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Polynomial solutions of a few binomial congruences have been known for
a long time. For instance Legendre showed that the congruence

(1) x2 = a (mod 2m; a == 8? + 1)

has a solution

x s ±{1 + \{a - 1) - \(a - I)2 + • • •} (mod 2—1),

this being the expansion of \/(l + a — 1) as far as the term of degree
m — 3. [1] It seems that only restricted types, e.g. (1), have been investigat-
ed.

1. Summary

This paper relates to solutions of the congruence

(2) xn = a (modM)

that are polynomials in a; a has any admissible value that is prime to the
modulus, but otherwise there is no restriction on any of the integers in (2).
Fundamental is

THEOREM 1. All congruences (2) have polynomial solutions.

The other theorems relate to the minimum degree of a solution, and to the
number of terms. To facilitate their enunciation, some notations used
throughout are given here.

(i) The congruence that gets most attention is

(3) xn == a (mod pm),

a being any w-ic residue (not divisible by p).
(ii) d, nx, w, and r are defined as follows:

(4) {n,p — l) = d, n = dnrf>w {p \ nx), p ~ 1 = dr.

Although n in (3) is unrestricted, we need only consider values such that

1 < n < <}>(j>m) = pm^{p - 1),
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in view of the Fermat-Euler theorem. With this limitation

w ^ m — 2 (p = 2), w ^ m — 1 (p ̂  3).

(iii) E denotes the />-adic valuation:

E{p*M/N) = i, E(M/N) = 0, EiM/p'N) = - i (p \ MN).

Extensive use will be made of the obvious properties

E(MN) = E{M) + E(N),

If E(M) < E{N), then E(M + N) = E(M).

(iv) Most other symbols (e.g. k, JU, M) are used with various meanings,
being redefined each time the meaning is changed.

THEOREM 2. Let Dlt D2, • • • be the minimum degrees of polynomial solutions
of (3) when their moduli are the prime powers Mx, M2, • • • respectively. Then
the minimum degree of a polynomial solution of (2), when its modulus is
M1M2- • •, is

D = max (Dv D2, • • •).

THEOREM 3. When p -f n, the minimum degree of a polynomial solution of
(3) satisfies

D ^ rs — 1,

where s is the least integer such that

s + E(s\) ^ m.

THEOREM 4. When p = 2 and 2\n, the minimum degree of a polynomial
solution of (3) is

D = [\{m — w— 1)].

As a particular case of Theorem 4, take (1), i.e. n = 2. Then

D = ft(#» - 2)].

The degree need not be m — 3, but only about half of this.

THEOREM 5. When p ^ 3 and p\n, the minimum degree of a polynomial
solution of (3) satisfies

r{m — w — 1) 5S D 5^ r(w — w) — 1.

THEOREM 8. / / every prime in the modulus of (2) satisfies (d, r) = 1, aw^
*/ (w, M) = 1, ^^w (2) has a single-term solution.

This generalizes the well-known solution x = aa of

a;2 = a (mod >̂, = 4=q — 1).

Another generalization is

THEOREM 9. When p\n, (3) has a solution consisting of d terms, where d is
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[3] Polynomial solutions of binomial congruences 259

the least divisor of r such that

(d, r/S) = 1.

2. Preliminary

When p divides n the modulus of a solution need only be pm~w. This is
because

(x + pm-wg)n = xn -] f- C(n, s)xn-s

where the E of the general term with s ^ 1 is at least

E{C(n, s)} + s(m — w) = E{C{n — 1, s — l)n/s] + s(m — w)

^ 0 + w — E(s) + s(m — w)

= m + (s — l)(m — w) — E(s)

^ m + s — 1 — £(s) ^ m (p ^ 2).
Thus

(a; + £m-w ^)n = xn (mod ^>m),

justifying the assertion. It can also be seen that when w = 0 and p does not
divide q, the £ of the term with s = 1 is m and the E of every term with
s > 1 is greater than m. Therefore, writing xh for x -\- pmq and xk for x,
we have

(5) E{xn
h - xl) = £ ( * , - xk),

provided the latter is greater than 0.
When p ^ 3, the number of n-ic residues mod pm in a complete set is

(6) R = <f>(pm)/dpw = pm-w~1r,

and each residue has dpw roots mod pm. [2] Since the modulus of a solution
need only be pm~w, each residue has d roots mod pm~w. In particular, making
m = ze> + 1 shows that there are *£ roots mod p to each of r n-ic residues
mod pw+1.

Divided differences will play a prominent part. The notations

d*(x/a)t, d){x/a)

will be used according to convenience for the *th forward divided difference
of Xj with respect to ai in the sequences

xo> xi> ' * *> XJ> ' ' ',

a0, ax, • - •, ajt • • •,

and the variables may be omitted where no confusion arises. These differ-
ences will be used in the well-known interpolation formula similar to the
congruence (19) below.

As is usual, a fraction MjN in a congruence denotes the solution of

https://doi.org/10.1017/S1446788700025957 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025957


260 H. Lindgren [4]

Nx == M. Normally the denominator is prime to the modulus, but in this
paper it is convenient to use fractions such as M/Np? (mod^>TO; p \ MN).
The reason is that they can occur as coefficients in a polynomial solution; for
instance they occur in Legendre's solution of (1). Such a fraction can always
be brought to a standard form M'/p**, for M' is the solution of

Nx~M (mod pm+i>).

It is also convenient to use a fractional modulus. The interpretation of a
congruence in these cases is quite orthodox, namely that the difference
between the members (any fractions being in standard form) is an integral
multiple of the modulus.

Theorem 1 is proved in three stages:

1A. (3) has polynomial solutions when p \ n, and
IB. when p\n.
1C. (2) has polynomial solutions.

3. Proof of Theorem 1A

The formula mentioned in § 2 gives x in terms of xn for any R values of x:

(7) x = x0 + d(x/xn)0 (xn ~ xn
Q) + d*(x/xn)0 (xn - xn

Q) (xn - xl) + • • •

+ <5*-1(#s«)0 (*« - < ) • • • (»» - xn
R_2).

If XQ, • - •, xn
R_x is a complete set of n-ic residues mod pm and the formula is

turned into a congruence mod pm, it will become a polynomial solution of
(3), provided that the divided differences are such that xn can be replaced
by any a congruent to it. This will certainly be so if

(8) E{dHx/x«)0} ^ 0.

It will be proved that, when p does not divide n, the x5 can be chosen so that
(8) is true.

The differences can be written in the form

where P is a polynomial in x0, • • •, xt with integral coefficients, because every
algebraic expression we divide by in forming <5* is in the denominator. Since
Si is a symmetric function of x0, • • •, xit and its denominator is the product of
a symmetric polynomial and the simple alternant II(xh — xk), its numerator
too has this form. Therefore

(9) d* = Qn\^f—5j] (h, k as before),
\xh — xk)

where Q is a polynomial with integral coefficients.
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Choose the roots, if there are more than one per residue, so that

(10) If and only if p\ah — ak, then p\xh — xk.

This can be done because the congruences

xn = ah, xn = ak (mod p),

being the same if p divides ah — ak, have the same set of roots, and both
xh and xk in (10) can be made congruent mod p to the same root in the set;
while if p does not divide ah — ak, the two sets of roots mod p have no com-
mon member. From (5) and (9), when the roots satisfy (10), and p does not
divide n,

E(d<) = E(Q)^ 0,

proving (8). Hence one can make any set of substitutions

xn — xl == a — an (mod pm)

in (7). This proves Theorem 1A.

4. Proof of Theorem IB

When p divides n, the simple argument based on divided differences is
not applicable, for their E's may be negative.

Case 1: p ^ 3. Write a in the form

akr+l

where k is the least positive integer such that

kr + 1 == 0 (mod n/d, = n^), kr + 1 = vnfd, say;

such a ^ exists because, by (4),

(12) {r,nxp«) = l.

Then (3) has a formal solution

x = avld{\ + ar — l)-hln (mod pm^°).

Let 4̂ denote a polynomial solution of

x* = a (mod ^>TO-t0) ;

it can be found by virtue of Theorem 1A because p does not divide d. Then
a}ld is a formal expression for A,

and the formal solution becomes

(13) x = A"(l + ar — l)-fc/n

I k k k + n )

1 (ar — 1) H — («r — I)2 (mod p
n n In )
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the expansion terminating at the last term not divisible by pm-v>. This will
be a polynomial solution, provided that we justify this truncation of a di-
vergent infinite series, and show that all terms from some point on are
divisible by pm-w.

Let
(1 + u)-kln =l + cxu + c2u

2 H ,

where k and n are any integers such that k ^n (as in (13), where k < n/d
5̂  n). Then, when 0 < u ^ \,

+ „)-*/» _ (! + ClU + . . . + cs_xu^)\ < \cs\u° +
^ us + us+x H = O(us).

Therefore

\ + cxu-\ h c^u3-1 = (1 + u)-kln +

(1 + cxu -\ h c^w8"1)" = (1 + u)~k + O(us),

{l+cxu-\ 1- cs_xu
s~i)n (1 + u)k = 1 + 0(M8),

(1 + qM H h c^w8"1)" (1 + u)k = 1 + terms in «•, • • •, u
n{*-»+k.

The last equation holds for an infinite number of values of u, so it is an iden-
tity that holds for all. Hence if pm divides each term on the right containing
u, then

(1 + cxu -\ h C ^ M 8 - 1 ) " (1 + u)k = 1 (mod pm);

if p does not divide 1 -{- u, then

(1 + cxu + h c^u*-1)71 = (1 + u)~k (mod/>w);

and one root is given by

(1 + u)~kln = 1 + cxu H f- C ^ M ' - 1 (mod />w-w).

The use of the divergent series is thus justified.
It remains to be shown that all terms in (13) from some point on are

divisible by pm~w. By (4) and the Fermat-Euler theorem,

(14) ar — 1 = xnr — 1 = 0 (mod pw+x),

since
nr = dnxp

wr = nxp
w{p — 1) = nx<$> {pw+x).

Hence
E{(ar - l)/n} ̂  1,

and the E of the term in (13) containing (ar — 1)* is at least s — E(s\).
We now apply the formula

(15) E(s\)= (s-a)l(p-l),

where a is the sum of the digits in s, when expressed in the number scale with
radix p. [3]
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By (15), when p ^ 3,

s - E{s\) = s - {s - a)/(p - 1) ^ s - (s - a)/2 = i(s + a) ^ | ( s + 1).

If therefore s is chosen so that

| ( s + 1) = m — w,

then the term in (13) containing (ar — l) s and all terms thereafter are divis-
ible by pm-w, and the earlier terms constitute a polynomial solution of (3).
This proves Case 1.

Case 2: p = 2. Here (and whenever r = 1) it is simpler to write

(16) x= ( 1 + a - l ) 1 / * ^ 1+ — (a— 1)H ~^- (a— 1)H (mod 2™~w).
n n 2n

The 0(ws) argument to justify the expansion is similar to Case 1, but shorter.
Instead of (14) we have

(17) a— l~xn — 1 — 0 (mod 2W+2),

as is seen from the expansion

m ± 1)" = 1 ± n • ±q + \n{n — 1) • 16^2 ± • • • = 1 (mod 2W+2).

Hence

E{(a - 1)M ^ 2,

and the E of the term in (16) containing (a — I)8 is by (15) at least

2s — E(sl) = 2s — (s — a) ^ s + 1.
The conclusion is as before. This proves Case 2, and completes the proof of
Theorem IB.

5. Proof of Theorems 1G and 2

Denote a solution of minimum degree, when its modulus is the prime pow-
er Mh (h = 1, 2, • • •), by

* = cho + chia + ch2a
2 H (modMfc).

There are values of ck that satisfy the simultaneous congruences

ck = chk (mod Mh; h = 1, 2, • • •; & = 0, 1, • • •, max Dn),

for the moduli are coprime in pairs. These give a polynomial

c0 + cx« + c2a
2

c0 + cx« + c2

that is a solution for every prime power in the modulus, and so is a solution
of (2). Moreover its degree is max Dn, for k is not greater than this. This
proves Theorem 1C, completing the proof of Theorem 1, and Theorem 2.

A congruence for ck containing a fraction such as b/p? (mod pm) does not
cause any difficulty, for one can solve the set of congruences for Lck, where
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L is the LCM of the denominators of all such fractions, and the work is then
all in integers. Thus if

c = \ (mod 64), | (mod 25),
then

10c = 5 (mod 128), 8 (mod 125),

10c = 133 (mod 16000),

c == 133/10 (mod 1600).

In proving Theorem 1A, the roots were chosen so as to satisfy (10). The
roots given by a solution such as (13) in Theorem IB, Case 1, also satisfy
(10). For if f divides ah — ak, then fi divides Ah — Ak since its coefficients
satisfy (8), and by (13)

xh-xk^ Av
h{\ ) - Al(l )=A'h-Al = 0 (mod*),

that is, p divides xh — xk. A similar restriction in Theorem IB, Case 2, evi-
dent from (16) and (17), is

(18) Mxh-xk (j> = 2,2\n).

The restrictions (10) and (18), on which the proof of Theorem 1 depends,
will be complied with henceforth. They are not always necessary, but in
complying with them one gets a solution of lower degree. A proof of this is
included in the proofs of Theorems 3 and 4.

6. Serial order of residues

Theorem 1 shows that on turning (7) into a congruence with the appro-
priate modulus and replacing xn — x\ by a — ah, it becomes a solution of (2).
It is further desirable to replace the divided differences with respect to xn

by those with respect to a. The solution of (3) will then be the expected

(19) x = xo + d(xla)o(a-ao) +d*{x/a)0{a - a0) {a-ax) + • • • (modf-).

The condition for (19) to be a solution of (3) is seen to be

(20) ^(x/a)0 == <5l(z/a;n)0 (modpi1; /u, = m — w — et),

where et denotes the minimum E (for a — a0, alt • • •, ad inf.) of the cofactor

( 2 1 ) ( « - « o ) ( « - « i ) • • • ( « - « < - i )

of d* in (19). On the other hand divisions by terms such as ah — ak, performed
in calculating the divided differences, reduce the modulus to pv, say. If
v ^ fi, (20) is satisfied. If v < pi, then the values of di{xla)0, differing by
multiples of pv, that satisfy the congruence mod pv include those that satisfy
it mod pp. Restricting ourselves to the latter, we can make (20) true, what-
ever the values of a0, av • • • in (19). But this fact is useless in practice, for
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we would still need to calculate the unwieldy divided differences with respect
to xn.

It will be shown that (20) is true (i.e. v = /x) if the residues are in any order
such that

(0
(22) E{ah-ak) = (?=2, 2f»; r\h-k,p^3, any n),

. E(h — k) + w + 2 (p = 2, 2|w).

Simply defined orders that satisfy (22), when the modulus is pm, are numer-
ical order, ascending or descending, and orders with a0, av a2, • • • congruent
to 1, gn, g2n, • • •, where g is a primitive root.

When (22) is satisfied, every rth factor in (21) from some point on (not
later than the factor a — ar-1) is divisible by pw+1 (or 2W+2), the [i/r] or
[i/r] -f- 1 quotients are such that every pth quotient from some point on (not
later than the pth) is divisible by p, every p2-th quotient by p2, and so on,
and no other factors are divisible by p. Thus we find eit which, when p does
not divide n, is the right-hand side of

(23) E{(a - a0) (a - ax) • • • (a - a^

^ [*/'] + Wpr] + [t/p2r] + •- = [i/r]

The minimum value is attained when a = ao for then the rth factor from the
end is divisible by pw+1 (or 2W+2) but not by pw+* (or 2W+3), the pth quotient
from the end is divisible by p but not by p2, and so on. Therefore

et = E{(at - ao){ai - ax) • - • (at - a^)}

= E{(ajr+k — ak)(ajr+k — ar+k) • • • (air+k — ai

where jr -\- k is written for i, and so et is equal to

(24) E { ( a i r - a0)(ajr_r - a0) • • • (ar - a0)} = E{(x% - < ) • • • (x»r -

Now calculating the respective sides of (20) involves division by quantities
identical with or equal to the factors on the respective sides of (24), among
others; but those in (24) are the only ones that reduce the modulus, and
their total E is et. Thus the condition (20) for (19) to be true is satisfied auto-
matically, if the residues are ordered as in (22). And if (22) is complied with
in respect of each prime in the modulus of (2), then (19), with the appropriate
modulus, is a solution of (2).

The restrictions (22) on the order of the residues will be complied with
henceforth. They can be combined with (10) and (18) to give

(25) E{xh - xh) =

0

E(h - k) + 1 (p = 2, 2 \ n; r\h ~k,p^3, any n),
\E{h -k) + 2 (p = 2, 2\n).
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Similarly to (22), (25) is satisfied, when the modulus is pm~w, by roots in the
numerical and primitive-root orders.

7. Proof of Theorem 3

In view of (8) the terms in (19) containing drs and all terms thereafter can
be omitted if

E{(a — ao)(a — ax) - • {a — ars_x)} :> m.

By (23) with i = rs, this condition becomes

s + E(sl) ^ m,

so if s is the least integer satisfying this inequality, the degree is at most
rs — 1. This proves Theorem 3, the roots chosen satisfying (10); it will now
be shown that the result is only weakened by disregarding (10).

It will be proved that if compliance with (10) gives a solution whose de-
gree is lower than r(m — w), then the degree of any solution constructed
from roots not satisfying (10) is at least r(m — w). The w is included in pre-
paration for Theorem 5. We shall use the formula [4]

(26) <

The condition

(27) E{d^(x/xn)0 (a-ao)--(a- V _ x ) } ^ fi {p = m - w)

is satisfied irrespective of the values of a, a0, • • •, if and only if the degree of
the solution is less than fir. It is known (when w = 0) and assumed (when
w > 0) that (27) is satisfied if (10) is complied with.

The w-ic residues mod j>m, of which by (6) there are p^^r, are distributed
among r residue classes mod pw+1, each containing p^~x members (and only
fi ^ 2 need be considered). The corresponding roots for each class may have
any of d residues mod p, but however one chooses them, there are for each
class at least

l + 1 ̂  p*1-2 + 1 ̂  fx

roots that have the same residue mod p\ so there are always at least fir roots
that satisfy (10). They will be denoted by x0, • • •, x^-y, while x^ and I will
denote roots of a further residue aflr such that

i f p l a ^ - a k , t h e n p i x ^ — x k , p \ £ — x k ,

where k is any integer from 0 to fir — 1. This means that

where p is not divisible by p.
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The ^rth divided difference of x0 with respect to x% in the sequences

which will be distinguished by a bar, is

d»r(x/xn)0 = d<"(xlxn)0 + p/n(x;r - xl) {k = 0,-;[ir- 1).

The first term on the right is the same as in (27), and the second term is
obtained from (26) with y^ = p and yh==0 otherwise. Multiplying this
equation by the denominator under p and replacing x^r — xl by a^ — ak,
we get a term whose E is by (27) at least fi, plus p whose E is 0. Therefore

E{d^{xlxn)0 (a^ - «„) • • • ( V - V- i ) ) = ° < A*.
which shows that if (10) is not complied with, the degree of the solution is at
least /ur, and so is greater than rs — 1.

That (10) is not necessary will be shown by finding a solution of

x2 = a ~ 3q + 1 (mod 27),

based on the relaxed condition

If pw+*\ah - ak, then f\xh - xk.

(A similar relaxation of (18) is

If 2w+*\ah - ak, then ±\xh - xk.)

The condition is complied with by making

x = 1 (mod 3) if a = 1 or 4 (mod 9),
x = 2 (mod 3) if a = 7 (mod 9).

A complete set of such roots (q = 0, • • •, 8) is

x=l, 25, 14, 19, 16, 23, 10, 7, 5 (mod 27 pro tern.).

Instead of (19), Newton's formula

(28) x = x<i+qAxQ+te{q-l)A*x0+ • • • +{q(q-D • • • fe-D+l)//)!}^^

can be used, because here r = 1. The first six differences of #0 are 24, 19,
24, 6, 9, 9, and all 7th differences are zero. Substituting the differences in (28)
and simplifying, we get

x = 1 — Sq + 6q2 + 4qz + 9?4 + 9q* — q6.

In contrast, a solution whose roots 1, 25, 13, 19, • • • comply with (10) should
by Theorem 3 be of degree 2 at most, and in fact

Ax0 = 24, A2x0 = 18, A3x = 0,
whence

x = 1 + 24^ + 9q(q — 1) = 1 — 12q + 9?2.
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8. Theorem 4. Preliminary

When p = 2 and n is even, we can, in view of (17), make the substitution

a — 1 = 2»+2q (q = O , l , " •)

in (16), getting

(29) x=l-\ 2w+2q-] ZLl.2*°+*q*-] (mod 2n»-w).
n n 2n

The degree in q of (29) may be higher than necessary. If there is a solution of
lower degree, it will be given by (28) mod 2m~w. We shall find D from the con-
dition

(30) E{A*Xi) ^m-w (i > D),

by virtue of which further terms in (28) are omitted.
The left-hand side of (30) in terms of i is found from (29), which expresses

a; as a power series in q. We use

LEMMA 1. Aiqi+i is an integral multiple of (* + ;)!/(2/)!

PROOF. The lemma is nugatory and obvious for any / when i ^ /, and will
be proved by induction from i — 1 to i.

Reducing by 1 the order of the differences gives

The maximum s is / + 1 because Auqv vanishes when v — u < 0.
The general term shown, on the assumption that the lemma is true for

A*-1 and any exponent of q, is a multiple of

(i + /) 1 (i + j-s)\ (i + / ) I ( 2 / ) J (2s - 2) 1

— s)\{2j — 2s + 2)\ {2j)\ (2 / -2s + 2)!(2s-2)! si

Since 1 ^ s ^ / -f- 1, the second and third factors on the right are non-zero
integers. Therefore each term in the ^ is a multiple of (i + /) !/(2/)!, so is
their sum, and the lemma is proved.

9. Proof of Theorem 4

Write (29) in the form

(31) x=l+cxq + c2q* + • • • (mod 2m-v>),

where

ck = (1 - n)(l - 2n) • • • 2ki»+v/(k\nk),

(32) E(ck) = k{w + 2) - E(k\) -kw = 2k- E(k\).

Applying A* to (31) with x = x0, q = 0, we get
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(33) A*xQ = ct A
10* + ci+1 A * O^1 -\ (mod 2m-»),

where, as is well known,

(34) Ai0i = il,

and by Lemma 1

(35) E(A*0*+i) ^ E{{i + /)

Therefore, by (32) with k = i and (34),

and, by (32) with k = i + j (/ ^ 1), (35), and (15),

E{ci+iA*0™) ^ 2(* + /) - E{(2j)!} = 2(i + j) - 2/ + °{2j) ^ 2i + 1.

These two relations show that in (28)

E(A*x0) = £(c,4*0') = 2i.

From this and (30), D is given by

2(D + 1) ^ m — w,

which is satisfied by
D = [J(w — ?» — 1)]

and by no lower value of D, when (18) is complied with.
A similar argument can be used whenever r = 1, that is, when by (6)

there is only one w-ic residue mod^>w+1.
It will now be proved that any solution constructed from roots not satis-

fying (18) is of degree higher than [£(m — w — 1)].
Congruences with m — w 5S 2 are trivial. When m — w = 3, so that

n = 2m~3 nlt there are only the two residues 1 and 2m~x -\- 1 (mod 2m) with
respective roots ± 1 and i 5 (mod 8). Any linear polynomial constructed
from roots not satisfying (18), e.g. from roots 8h + 1, 8& -f 3 and residues
2mi -f- 1, 2mj + 2m~1 + 1, where h, i, j , k are any integers, will be found to
be congruent mod 8 to ± {1 + 2~m+2(a — 1)}, which shows that it fails
when a = 2m + 1. Thus the degree of a true polynomial solution is at least 2.
But a polynomial solution constructed from roots satisfying (18) is linear.

When m — w ^ 4, at least half of the 2m-w~2 roots, however one chooses
them, have the same residue mod 4, and

Therefore there are always D + 1 roots satisfying (18). They will be denoted
x0, • • •, xD and the corresponding residues by a0, • • •, «#, while a^.^ and

will denote roots of a further residue aD+1 such that

This means that
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where p is singly even.
The argument applied in § 7 to d*11", when applied here to dD+1, leads to

E{dD+1(x/xn)0 (aD+1 - a0) • • • (aD+1 - aD)} = 1 < m - w.

If then (18) is not complied with, the degree is higher than [%(m — w — 1)].
This completes the proof of Theorem 4.

10. Theorem 5. Preliminary

When r > 1, the preceding argument based on Lemma 1 cannot be applied
direct. The plan adopted is to find a relation between divided differences and
ordinary ones, and use it in conjunction with a solution valid only for
a0, ar, • • •, to which ordinary differences and so Lemma 1 can be applied.

The relation is expressed between Ay, which for the time being will denote
the increment in y corresponding to an increment r in the suffix or suffixes
in y, and an operator 0, whose definition is

and more generally

(36) 9*yt = {air+j - «,)

LEMMA 2. / / y is any function of the n-ic residue a such that

EiA'y,) = * + E(y),
then also

Ei&Vi) = i + E(y).

For this lemma n is such that w ^ 1, all values of y have the same E, and
the residues are in an order, complying with (22), such that

(37) aqr+j = aj + p^q.

In proving it we make / = 0 without loss in generality, for any y and a in the
sequence can be labelled with the suffix 0.

PROOF. Reducing by 1 the order of the differences in (36) gives

(38) 0«yo = n(air - a.)(d^1 - dr1) {s = 1, • • -, it - 1; 6 = d(y/a)).

Now in calculating df~x from the dir~r's we divide only by

a i r _ r + h — a k ( h , k = j , - ' , j + r — l ; k = £ h ) ,

(39) =£ 0 (mod p)

by (22). But ah — ak (h, k as above) are the quantities we divide by in calcu-
lating a <5J-1. Therefore
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d?'1 = drrxdir-r (mod p* pro tern.; JU = w + 1 + min E(dir-r)),

and, by (26) and (22), (38) becomes

cir-r sir-r

? y ± y * iht k = 0, •••, r - l ;
n(ah+1 - ak+x) n(ah - ak)

sir—r ( fiir—r fiir—r

—r^ + III(ar — ak) ^ \TI{ah — ar) TI{ah — a0))
sir—r

IT(a0 — ah)
sir—r sir—r
r ~ °0

Therefore

<9*2,O = n(air - a,) (6^ - d^r) (mod pM) s = r, • • •, ir - 1),

where
M = w + 1 + min E{IT(air — as)d

ir-r),

and this, by (37) and (26), is the same as

O'Vo - n(air_T - a.) 2 ( Vr+h - n , V h ) (mod j¥)
\IT(ar+h — ar+k) II[ah — ak))

= I7(air_r - a.) I fyh = 9<-iAy0,
II(ah — ak)

where

s = 0, • • •, ir — r — 1; h, k = 0, • • •, ir — r, k =£ h;

M = w + 1 + min E{II(air_r — as)d
ir~r} = w + 1 + min E{Si-1y).

The same argument, with <9'~* applied to Aky} instead of 0i applied to y0,
estabh'shes

(40) e*-kAkyt = ei-k-1Ak+1yi {modpM),

where

k = 0, • • •, * — 1; M = w + 1 + min E(G*-*-1 Aky).

By (40), with i = 1, * = 0,

£(%,) = £(zty,) = 1 +
A s s u m e t h a t , for k = 1, • • • , « ' — 2 ,

Then the Af in the modulus of (40) is w -\- i + E(y), whatever the value of
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k, and we have the chain of congruences

9*yt = ei~kAkyi = Aiyj (mod p«+<+»W; k = 1, • • •, * — 1).

The E of the last member is i + E (y), hence so is that of every other member.
Thus the assumption, if true for i — 1, is also true for i, and so is always true.
Lemma 2 follows.

11. Proof of Theorem 5

When (37) applies with a0 = 1, a solution of (3), valid only for a0, ar

is given by (16) mod^>m~w. Writing it in the form

x = 1 + cxq + c2q
2 -f- • • • (mod pm-w),

where

ch = (1 - n){\ — 2n) • • • pklw+1)/(klnk), q = {a -

we have, corresponding to (32) and (33) in § 9,

E(ck) = k{w + 1) - E{k\) -kw = k - E{k\)
and

Ai x0 = ct A * 0* + ci+1 Ai 0*+1 H (mod ^m-w),

J being the difference for unit increment of q. Using (34) and (35), this time
we get

£(c<4*0') =* ,
and, with (15) also,

E { c M A W ) ^ t + j - E{(2j) !} = * + / _ ( 2 / -

^ * + / - (2/ - 2)/2 = * + 1 (/ ^ 1).

These two relations show that

where J , the difference for unit increment of q, is by (37) the same as the
difference for an increment r of the suffix. Hence Lemma 2 can be applied
to the present A operating on x, all values of which have the same E, and it
relates Ax to Ox.

By the argument following (23),

E{{a — ao)(a — ax) - • - {a - ara_x)}

has its minimum value when a = ars. Therefore by (36) and Lemma 2

^ E{(ars - a0) • • • (ar8 - ^JeT(*/«)„} = E(0*xo) = s,

there being equality when a = art. This shows that the term in (19) contain-
ing d" can be omitted if and only if s ^ m — w. Intermediate terms con-
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taining drt+j (j < r) can then be omitted also, for in calculating drs+j from <5r*
we do not divide by j> (compare (39)), so the E of an intermediate term is not
less than s. Therefore the minimum degree is at least r(m — w — 1) and at
most r{m — w) — 1, if when d > 1 the roots chosen satisfy (10). It has been
proved in § 7 that (10) will be necessary for minimum degree, so the proof of
Theorem 5 is complete.

When r = 1, the limits are equal and we have a precise value of the mini-
mum degree, as in Theorem 4.

12. Worked example

To illustrate the divided-difference method, we solve

xs == a (mod 27).

Here r = 2, m = 3, w = 1, so by Theorem 5 the degree of the solution is
at most 3. Also, since w = 1, its modulus need only be 9. To satisfy (25), the
roots are put in ascending numerical order.

x == 1 2 4 5 7 (mod 9)
a = 1 8 10 17 19
< 5 = 4 1 4 1 (mod 9)

—J (mod 3°)

<53= — - ^ - (mod 3°)
8- 3 11- 3

= _ l __J since 1/8=—2/11 = — 1 (mod 3 • 3°)
<54 == 0 (mod 1/9)

T h e m o d u l u s of <52 a n d (53 is w r i t t e n 3° i n s t e a d of 1, t o i n d i c a t e t h a t power s
of 3 dividing a denominator are not to be treated like other integers.

From the table we have the solution

a;= l+4(a— l)—l(a— l)(a—8)—-\{a— l)(a—8) (a—10) (mod 9 pro tern.)
= 3+|a—3a2—la3 = Ja(4—«2) (since a2 = x6 = 1)

This is a particular case of Theorem 6 below.
Such a solution can always be checked with the help of the Fermat-Euler

theorem. In the present case

x3 = «3{1 - (a2 - 1)} = 2az — a5 = a - a{\ — a2)2 = a (mod 27).

13. Indicial difference greater than 1

The next three theorems make use of vit the least positive integer satis-
fying
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vtfi=l (mod <f>(p*)fd, = p^r).

THEOREM 6. When (d, r) = 1, (3) has polynomial solutions of degree

D ^vx + r(s — 1) (p \n; s + E(sl) ^ m),
D 5^ vx + r(m — w — 1) (p\n),

in which the indicial difference is r. That is, the polynomial is of the form

coa
v + cxa

v+r + c2a"+2r + • • •

PROOF. There is nothing to prove when p = 2, since then r = 1; so we
consider only p ^ 3. Write <z in the form (11), but making k the least pos-
itive integer such that

&r + 1 = 0 (mod n), kr + 1 = vxn.

Such a £ exists because by (12)

(n,r) = (dnxp»,r) = (<*, r) = 1.

The formal solution is now

(41) x = av(l+ar— \)-hln~av{\ — (k/n)(ar~l)-j } (modp"; v = vx),

where instead of the polynomial A in (13) we have the single term a.
Make in (41) the substitutions

(42) x\av ~ y (mod pm~w), ar ~ 1 == pw+xq (mod pm),

the second of which preserves the congruences

1 [ar - \Y 1 (pw+1qY , ,
- = - f 1) mod p™-"),

however great i may be. For if

B = C + jpm~w = 0 (mod p),
then

Bi = a -f iipn-^O-1 H = C* (mod ^w-«+<-i),
and

Byil^CyH (modpM),
where

AT = w — w + « — 1 — E(i\) (i ̂  1),
and so by (15)

M ^ m — w -\- i — 1 — («'— l)/(^> — 1) ̂  w — te».

Moreover q runs through the consecutive integers 0, 1, • • •, because by (6)
the number of rth powers of n-ic residues is pm-w-1

) so differences for unit
increment of q exist. The substitutions give

k k k + n
(43) y = 1 pw+1q -\ •—p2tD+2q2 (mod pm~w)

n n 2n
= 1 — cxq + c2q

2 — ", say,
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where
c. = k(k + n) • • • {k + (i — l)

This is equivalent to a solution of (3), and corresponds to (31) in § 9.
The rest of the proof, whether p divides n or not, is similar to that of

Theorem 4. A formula for y corresponding to (28) indicates that Dq, the de-
gree in q of the formula, must satisfy

E(Aiy0) ^ m — w (* > DQ> w ^ °)»

whose left-hand side is found from (43), by an argument using Lemma 1, to
be the left-hand side of

(44) Eip^d^^m — w [i > Dq) w^O).

The case in which p does not divide n requires

LEMMA 3. / / p \ n, then

E[k(k + n) • • • {k + (i - l)n}] ^ E{i\).

PROOF. If K is an integer such that

k = Kn (mod pM\ M > E[k(k + n) • • • {k + (* — 1)»}]),
then

E[k{k + » ) • • • {k + (i - l)n}] = £{wl/c(/c + 1) • • • (#c + * — 1)} ^

Lemma 3 shows that

its companion being

E{ct) = i - E(i\) (p\n).

From these and (34) condition (44) becomes

i + E(i\) ^ m (p \ n), i ^ m — w {p\n), (i > Dq).

Sufficient values of the degree in a are now seen from (41) and (42) to be
those given in the enunciation of Theorem 6. This proves the theorem.

14. Fewer terms of higher degree

Instead of (11) write
ahkr+l

(45) a =
(1 + ahr — 1)*

Let h = p, and let k be the least positive integer such that

kpr + 1 = 0 (mod n), kpr + 1 = v2n;

this is possible when p does not divide n and (d, r) = 1. Then (3) has a
solution

x = av(l + apr — l ) -* / n = av{\ — (kjn) {apr — 1) -\ } (mod pm; v = v2),
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corresponding to (41), to which the argument of Theorem 6 can be applied.
Instead of

ar — 1 = 0 (mod p)

we have

so there are fewer terms, of higher degree.
On replacing h in (45) by p2, p3, • • •, solutions are obtained in which the

number of terms is progressively smaller, and the degree progressively
higher. This process culminates in

THEOREM 7. When p \ n and (d, r) = 1, (3) has a solution

x == a" (mod pm),

where
v = vm-i (p = 2). v = vm (p^S).

PROOF.

(a")n = a - a™'1 = axn(vn~^ (mod pm).

When p = 2 the exponent of x is

n{vm_xn — 1) =nk-2m-2,
so [5]

(av)n == a (mod 2m; v = v^).

When p ^ 3 the exponent of x is

n(vmn — 1) = dn1kpm~1r = nxkpm-x($> — 1) = nxk${j>m),
so

(av)n = a (modpm; v = vm).

As Vi exists for all i when p does not divide n, this proves Theorem 7.
When p divides n, the only v that exists is vlt so the only possible substitu-

tion for a is (11), leading to (41). Since (41) consists of a single term only if
the modulus is p, the modulus of the congruence to be solved cannot be
greater than pw+1 (J> ^ 3) or 2W+2.

15. Proof of Theorem 8

Corresponding to each prime power pm in the modulus, there is a vm (or
vm-i) such that

vmn = 1 {mod. pm-1r; p >̂ 3) or vm-xn = 1 (mod 2W~2),

because n and pm~xr (or 2m~2) are coprime. The latter is also true of n and
L, the LCM of all the expressions such as pm~xY. Therefore there is a v such
that

vn = 1 (mod L),
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and, by the argument of Theorem 7, a" is a solution for each prime power in
the modulus, so it is a solution of (2). This proves Theorem 8.

The condition (n, M) = 1 is sufficient, but not necessary. For, as pointed
out in § 14, p may divide n provided m ^Lw + 1 (p ^ 3), m -^ w -\- 2

16. Proof of Theorem 9

Only p ^ 3 need be considered, since p = 2 is covered by Theorem 7.
It will be proved that there is a solution consisting of <5 terms, giving roots

that are congruent mod pm~w to

(46) g*+*" (i = O,'-;d-l; j = O,'",<f>/dd-l),

where g is a primitive root and <j> denotes <f> {pm~w). This will be a complete set
of roots provided that their number is <f>/d, which is clearly true, and that
their nth powers are all different modpm. But if

then

and it is easy to show, using (12) and the fact that d\r, that this divisibility
requires h = i and / = k. Hence (46) is a complete set of roots.

Let powers of some quantity y be connected with <w, a primitive <5th root
m.odpm~w of 1, by the relations

(47) yt = c0+c1€oi-i l-Cs^co^-1^ (modpm~w pro tern.; i=0, • • •, (5—1),

which in matrix notation are

1 1
y
• •

1 ^ J L cs_x j \_y

Multiplying the matrix above by that below yields a unit matrix.

1
1 1

ft)"1 ft)~2

1 a)-

1
y

L y
S-l

Therefore

(48) ct = d-!{l + i/ft)-* + •

Now let

(49) y =

- 1 )
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The expression for a> is a primitive <5th root of 1 because d divides r which by
(12) is prime to n/d, whence so is 6. The exponent k is derived from the least
positive integer v satisfying

vn = 1 (mod <j>/dd)
by making

vn — 1 = k(f>/dd;

k and v exist when >̂ does not divide n (as in Theorem 9) with any power of
ft as modulus, and when ft divides n with modulus ftw+1.

On using (48) and (49), and for brevity writing

o /

where convenient, (47) becomes
I [ I pin<p/dS

6 {7 \y~k — 1 y-k~n — 1

Increasing i to '̂ + / ^ , where / is any integer, does not affect this congruence,
for i always has <f>/dd as a cofactor, and

(i + jdd)<f>ldd ^ t<f>/dd ( m o d <f>).

So we make the substitutions

pro tern.),
pin(p/d8 __ p(i+jd8)n4>/d8 --
6 — 6 —

and get the following solution of (3):

1 [ 1

(50) , » 7 ( ^ _ I K { - ^ +
which gives the roots in (46). This proves Theorem 9. Theorem 7 is the par-
ticular case in which 6 = 1, and gives roots that are powers of gd.

Though substitution in (50) provides a solution of a given congruence, it is
far from convenient. But (50) shows, for instance, that the congruence

x2 == a (mod^m pro tern.; ft = 8q -\- 5),
for which

d = 2, 6 = 2, , = (̂  + 4)/8,

has a solution of the form

Squaring shows that
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and these are satisfied by

co = i(» + l)> cx=-\(i~l) ( * 2 H E - 1 ) .

17. A question of minimum degree

The vx of Theorem 6 is often appreciably less than r — 1, so it was thought
worth while to see if solutions as in Theorem 6 were always of minimum
degree. For if this were so, there would be a precise value of the minimum
degree, as in Theorem 4. It is disproved by counter-example as follows.

Let xQ, xlt • • ', xr_x be arbitrary nth. roots of 1, gn, • • •, gir-^n respectively.
The coefficients in

x( = co + cxat + • • • + cr_xa^ = c0 + clg
in + • • • + cr_lgw

n

(mod fi; i = 0, • • •, r — 1),

corresponding to (47), are found by the procedure of § 16 to be

ct = r-ifa + xlg~
in + h V i r ( M ) i n ) = r-1 2 a^-'" (mod p),

whence the congruence
xn = a (mod pw+1)

has a solution [6]

(51) x = r - i (2> + a^xx-n + . . . + a'-1 2»1-( r-1)n) (mod p).

In the congruence x9 ^ a (mod 31 pro tern.), (d, r) = (3, 10) = 1 and
Vj = 9 (= r ~ 1), so by Theorem 6 or 7 there is a solution a9, giving roots
that are powers of g3. With such roots the last sum in (51) is

2 x10 = 1 H h 1 = 10.

Now multiply any one root by 5, and any two further roots by 25; these are
the "complex" 9th roots mod 31 of 1. The 10th powers of the roots affected
are also multiplied by 5 or 25, since

510 = 59 • 5 == 5,

and the last sum in (51) is now

2 a10 = 7 • 1 + 1 • 5 + 2 • 25 == 0.

Hence in this case there are solutions of degree lower than vv

18. Residues not prime to modulus

When a includes values divisible by p, polynomial solutions of (3) are still
possible, at least if m is fairly small. Thus the congruence

x2 = a (mod 64)
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has a solution

x=± a(a* — 69a3 — 77a2 + 189a — 28)/16 (mod 32)

that is valid for all admissible values of a, whether odd or even.
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