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A SPECTRAL THEORY FOR DUALITY SYSTEMS 
OF OPERATORS ON A BANACH SPACE 

J. G. STAMPFLI 

This note is an addendum to my earlier paper [8]. The class of adjoint 
abelian operators discussed there was small because the compatibility relation 
between the operator and the duality map was too restrictive. (In effect, the 
relation is appropriate for Hilbert space, but ill-suited for other Banach spaces 
where the unit ball is not round.) However, the techniques introduced in [8] 
permit us to readily obtain a spectral theory (of the Dunford type) for a 
wider class of operators on Banach spaces, as we shall show. 

A duality system for the operator T is an ordered sextuple 

{T, JB, </>,/, g,c(x, y*)}, where 

(i) T is a bounded linear operator mapping the Banach space B into B, 
(ii) <j) is a duality map from B to B*. Thus, for x G B, <j>(x) = x* G B*, 

where ||x|| = ||x*|| and x*(x) = ||x||2. The existence of <j> follows easily 
from the Hahn-Banach Theorem. In general, <j> is not unique, linear or 
continuous, 

(iii) / and g are functions which are defined and analytic in a neighbourhood 
of <r(T), the spectrum of T. Thus , / (T) and g(T) are well-defined. 

(iv) c(x, y*) is a function from B X 4>{B) into the real numbers. No 
conditions are placed on the function c(- , •) (other than reality). 

As a notational convenience we will write [x, y*] for y*(x), where x G B and 
y* G B*. (Since we can replace y* by y in the semi-inner product, it is possible 
to delete the *s, and the reader may do so if he wishes. Consistency with [8] has 
dictated the present policy.) We will say that the operator T satisfies a duality 
system if [f(T)x,y*] = c(x,y*)[x, (g(T)y)*] for all x G B and y* G <t>{B). 
For example, if B is a Hilbert space and A is a self-adjoint operator, then 
<t>(x) = x for x G B (the map is unique), and [Ax, y*] = [x, (^4^)*]. Thus, 
every self-adjoint operator satisfies a duality system where c(x,y*) = 1 and 
f(z) = g{z) = z. (I am grateful to D. Koehler for several stimulating conver­
sations and for pointing out the next example.) If we let B = LP(dfi), 1<p < oo , 
then 

(**)(*) = s g n x ( 0 - ^ £ r 
I \X\ \P 

is the unique duality map. Let M be multiplication by the independent variable 
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t, that is (Mx)(t) = tx(t). Then for p an integer, p > 1, 

[Mv-\,y*] = p J j ^ s [*, (j|fy)*]. 

Therefore, the operator ilf satisfies a duality system, with /(s) = zv~l and 
g (2) = z. (Actually, it is clear what Mp should be for p not an integer, and this 
case can be handled by ad hoc methods.) 

We are now ready to state our main result on duality systems. 

THEOREM. Let the operator T satisfy a duality system {T, B, $, / , g, c(x, y*)} 
on the reflexive {or weakly complete) Banach space B. Let h(z) = f(z)g(z). Then, 
h(T) is a scalar operator. 

Proof. Note that for x £ B, 

[h(T)x,x*] = [f(T)g(T)x,**] = c(g(T)x,x*)[g(T)x, (g(T)x)*] 

= c(g(T)x,x*)\\g(T)x\\\ 

which is real. Moreover, when we repeat this argument n times, we find that 

[(fc(r) )"*,**] 
= c(h(T)n-'g(T)x, x*) . . . c((g(T))n

Xj (g(T)^x)*) • \g{T)»x, (g(r)»x)*]f 

which is real. Hence, [h(T)]n is a Hermitian operator for n = 1 , 2 . . . • (An 
operator A is Hermitian if [Ax, x*] is real for all x G B.) Since [h(T)]n is 
Hermitian, the spectrum of h(T) is a X-spectral set for h(T). (In slightly 
disguised form, this fact appears in [7, Proposition 19; 8, Lemma 5].) Thus, 
we may now apply [8, Theorem 2] to conclude that h(T) is a scalar operator. 
The conclusion also follows from [2, Theorem 4.1]. 

COROLLARY 1. Let T satisfy the above duality system on the reflexive (weakly 
complete) Banach space B. Let h(z) = f(z)g(z) and assume that h'(z) ^ 0 for 
z G v{T). Then T is a scalar operator. 

Proof. Simply apply [1, Theorem 3] to the scalar operator h(T). 

Remark. The corollary can be extended to cover the case when the points 
Zi G <r(T), where h' (zt) = 0 are isolated points of v(T). Then T is not a scalar 
but a spectral operator. 

Definition. A subspace M of a Banach space B is hyperinvariant for T if 
AT = TA implies M is invariant for the operator A. (A, T map B into B.) 

The next corollary appears to be new, even for B a Hilbert space. 

COROLLARY 2. Let T satisfy the above duality system on the reflexive (weakly 
complete) Banach space B. If T 9^ M, then T has a non-trivial hyperinvariant 
subspace. 

Proof. Let A commute with T. Then A commutes with the scalar operator 
h(T). If <r[h(T)] consists of more than a single point, then h(T) has a non-trivial 
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spectral projection E, and EB is our hyperinvariant subspace. On the other 
hand, if a[h(T)] reduces to a singleton, then h(T) = I. Thus, 

g(T) = h(T) - 7 = 0, 

where g(z) is analytic in a neighbourhood of CT(JH). Under these conditions, it is 
well known that T must satisfy a polynomial, that is, p(T) = 0 for a poly­
nomial p. But then T has an eigenvalue a. Set M = {x £ B: Tx = ax}. 
Clearly, M ^ B since T ^ XL It is easy to see that M is hyperinvariant; 
which completes the proof. 

Even though Theorem 1 may appear very general, it is still sufficiently 
strong to recapture the spectral theorem for a positive self-ad joint operator. 
Indeed, as we have seen, every self-adjoint operator A satisfies a duality system 
with/(s) = g{z) = z. Hence, A2 is scalar. Since cr(A) is positive, and A2x = 0 
implies Ax = 0, it follows that A is scalar (see [3, Theorem 7]). Thus, 
A = Jxd£(X), where £(•) is an idempotent-valued measure supported on 
a {A). It is not hard to show that £(•) must actually be self-adjoint, that is, 
proj ection-valued. 

Note that the theorem permits c(x,y*) to be identically 0. In that case, 
h(T) = 0, and in f a c t / ( r ) = 0. 

Finally, we note that other results from [8] can be extended to the present 
setting, although we shall make no attempt to do so here. 
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