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EXTENDED CENTROIDS OF SKEW POLYNOMIAL RINGS 

BY 

JERRY D. ROSEN AND MARY PELES ROSEN 

ABSTRACT. Let R be a prime ring with CT E Aut {R). We determine 
the extended centroid of the skew polynomial ring R[x, CT] when (/) (a) is 
X-outer of finite order, (//) (a) is X-outer and infinite, (///) a'" is X-inner 
and no smaller power of a fixes the extended centroid of R. 

Suppose R C S are prime rings with extended centroids C and D respectively. A 
natural question to consider is the relationship between C and D. In this paper we 
investigate the situation where R is a prime ring and S is the skew polynomial ring over 
R with respect to a G Aut (R), i.e., S = R[x,v]. We use the notions of X-inner and 
X-outer automorphisms due to Kharchenko. In sections 2 and 3, the following cases are 
considered: (/) (v) is X-outer of finite order m; (//) (a) is X-outer and infinite; (///) m 
is the least positive integer such that am is X-inner and no smaller power of a fixes C. 

We prove the extended centroid of R[x, a] is isomorphic to: (/) CQ(xm), the field of 
fractions of C0[JC'"] (where C0 denotes the fixed field of C under a when extended to 
RC); (ii) C0; (///) C0(y) where y = nxm is central and n is in the set of ^-normalizing 
elements of the Martindale ring of quotients. 

1. Preliminaries. Let R be a ring and a an automorphism of R. R[x, CT] is the set of 
all polynomials in x where addition is as usual and multiplication is defined according 
to the rule xr = rax, r E R. These operations make R[x, CT] into a ring. If R is a prime 
ring, it is easy to see that R[x, a] is prime. Cohn has determined the center of R[x, CT] 
when R is a division ring. 

PROPOSITION 1.1. [Up. 61] Let D be a division ring and a E Aut (D). If no power 
of a is inner on D, then the center ofD[x, CT] is Z(„ the subset of the center of D fixed 
by CT. Ifcr'" is inner but no lower power fixe s the center ofD, then the center ofD[x, CT] 
is Za[y] where y = dxm is central. 

To generalize this result to prime rings, we need the notions of X-inner and X-outer 
automorphisms due to Kharchenko. We begin by summarizing the definition and main 
properties of the extended centroid and central closure of a prime ring R with 1. 

Let |x = {U} be the collection of all nonzero two-sided ideals of R and consider the 
totality T of all left module homomorphisms $: RU —» RR, where U E JUL and U and R 
are regarded as left /^-modules. We write (<\>,U) for an element of T and define an 
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equivalence relation ~ on Tas follows: (cf), U) ~ (I|J, V) if (|) = i[/ on some W E |JL where 
W C U D V. Let (c|), [/) denote the equivalence class of (c(), U). The Martindale ring 
of quotients Q is defined to be the set of these equivalence classes. We make Q into 
a ring as follows: 

(<M/) + (ÏMÔ = (<|> + i|i,£/ H V) 

(()>, f/)(i|i, V) = (cJ>oi|i, VC/) (composition acting on the right). 

/? may be considered a subring of Q via the mapping a —» (ar,R) where ar is the right 
multiplication by a acting on R. We state some well-known properties of Q. The proofs 
can be found in [3]. 

LEMMA 1.2. Lef 2 ^ as above with center C. Then 
(1) Q is a prime ring, C is afield and C is the centralizer of R in Q. 
(2) For any 0 =£ q E Q, there exists U E |x swc/i /̂ztftf 0 J= Uq Q R. 
(3) Aft_y nonzero left R-submodule of Q intersects R nontrivially. 
(4) //CT E Aut (/?), r/ẑ ft CT extends uniquely to an automorphism of Q. 

C is called the extended centroid of R. The pair (<\>, U) is permissible if $: RUR —» 
fl/?/? is an (7?,/?)-bimodule homomorphism. C may also be characterized as the set 
{((f>, £/) E 2|(c|), (/) is permissible}. We may now form the central closure RC of R. 
RC is a prime ring with center C. A prime algebra over a field F is said to be closed 
if F is already its extended centroid. We remark that RC is closed over C. 

DEFINITION, CT E Aut (/?) isX-inner if there exists a unit q E g such that ra = g - 1rg 
for all r E /?. In other words, cr is X-inner if its extension to Q is an inner automorphism. 
Otherwise, aisX-outer. For any group G C Aut (/?), G is said to be X-outer if the only 
X-inner automorphism in G is the identity. 

LEMMA 1.3. Suppose G is a subgroup of Aut (/?) which is X-outer. IfO±ax,a2,b\, 
b2 E R and U\, cr2 E G such that 

a\r'T]b\ + a2r"2b2 — 0 for all r E R, 

then d\ — \a2for some \ E C awd o-| = CT2. 

PROOF. Applying a^ to the above equation and then Lemma 2 of [4], there exists 
a unit q E Q with a^ q = a2

l and q~]rq = r,T2<T| for all r E /?. Since G is X-outer, 
CTi = CT2 and hence q E C, proving the lemma. • 

In this article we will be concerned with characterizing the extended centroids of 
related prime rings. The following lemmas will be useful for this purpose. 

LEMMA 1.4. Let R be a prime ring with center Z and extended centroid C. Suppose 
for any 0 =£ (()), U) E C, there exists 0 =£ u E U such that u — az\ and u§ = az2 where 
Z\, z2 Œ Z, a E: R. Then C is isomorphic to the field of fractions of Z. 

PROOF. Set X = (()>, U) E C. Then w = az, and ufy = u\ = az2. Thus w = 
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X ]az2 = ai\ implying (X 'z2 — i\)a = 0. Viewing this equation in RC, X ]z2 — zx 

— 0. Hence X = z\ z2 is in the field of fractions of Z. • 

LEMMA 1.5. Let R Ç S be prime rings with extended centroids C and D respectively. 
Suppose for any 0 =£ (((), U) E C, £/iere emto 0 ^ « G (/ swcft r/zaf u = aX and 
u<\> = a ft where X, p E D, a E /?. 77ze« C w embedded in D. Furthermore, if any 
nonzero left R-submodule of S intersects R nontrivially, then C = D. 

PROOF. Let 0 ± (<(>,£/) G C and w E £/ be as above. Define $ : SwS -» S by 
2 j/wf/ —» S j,-(«<(>)*/. We check 4> is well-defined: Suppose 2 svwf, = 0. Then 0 = 

^SjaXtj = (2siatj)\ (an equation in SD). Hence 2 SjCitj - 0 which implies 0 = 
2 Siafitj = 2 Si(u^)tj. Clearly (<I>,SMS) E D. Note (<M/) = (^>,RuR) and define 
T: C—»D by (<(>,/?«/?)-* (<$>,SuS). T is easily seen to be a ring homomorphism and 
C a field implies T is one-to-one. 

Suppose any nonzero left /?-submodule of S intersects R nontrivially. Let 0 =£ 
(i[/, V) E D and set W = V fl /?. By the assumption, W is a nonzero ideal of/?. Since 
W\\f is a nonzero /?-submodule of S, W\\t D /? =/= 0. Hence £/ = {w E W| wv|i E /?} is 
a nonzero ideal of/?. Setting $ = i|/i we have (c|>, £7)7 = (i|i, V). • 

We are also concerned with the prime ring (RC) [x, cr] where cr denotes the extension 
to /?C. An easy application of part (2) of Lemma 1.2 gives 

LEMMA 1.6. Any nonzero left R[x,d]-submodule of (RC)[x, cr] intersects R[x, cr] 

2. (CT) Ajouter. In this section we assume (a) is X-outer. Let Z denote the center of 
R and set Z0 = {z E Z|za = z}. 

LEMMA 2.1. //cr has finite period m, then the center ofR[x, a] is Z0[x'"]. Ifcr has 
infinite period, the center ofR[x,v] is Z0. 

PROOF. Suppose/(JC) = 2 rtx' E center (/?[JC, cr]). Commuting/(X) with x, we 
obtain r* = r, for all /. Commuting f(x) with any a E /?, we have ar, = r;-a

a' for 
all /. If r, i= 0, then r; is a unit in Q and hence CT' is X-inner. If cr has finite period m, 
then ra|/ and r, E Z0. If cr has infinite period, then / = 0 and/(x) = r0 E Z0. D 

In the next two theorems we determine the extended centroid of R[x, a] in the cases 
where (or) is finite and infinite. 

THEOREM 2.2. Let R be a prime ring with extended centroid C and (cr) X-outer of 
finite order m. Let C0 denote the fixed field of C under cr when extended to RC. Then 
the extended centroid of R[x, a] is isomorphic to C0(x

m), the field of fractions of 
C0[xml 

PROOF. We first assume R is closed prime over C and show R[x, cr] satisfies the 
hypotheses of Lemma 1.4. cr extends to an automorphism a of R[x, cr] as follows: 
2 r/jt' —» 2 r°x'. To see cr is multiplicative, we check its effect on monomials: 

[(rxj)(sxk)T = (rsaV+*)* = r"sai+'xJ+k = (rV)(s"jc*) = (rjr')*(sx*)*. 
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cr is also of period m. From now on, we write cr for d. w_, 
Let 0 =£ (((>, 6/) E extended centroid of/?[*, cr]. By considering 0 i= O UiT', we may 

/ = o 
assume U is a-invariant. Let n be the minimal degree of elements of U and set S = 
{/E c7| deg/ = n}. We claim 5 contains an element whose coefficients are fixed by 
CT. Let V = {a E fl|a is the leading coefficient of some/E S}. Set V = V U {0}. V 
is clearly an ideal of R. Suppose a E V a n d / E S with leading coefficient a. Since £7 
is a-invariant, f £ 5 with leading coefficient a<T, showing V is cr-invariant. By 
Theorem 3.17 of [3], tr(r(V) ± 0 where tr denotes the trace relative to (a). So there 
exists a E V such that tr^ia) =£ 0. Let 

// 
/ ( •* ) = 2 CljX' 

i = k 

with a„ = a. Now 

tr„( /W) = I (tr,7(a,))x'. 

Since/E £7 = U\ trjf(x)) E £7 and tra(a) ± 0 implies M / M ) E 5. Furthermore, 
the coefficients of tra(/(jc)) are fixed by cr, proving the claim. 

Hence we may choose 
n 

fix) = S a,x' E U 
i = k 

with <z„ = a and a-r = a,- for all /. For any r £E Ry 

f(x)ra - ar°"f(x) = 2 (a^'a - ariT"ai)x
l E U. 

i = k 

By minimality, a^'a — aru"al = 0, i = k, . . . , n — 1. By Lemma 1.3, a, = X,tf, 
X, E C and a' = a" for all /. Since cr fixes a, and a, X, E C0. Also cr* = . . . = a" implies 
the indices are all congruent to k mod m, i.e., i = k + q^m, q{ E Z+ U {0}. Therefore 
fix) = (A**)g(.x) where 

/? 

gto = X x,x*ra e C„[JC"], 

the center of R[x,v]. 
Suppose 

(/U))4> = 2 V7-

Using the fact that each a* — a( and c() is bimodule, we obtain JC[ (/(*))<(>] = 
[(/(*))<(>]JC. It follows that fej = fey for all j . For any r E R, we have 
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0 = (f(x)ra - ar°"f(x))<$> = [(f(x))<\>]ra ~ ar°H[(f(x))4>] 

p 

= X (bjr^a - ar°"bj)xJ. 

Thus we have b,ri7Ja - ar^'b, = OJ = €, . . . , /? . As before, b} = a^a where <Xj E C0, 
a7 = a'7 and 7 = € + wjtn, Wj G Z + U {0}. Hence (/(JC))CJ> = (ax*)h(x) where 

h(x) = S a/x^m G C0[xm]. 
j=t 

Since a* = a" = ( / , we have k = i (mod m). If it > €, then k = € + tm,tEZ + . 
In this case, /(JC) = (ax^)^(jc) for some q(x) E C0 [*'"]. Similarly, if i > k, 
(y(JC))4> = (axk)p(x) for somep(x) E C0[JC'W]. By Lemma 1.4, the extended centroid 
of R[x, a] is isomorphic to C0(x

w). 
Now suppose R is a prime ring and let a denote the extension to RC. One can show 

(CT) is X-outer on RC of order m. Since 7?C is closed prime over C, the extended 
centroid of (RC)[x, a] is isomorphic to C0(;c

m). Let 0 =£ (((>, (7) E extended centroid 
of /?[JC, CT]. By the above argument, there exists 0 i= f{x) E U such that/(x) = 
a(x)z\(x) and (/(x))(f) = a(x)z2(x) where z,(x), z2U) E COIV"] (the center of 
(RC)[x, CT]), tf(jt) E /?[JC,CT]. By Lemmas 1.5 and 1.6, we may conclude R[x, a] 
and (RC)[x, a ] have isomorphic extended centroids, completing the proof of the 
theorem. • 

THEOREM 2.3. Ler R be a prime ring with extended centroid C. If (a-) is X-outer and 
infinite, then the extended centroid ofR[x, a] is isomorphic to C0. 

PROOF. Assume R is closed prime. Let 0 =£ (<\>, U) E extended centroid of R[x, a] . 
Choose 

n 

0 =£/(*) = E fl/Jc'' E (/, a„ = a, 
i = k 

of minimal degree. We claim ak• = 0 for / = / c , . . . , n - 1. Suppose a7 =£ 0 for some 
7 such that k < j < n - 1. There exists /?G/? such that ^CT" = a. For any r E R, 

f(x)rb - ara"f(x) = 2 (fl/r 'V' - ar^a^x1 E £/. 

By minimality, ajr
lJ}b{JJ - ar°" a} = 0. By Lemma 1.3, CT; = v" and a of infinite period 

implies j = n, a contradiction. Hence /(JC) = ax'7. A similar argument gives 
(/(*))<|> = \ax" for some KEC. 

We now show X E C0. Since R is prime, we may choose r E R such that 
araHaaa * 0. <|> bimodule implies /U)r[(/(jc))<|>] = [(f(x))$]rf(x). So we have 
(ax")r(kax") = (Kax")r(ax") which gives 

X(J"ar(J"a(J" = \ar°Ha°n 
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or 

(XCT" - X)ara"a,J" = 0. 

Hence Xa" = X. Now choose r E /? such that ara"+xaa"+x =£ 0. As above, 
/(jc)jtr[(/(;r))<|>] = [(/(*))<|>>r/(jt) yields X(T"+I = X and so X E C0. 

Therefore/U) = ax" and (/(JC))<|) = (<ZJC")X where X E C0 (the center of R[x, a]). 
By Lemma 1.4, the extended centroid of R[x, CT] is isomorphic to C0. 

Now suppose /? is a prime ring and let cr denote the extension to RC. One can show 
(a) is X-outer and infinite. Since RC is closed prime, the extended centroid of 
(RC)[x, or] is isomorphic to CG. As in Theorem 2.2, /?[*, a ] and (/?C)[JC, CT] have 
isomorphic extended centroids. • 

3. (Tm X-inner. To treat the case where cr'" is X-inner for some m, we need the notion 
of the normal closure of a prime ring R. Set N = {n E <2|ft/? = /?«}. We remark that 
if 0 =£ A E TV, then A is invertible and « _ l EN. The normal closure /?/V of R in g is 
the subring of Q generated by R and N, i.e., 

RN = [ 2 r/rt/ E Q\rt E R, nt E N}. 

LEMMA 3.1. RN has the following properties [3]: 
(1) RN is a closed prime ring with extended centroid C. 
(2) For any 0 =£ q E RN, there exists a nonzero ideal IofR such that 0 ^ Iq Q R and 
0 ± ql CR. 
(3) If u E Aut (R), then its extension to Q restricts to an automorphism of RN. 

LEMMA 3.2. For any cr E Aut (R), R[x,cr] and (RN)[x,cr~\ have isomorphic 
extended centroids. 

PROOF. Let E and F be the extended centroids of R[x, cr] and S = (RN)[x, cr] 
respectively. Choose 0 ± ($7Û) E E. Define <$>: SUS-* Shy 

£ /-WM/Ujg/W-^ S/-w[(«/U))<i>k-w. 

Suppose 

S /u)W,u)g/u) = o 

where 

f{x) = 2 ^/Jf7 

and 

gi(x) = 2 blkx
k. 

k 
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By Lemma 3.1, there exists a nonzero ideal I of R such that 0 i= la{j Q R and 0 =£ 
blkl Ç R. For each /, set Jt = 0 I{<J) where k runs through the sum in g,-(jt). Then 

0 + gi(x)Jj C R[x,(T~\. Set J = H Jj. 7 is a nonzero ideal of R and 0 =£ gi(x)J C 
/?[JC, cr] for all /. Hence we have 

/(S/-w[(«/W)<l>k-w)^ = o 

which implies 

2 /U)[(W/U))c()]^U) = 0, 

proving 4> is well-defined. Define T: E -> F by( <(>,£/) -> (*,St /5) . The usual 
argument shows T is a ring isomorphism. • 

For the remainder of this section, let m be the least positive integer such that a'" is 
X-inner. We assume no lower power of CT is the identity on C. Note that by a result of 
Kharchenko [3, p. 48], if R satisfies a GP1, this assumption is superfluous. 

LEMMA 3.3. The center of(RN)[x, CT] is C0[y] where y = nxm is central. 

PROOF. Since a'" is X-inner, there exists n E N such that a°m = n~lan for all a E 
Q. It is easy to verify that n°n~x = X E C and the norm of X (i.e., Xa'"~~V"~2. . . XaX) 
equals 1. Since a induces an automorphism of period m on C, Hilbert's Theorem 90 
implies X = |xa|x-1, JUL E C. Settings = w(x_l, observe that «^ = n, andaa'" = n\x anx 

for all « E Q. Hence without loss of generality, we may assume Aza = n. Set y — nxm. 
Then xy = xnxm = nvxm+i = nx'"x = yx and y a = nxma = n(n~]an)xm — ay for any 
a E RN. So CQ[y] C center ((RN)[x,cr\). 

Suppose 

fix) = X Û/JC1' G center ((/W)|>,a]). 

As usual, a\ — af and sa, = 0/(y
a' for all / and s E /W. If a, i= 0, then a' is X-inner 

and hence / = mqt where q( E Z+ U {0}. Now ajlsa{ = s*"1*'' = n~qisnqi for all 5" E 
/?N implying a, = X,^', \j E C. Since a, and n are fixed by CT, X, E C0. Rewriting we 
have 

fix) = S Kinx'y1 = 1 Kyqt E C0[j]. D 

The proof of Lemma 3.3 follows Cohn [1]. We now prove the main result of this 
section. 

THEOREM 3.4. LetR be a prime ring with extended centroid C and m the least positive 
integer such that a'" is X-inner. If no smaller power of a fixes C, then the extended 
centroid ofR[x, a] is isomorphic to C0iy) where y = nxm is central. 

PROOF. For any a E Q, a*'" = n~]an where n E N and na = n. By Lemma 3.2, it 
suffices to show that the extended centroid of (RN)[x, CT] is isomorphic to C0(y). Let 
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0 ± (((>, U) E extended centroid of (RN)[x, a ] and choose 

p 

fix) = S a,x' E U 
i = k 

of minimal degree. There exists b E RN such that baP = a/? = A. For any s E /?/V, 
f{x)sb — asalf(x) E £/ of smaller degree than/implying asoP a-, — a^b"1 = 0, / = 
k,. . . ,p — 1. Applying (o^) ' to this equation and Lemma 2 of [4], there exists AZ, E 
TV such that a-x — an? and n~ srij = 5(T'(a/,)~l. Thus a'(a /?) ' is X-inner and CT' = vp 

on C. It follows that CT' = cr* on C and since a E Aut (C) is of period m, i = k + 
qtm where </, E Z+ U {0}, / - k,...,p. Now o-'Ccr'T1 = CT(^'"^)m implies 
n~]sni = nqi'~q'snqi~qi' for all s E /?/V. Therefore At, = ain

q,~qi>, a, E C , and a, = 

a(ain
t,i~qi,YP = aP/W*7''-^, p ( G C. Setting y = WJC"' we have 

p P p 

f{x) = 2 a^in
q'~q"xk + q'm = an'q"xk X p ^ ' / i V " = an'q"xk X 7 ,^ ' 

i=k i^k i=k 

for some 7, E C. 
Suppose 

r 

./ = < 
For any s E /?/V, 

0 = ifix)sb - as°pf(x))4> = [ifix))<\>]sb - as°p[(f(x))4>] 

= S (bjSvibai - as^bjW 

which implies asaPb, - b,sa]biJJ = 0, y = € , . . . , r. As before, there exists m, E N such 

that Z?7 = amj\ mj'sm, = •s f f ' (a" )"', and crj = <rp on C. Thus a*: = . . . = vp = a< = 

. . . = a r on C. S o 7 = £ + wym for all j and p = £ + tm where vv; E Z + U {0}, r E 

Z. Hence mj^sm, = n'~wJsnwJ~l and so m} = 0,72^"', ô, E C. As above, &,- = a\jnwj~' 

and 
r 

for some p, E C. 

Assume k> t. Now p = { + tm = k + qpm implies /c = € + (r - <7P)m, f - qp 

<EZ+. Then 

/> p 

fix) = an~qi'xt + u'q")m S 'Y/?*'' = fl/i"*"*' S v ^ ' ^ ' V 
/ = * /= i t 

/' /> 
= an~q"xe S Vin^~xyx~q^qi = an~rx* 2 v,y~«"+*' 

/=* /=* 

for some Vj E: C. 

An analogous argument works for (,> k. Summariz ing, we have shown t h a t / ( ; c ) = 
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an!xjgi(y) and (/(*))<(> = arixjg2{y) for some ij and g,(j), g2(y) G C[>]. We are 
not yet in a position to apply Lemma 1.4 since gi(.y) and g2(y) are not necessarily in 
C0[y], the center of (RN)[x,&]. 

Now a may be extended to C[y] by mapping y to y. We claim giC)7)*7^)7) = 
g\(y)g2(y)(T' First note that C[y] centralizes/Win S = central closure of (RN)[x,a]. 
Also if/? is any prime ring, a G Aut (/?), and/?(*)/? g (JC) = 0 forp(x), q{x) G /?[JC, &], 
thenp(jc) = Oorq(x) = 0. For any 5 ERN,f(x)s[(f(x))$] = [ /(*))<|>]J/(JC) implies 

(anixj)s(anixi(g](yyJg2(y) - g>(y)g2(yyJ)) = 0. 

Since an'x' =f= 0 the above remarks give giiyV'gAy) - g\(y)g2(yVJ = 0. By using 
xs, we similarly obtain g\(y)aJ+lg2(y) ~ g\(y)gi(yTJ+l = 0- The claim follows from 
these two equations. 

Working in S, we have/(x) = an'xJg\(y) and f(x)X = an'xJg2(y) for X = 
(<(>,£/) G extended centroid of (/?/V)[JC,cr]. Hence a/iV(g,(;y) - X_,g2(;y)) = 0. If 
g\(y) ~ ^~lgi(y) î 0, there exists a nonzero ideal V of (RN)[x,v] such that 0 =£ 
(8i(y) ~ ^giiyW C (/W)[JC,CT]. Thus 

(«n'V)(/?yV)(^,(j) - X",g2(y))V = 0 

implies 

(#.()>)- X-'£2(30)V = 0, 

a contradiction. Therefore g2(y) = X^,(j). 
Note that the extension of a to C[y] agrees with the extension of a to S when 

restricted to C[ j ] . Also the fixed ring of (or) acting on C[y] is C0[ j ] . 
Finallygi(j)ag2(j) = ^i(j)g2(j)aandg2(y) = kg](y) imply (X - Xa)g,(>>)£,(;y)a 

= 0 and so Xff =X. Since any nonzero ideal of C[y] intersects C0[y] nontrivially, there 
exists 0 * A(;y) G C[j ] such that 0 ± g2(y)h(y) = \g](y)h(y) G C0[y]. It fol­
lows that g](y)h(y) G C0[y]. Now 0 * f{x)h(y) = anixJg](y)h(y) G £/ and 
(f(x)h(y))<$> = [(/(ac))c|)]A(y) = a n ' ^ f ^ M ^ ) where ^,(y)/z(j), g2(y)A(y) e 
CoC^]- By Lemmas 1.4 and 3.3, the extended centroid of (RN)[x, a ] is isomorphic to 
C0(y). D 

We end this paper with a brief discussion of the remaining case: crm is X-inner and 
some lower power of a is the identity on C. The primary difficulty seems to be in 
determining the center of (RN)[x, or]. We can no longer use Hilbert's Theorem 90 to 
find an n fixed by cr that determines aw as an inner automorphism of Q. As already 
noted, if R satisfies a GPI, this remaining case cannot occur. 
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