m singletons and Θℓ contains exactly one singleton for
ℓ = 1, . . . , m.)

For each x ∈ X, let φx be a bijection from those blocks in P which contain x

onto M ∪ {0}. Now let (X, Fq, B) be an RTD(v, q) admitting the automorphism
(x, a) 7→ (x, a + 1). This exists for sufficiently large q by Theorem 1.5. Each τ ∈ B

can be viewed as a mapping from X to Fq, where τ (x) is the unique c ∈ Fq with
τ ∩ Fq = {c}. Given β ∈ P and τ ∈ B, let [β, τ ] : {1, . . . , n} → X × Fq be defined
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by [β, τ ](i) = (β(i), φβ(i)(β) + τ (β(i))). Fix z ∈ X and a resolution class T of B. For
each ℓ = 0, . . . , m, define

Tℓ =

⋃

a:a+M∈Θℓ

{[β, τ ] : β ∈ P \ Q and τ ∈ T with τ (z) = a}

∪
⋃

a:{a}∈Θℓ

{[β, τ ] : β ∈ Q and τ ∈ T with τ (z) = a}.

We show that each Tℓ is a resolution class on X×Fq. Assume [β, τ ](i) = [β ′, τ ′](i ′),
where τ , τ ′ ∈ T. Let x = β(i) = β ′(i ′) and suppose φx(β) = g, φx(β) = g ′, for
some g, g ′ ∈ M ∪ {0}. If g, g ′ ∈ M, then g + τ (x) = g ′ + τ ′(x). So τ (x) + M and
τ ′(x) + M intersect. By the automorphism of the RTD, τ (z) + M and τ ′(z) + M must

intersect. But these sets belong to Θℓ, a partition of Fq. It follows that τ = τ ′, g = g ′,
β = β ′ and i = i ′. The conclusion is similar if either g or g ′ = 0.

There are q choices for T and m + 1 choices for ℓ. So there are λqn(v−1)/2e−λsq

resolution classes in Piece 2, with any two points of the form (β( j), a), (β( j ′), a ′),
where { j, j ′} ∈ E(G) and β ∈ P, appearing in a G-block.

Taking Piece 1 and Piece 2 together, there are λn(vq − 1)/2e resolution classes

consisting of G-blocks covering all pairs of points in X × Fq, λ times each. It follows
that

⋃

R∈Π

[

⋃

c∈Fq

Rc ∪
⋃

a∈K

R ′
a

]

∪
⋃

T

m
⋃

ℓ=0

Tℓ

is the set of blocks of a resolvable G-design of index λ on X × Fq.

5 Existence and Applications of G-cframes

We must now make a short diversion to introduce and prove results about frames, a
key ingredient in the construction of resolvable block designs (see [3]).

A set of G-blocks on X with disjoint vertex sets is called a partial resolution class.
As is standard in block design terminology, we refer to the maximal independent
sets in a complete (λ-fold) multipartite graph as groups. A G-frame with group sizes

g1, . . . , gu and index λ is a G-decomposition of H = λKg1,...,gu
in which the blocks

can be partitioned into partial resolution classes, each missing precisely the points of
a single group of H. When gi = g for each i = 1, . . . , u, such a G-frame is called
uniform and has type gu.

Suppose B is a collection of blocks forming a GD(v, G, λ) on the point set X, and
A is a subcollection of B forming a GD(u, G, λ) on the point set Y ⊂ X. If B admits
a partition into resolution classes on X, say R1, . . . , Rm, such that A ∩ Ri is either
empty or a resolution class on Y for i = 1, . . . , m, then A is called a compatibly resolv-

able sub-design of B. A pair of G-decompositions with this property is abbreviated
CRGD(v, u, G, λ). Note that the existence of RGD(v, G, λ) implies the existence of
CRGD(v, 1, G, λ). The following “group filling” construction is very standard in the
literature. See [3], for example.
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Lemma 5.1 If there exists

(i) a G-frame with group sizes g1, . . . , gu and index λ,

(ii) a CRGD(gi + h, h, G, λ) for all i = 1, . . . , u − 1, and

(iii) an RGD(gu + h, G, λ),

then there exists a CRGD(g1 + · · · + gu + h, gu + h, G, λ).

Suppose in a G-frame of type gu and index λ that every group is missed exactly m

times. Then there are mu partial resolution classes, and each class contains g(u−1)/n

blocks. Since there are λg2u(u − 1)/2e blocks in any such G-frame, we must have
m = λng/2e. But furthermore, every point must appear in exactly m(u − 1) blocks.
So necessary conditions for the existence of a G-frame of type gu and index λ are

g(u − 1) ≡ 0 (mod n),(5.1)

λg(u − 1) ≡ 0 (mod γ),(5.2)

where γ = γ(G) is as in (1.5).

In the remainder of this section, we prove the existence of various G-frames. First,
we show asymptotic existence (in u) of uniform G-frames with u groups.

Theorem 5.2 Let λ ∈ Z, λ ≥ 0. Suppose G is a graph with n vertices, e > 0 edges,

and degrees d1, . . . , dn. Suppose g ∈ Z is such that λng/2e ∈ Z and there is a proper

g-coloring of the vertices of G. Then there exists u0 such that G-frames of type gu and

index λ exist whenever u ≥ u0 satisfies (5.1) and (5.2).

Proof We use the powerful method of edge-colored graph decompositions in [4],

and imitate several of the examples therein. Let S = {1, . . . , g}. As edge-color set,
we use (S × S) ∪ S. For consistency, colors will be denoted by (c1, c2) or (c). For a
mapping κ : V (G) → S, define Gκ to be the edge-colored directed graph with vertex
set V (G) ∪ {∞}, and edges as follows: for each {x, y} ∈ E(G), there is a (directed)

edge from x to y of color (κ(x), κ(y)), and for each x ∈ V (G) there is an edge from x

to ∞ of color (κ(x)). Let G be the set of all such Gκ. Let K∗
u denote the edge-colored

graph on u vertices with λ edges of each color (c1, c2) and m edges of each color (c)
directed between every pair of distinct vertices. Observe that a G-frame of type gu

and index 1 is equivalent to a decomposition of K∗
u into edge-colored graphs in G.

Using the notation in [4], µ(H) denotes the “edge-vector” of H, which in our case

is a vector of length g2 + g, indexed by (S × S) ∪ S, whose entry in position (c1, c2)
or (c) is the number of edges of that color in H. For x ∈ V (H), define τ (H, x), the
“degree-vector” of H, to be the vector of length 2(g2 + g), with entries corresponding
to the indegrees and outdegrees of each color at x. According to the main theorem

of [4], it suffices to show that the necessary conditions (5.1) and (5.2) imply: (i)
λu(u− 1)µ(K∗

u ) is an integral linear combination of the µ(Gκ); (ii) λ(u− 1)τ (K∗
u , x)

is an integral linear combination of the τ (Gκ, y), y ∈ V (Gκ); and (iii) that some
positive rational linear combination of the vectors µ(Gκ) equals µ(K∗

u ).
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(i) We use Lemma 1.4. Suppose g2 + g rationals Xi j , Xi , i, j ∈ S, are chosen such
that for all κ : V (G) → S, (and some modulus)

∑

i 6= j

(

∑

κ(T)={i, j}

A(T)
)

Xi j +
∑

i

(

∑

κ(T)={i}

A(T)
)

Xii +
∑

i

|κ−1(i)|Xi ≡ 0,

where A(T) is the 0, 1-adjacency map for G defined in Section 2. Let {x, y} ∈ E(G).
Taking κ−1( j) = ∅, {x}, {y}, {x, y}, and κ−1(i) = V (G) \ κ−1( j) in each case, we
get the congruences

2eXii + nXi ≡ 0,(5.3)

deg(x)(Xi j + X ji) + (2e − 2 deg(x))Xii + (n − 1)Xi + X j ≡ 0,(5.4)

deg(y)(Xi j + X ji) + (2e − 2 deg(y))Xii + (n − 1)Xi + X j ≡ 0,(5.5)

(deg(x) + deg(y) − 2)(Xi j + X ji) + (2e − 2 deg(x) − 2 deg(y) + 2)Xii

+ 2X j j + (n − 2)Xi + 2X j ≡ 0.

(5.6)

Add (5.3) and (5.6) and subtract (5.4) and (5.5) to get, for all i, j ∈ S,

(5.7) 2(Xi j + X ji) ≡ 2(Xii + X j j).

Subtracting (5.4) from (5.3), we have

(5.8) deg(x)(Xi j + X ji) + X j ≡ 2 deg(x)Xii + Xi .

By swapping i and j in (5.8), we see

(5.9) 2 deg(x)Xii + 2Xi ≡ 2 deg(x)X j j + 2X j .

If γ is odd, then 2γ | λgu(u − 1). So by (5.9) and (1.5),

(5.10) λgu(u − 1)Xii + mu(u − 1)Xi ≡ λgu(u − 1)X j j + mu(u − 1)X j .

If γ is even, multiply (5.7) by γ/2 and combine with (5.8) to get γXii +Xi ≡ γX j j +X j .

By (1.5), we again have (5.10). It follows from (5.3) that

u(u − 1)
(

λ
∑

i, j∈S

Xi j + m
∑

i

Xi

)

≡ u(u − 1)
∑

i∈S

(λgXii + mXi)

≡ λg2u(u − 1)X11 + mgu(u − 1)X1 ≡ 0.

(ii) We use Lemma 1.4. Suppose 2g2 + 2g rationals Xi j ,Yi j , Xi,Yi , i, j ∈ S, are
chosen such that, for all κ : V (G) → S and all x ∈ V (G) with κ(x) = j,

g
∑

i=1

|N(x) ∩ κ−1(i)|(Xi j + Y ji) + X j ≡ 0, and

g
∑

i=1

|κ−1(i)|Yi ≡ 0.
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Put Zi j = Xi j + Y ji . Again, let {x, y} ∈ E(G). The colorings with κ−1( j) = ∅, {x},
{x, y}, and κ−1(i) = V (G) \ κ−1( j) give the congruences

deg(x)Zii + Xi ≡ 0,(5.11)

deg(x)Zi j + X j ≡ 0,(5.12)

(deg(x) − 1)Zi j + Z j j + X j ≡ 0.(5.13)

Subtracting (5.13) from (5.12) gives Zi j ≡ Z j j for all i, j ∈ S. By (5.2) and (5.11),

(u − 1)(λgZii + mXi) ≡ 0.

The congruences at vertex ∞ reduce to nYi ≡ 0 and Yi ≡ Y j for all i, j. Therefore,

(u − 1)
(

∑

i, j

λZi j + m
∑

i

Xi + m
∑

i

Y j

)

≡ (u − 1)
∑

i

(λgZii + mXi) + mg(u − 1)Y1 ≡ 0.

(iii) As in (i), use variables Xi j and Xi , where i, j ∈ S. The sum of all possible
µ(Gκ) is of the form u1 = (Pj, Qj, Rj), where m(g − 1)P + mQ = λgR, and j is the
all ones vector of appropriate length. If κ ′(V (G)) = {i}, then µ(Gκ ′) has 0 in all
entries, except for 2e in the entry indexed by Xii and n in the entry indexed by Xi . So

the sum of all µ(Gκ ′), |κ ′(V (G))| = 1, is of the form u2 = A(0, λgj, mj) for some
positive A ∈ Q . At the other extreme, if κ ′′ is a proper g-coloring of G, then µ(Gκ ′ ′)
has entries summing to 2e among Xi j positions for i 6= j, and entries summing to
n among Xi positions. Summing over all permutations of this coloring, one has the

vector u3 = B(λgj, 0, mj) for some positive B ∈ Q . Now a nonnegative multiple of
either u2 (if P ≥ Q) or u3 (if P ≤ Q) added to u1 gives a positive linear combination
of the required form.

We remark that the hypothesis of G admitting a proper g-coloring is perhaps un-
necessary, but provides a tidy proof of a sufficient result for our purposes.

We close this section with a variant of Wilson’s fundamental construction, which
produces non-uniform G-frames from uniform ones. See [3] for a proof and discus-

sion of the case G = Kk.

Lemma 5.3 Suppose there exist an RTD(u + 2, q) and G-frames of types gu, gu+1 and

gu+2 and index λ. Let p1, p2 ∈ Z with 0 ≤ p1, p2 ≤ q. Then there exists a G-frame

with index λ having precisely u groups of size qg, one group of size p1g, and one group

of size p2g.

6 Recursion

Here, we fix a positive integer λ and a simple graph G, and concern ourselves with
admissible orders v for this λ and G. The index of any G-design or G-frame is here
assumed to be λ. By Theorem 4.1, there exists a resolvable G-design of order v ′ for
some particular v ′ > n. Our asymptotic construction will use this order v ′ as a basis.
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Lemma 6.1 There exists k0 ≡ 0 (mod n) such that for all k ≥ k0 with k ≡ 0
(mod n), there exists a CRGD(k(v ′ − 1) + v ′, v ′, G, λ).

Proof Since v ′ is admissible, (5.1) and (5.2) are satisfied for g = v ′−1 and u = k+1
for any k ≡ 0 (mod n). By Theorem 5.2, there exists a G-frame of type (v ′ − 1)k+1

for sufficiently large k ≡ 0 (mod n). The claim follows directly from Lemma 5.1
with h = 1.

For two sets of integers X,Y , define XY as the set of all products of an element
of X with an element of Y . Write X ≡ Y (mod M) if the corresponding sets of
least nonnegative representatives modulo M are equal. When M is understood, let
〈α〉 denote the subgroup of Z/MZ generated by α. We now call upon a result of

elementary number theory.

Lemma 6.2 Suppose X ≡ 1 + 〈α〉 and Y ≡ 1 + 〈β〉 (mod M). Then XY ≡ 1 +
〈gcd{α, β}〉 (mod M).

Since the set of all v − 1 ∈ Z satisfying (1.4) is an ideal, the admissible orders are
periodic modulo M = n(v ′ − 1). We now observe that the constructions of Sections
3 and 4 yield examples in all admissible congruence classes mod M.

Theorem 6.3 Let M = n(v ′ − 1). For every admissible order t for λ and G, 0 ≤ t <
M, there exists an RGD(w, G, λ) with w > M and w ≡ t (mod M).

Proof First, note that we may choose the prime power of Theorem 4.1 to be 1
(mod M). So it suffices to show that there is an equireplicate GD(w, G, λ) with arbi-
trarily many resolution classes and w ≡ t (mod M).

Let n ′ be chosen as in Theorem 2.3. Since n ′|v ′, we have gcd{n ′, M} = n. Define
X ′ to be the set of possible u in Theorem 3.3. Let

X = 1 +
〈

lcm
{

n ′ − 1,
γ

gcd{λ, γ}

}〉

and observe that by (3.1), X ′ ≡ X ∩ nZ (mod M). By Theorem 2.3, there exists an
RGD(n ′, G, λ∗) for λ∗ = p lcm{λmin, λ}, where p > M is some prime. Define Y ′

to be the set of possible primes q > n (for this λ∗) in Theorem 3.3. By Dirichlet’s
Theorem and (3.2), Y ′ ⊇ Y , where

Y ≡ 1 +
〈

lcm
{ 2e

gcd{2e, λ}
,

γ

gcd{γ, λ}
,

p λmin

gcd{λmin, λ}

}〉

(mod M).

By Lemma 6.2 and some calculations, XY ≡ 1 + 〈α〉 (mod M), where

https://doi.org/10.4153/CMB-2007-050-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-050-x


Asymptotic Existence of Resolvable Graph Designs 517

α = lcm

{

γ

gcd{γ, λ}
, gcd

{

n ′ − 1,
2e

gcd{2e, λ}

}

, gcd
{

n ′ − 1,
λmin

gcd{λmin, λ}

}

}

.

By (1.4) and (2.2), 2e|nγ and λmin|γ. So the second and third factors in the lcm
expression for α divide the first. Since every element in Y ′ is relatively prime to n,

X ′Y ′ ≡
(

1 +
〈 γ

gcd{γ, λ}

〉)

∩ nZ (mod M),

covering all representatives of admissible orders mod M.

Proof of Theorem 1.3 Take an admissible order t for λ and G, with 0 ≤ t < M.
Let w ≡ t (mod M) be as in Theorem 6.3. We must show that there exists an
RGD(cM + w, G, λ) for sufficiently large integers c.

Write w = w ′+v ′. Let g = gcd(M, w ′). Since both M and w ′ are divisible by n and
γ, Theorem 5.2 guarantees G-frames of type gu, gu+1, and gu+2 and index λ, for some
u. Let k0 ∈ Z be as in Lemma 6.1 and k1 ∈ Z be large enough so that by Lemma 1.5

there exists an RTD(u + 2, k(v ′ − 1)/g) for all k ≥ k1. Suppose l ≥ max{k0, k1}/n

and l ′ ≥ k0/n with k = nl and k ′ = nl ′. By Lemma 5.3 there exists a G-frame with
exactly u groups of size k(v ′ − 1), one group of size k ′(v ′ − 1), and one group of size
w ′. Also, there exist a CRGD(k(v ′−1)+v ′, v ′, G, λ), a CRGD(k ′(v ′−1)+v ′, v ′, G, λ)

and an RGD(w ′ + v ′, G, λ). So Lemma 5.1 results in a resolvable G-design of order
(ku + k ′)(v ′ − 1) + w ′ + v ′ = (lu + l ′)M + w and index λ. The proof is now complete,
since any sufficiently large integer c is of the form lu + l ′, where l, l ′ are as above.
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