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SIMPLE LINKS IN LOCALLY COMPACT CONNECTED
HAUSDORFF SPACES ARE NONDEGENERATE

DAVID JOHN

1. Introduction. The fact that simple links in locally compact con-
nected metric spaces are nondegenerate was probably first established by
C. Kuratowski and G. T. Whyburn in [2], where it is proved for Peano
continua. J. L. Kelley in [3] established it for arbitrary metric continua,
and A. D. Wallace extended the theorem to Hausdorff continua in [4].
In {1], B. Lehman proved this theorem for locally compact, locally con-
nected Hausdorff spaces. We will show that the locally connected property
is not necessary.

2. Definitions. A continuum is a compact connected Hausdorff space.
For any two points a and b of a connected space M, E(a, b) denotes the
set of all points of M which separate a from b in M. The interval ab of M
is the set E(a, b) U {a, b}.

The following theorem appears in [7], where it is proved only for the
metric case. The proof of the non-metric case was established in [5].

THEOREM 1. If M s a connected space, a and b are points of M, p is a
point of M not in the interval ab of M, and M is semi-locally connected at p,
then there exists a closed connected subset N of M such that a and b are points
in N and N is a subset of M-{p}.

The following theorem appears in [6]; however, it is stated only for
metric spaces and only a suggestion for the proof is given which does not
generalize to non-metric spaces.

THEOREM 2. If the connected space M is semi-locally connected at p and
M-{p} has exactly k components, then for each open set U containing p, there
exists an open set V containing p such that V.C U and M — V has exactly
k components.

Proof. Let
K
M - {p} = iL—)l Ki1
where K ; is a component of M-{p} forz = 1,..., k. Let U be an open set
containing p and let p, be a point of K, for z = 1, ..., k. There exists
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an open set Wsuch that p € W, W C U, p;¢ Wlort=1, ..., k, and

M-W=U (C,
j=1
where C; is a component of M — Wforj = 1,...,n Nown = &, and
each C; is a subset of some K. Let x; be a pointin C;forj =1,...,n,
and let {C,|]1 £ j =< m} be the collection of all components of M — W
that are subsets of K;. Since p is not in the interval xyx; forj = 2, ...,
m, it follows from Theorem 1 that there exist closed connected sets 4 ; for

j = 2,...,msuch that x, and x; are points in 4, and p ¢ A4;. Let
B1 = U Aj.
=2
Thus B; is a closed connected set.
Now foreach 7 = 1, ..., &, there exists a closed connected set B; such
that if x; € K,, then x; € B; and p ¢ B, There exists an open set G
such that

k
PEGGCW,GN U B; =96,
i=1

and M — G has only finitely many components, Dy, ..., D,. Clearly
kh = k. Since B; is a connected subset of M — Gfort1 =1,...,k, let B;
be a subset of D;forz =1, ..., k.

Let {C,lr = 1,...,1} be the components of M — W such that C, N B,

# @ for a fixed 7, where 1 <7 < k.Since C, C M = Wand U}, C, U B,
is connected,

l
r=1
Let
k
V=W-=UD.,
i=1
V' is open and

k
M—-V=M-WUIU D,
i=1

Now
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Hence

k
M_V=UDir

i=1

and it follows that M — 1 has exactly & components.

THEOREM 3. If p is a non-cut point of the connected space M, and M 1is
semi-locally conmected at p, then for each open set U containing p, there
exists an open subset V of U containing p such that M — V is connected.

Proof. Since M-{p} has only one component, let # = 1 in Theorem 2.

Definitions. If { Ma, a € &7} is a net of sets, then lim inf Ma is the set of
all points p such that for each open set U containing p, there exists b € &/
such that for each a > b, a € &/, Ma intersects U. The lim sup Ma is the
set of all points p such that for each open set U containing p and for each
b € o7, there exists a € & such that ¢« > b and M. intersects U. If

lim inf Mo = lim sup Ma« = L,

then L is denoted by lim Ma and {Ma, a € &7} is said to converge to L.
A nondegenerate continuum K in a space M is a continuum of convergence

if and only if there is a net {Ka, a € 7} of continua such that for each
aing,

KmKa'-:@ and K=limKu.

THEOREM 4. If M 1s a locally compact connected space, and M 1s not semi-
locally connected at the point p in M, then there exists an open set U con-
tatning p such that if V is a proper open subset of U containing p, then
M — V has infinitely many components that intersect both dU and 9V.

Proof. Since M is locally compact and not semi-locally connected at p,
there exists a proper open subset U of M such that p € U, U is compact,
and for each open set G with p € G and G C U, M — G has infinitely
many components. Let G be an open subset of U containing p. Assume
there exist only finitely many components that intersect both dU and
dG. Let € be the collection of all components of M — G. Let

H ={Cec E/CNIG = 8},
H ={CecF/CNIAIU=P and CN IG # B}, and
KL ={Cec€/CNIU#B and CN G # B}.
By assumption, .Z is finite.
If H € 5, then H does not contain a limit point of \UX . If K € ¢,
then K does not contain a limit point of \U7#’. Suppose there exists a point

x in Uz N UA . Let# be the collection of all open sets containing x.
For each Win#/, letx,, € \U# M U N W and let C, be the component
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of U — G containing x,. Since C,, is a connected subset of M — G, C, lies
in some element of J#. Now, C, N\ 4G = @, and hence

CoMoU # 0.

Consider the net {C,, w € ¥#'}. Since x € lim sup C,, some subnet of
{Cyp, w € W'} converges to a continuum C containing x. Now C N dU # @,
but C lies in some element of ¢, which is a contradiction. Hence

U# NUA = 0.

Suppose there exists a point ¥ in U N \UX . Let & be the collection
of all open sets containing y. For each Ein &, let yz € UX N U N E,
and let Cg be the component of U — G containing yz. Since Cg is a
connected subset of M — G, Cg lies in some element of J#. Now Cx M\ aU
= @, and hence Cx N 3G # P. Consider the net {Cg, E € & }. Since
y € lim sup Cg, some subnet of {Cz, E € &} converges to a continuum D
containing y, D M 3G # @, but D lies in some element of A, which is a
contradiction. Hence \U# N \U# = 0. Therefore \UJ¥ is separated
from U .

Suppose S is infinite. Since.Z is finite, there exist separated sets 4 and
B such that

U VUY = A4UB and U¥ C B.

Then M = A\J U U B\U G and 4 is separated from \UJ¢¥ U B U G,
which is a contradiction. Hence ¢ isfinite. Suppose # # @. Then \U¥ is
separated from \U.¥, and hence \U## is separated from \U¢ U U.¥ U G.
However,

M=\U¥JUxUUY¥ UG,
which is a contradiction, and thus J# = @. Therefore

M=\ UUY¥ UG.
Let

V=M-UY¥ =UXUG.
Now V is the union of G and all components of M — G lying entirely in U.
Since each element L in ¥ is closed, V is open, and p € Vand V C U.
Now M — V = U has only a finite number of components, which

implies M is semi-locally connected at p, but this is a contradiction.
Hence the theorem is proved.

THEOREM 5. Let M be a connected space, and let U be a proper open
subset of M such that U is compact. If V is an open subset of U and C is a
component of M — V such that CM\ dV £ @and C M U #= 0, then there
exists a component K of U — V such that K C C, K N 3V # @, and
KMNoU = 0.
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Proof. Let C, U, and V be as described in the hypothesis. Assume no
component of C M U intersects both U and dV. Suppose L is a com-
ponent of C M U such that LN 9V = @and L N\ dU = @. Then Lis a
component of U — V. U — V is a proper open subset of M, and U — V
is compact, which implies L has a limit point in U — V. Hence L has a
limit point in dU or in d V. Since L is a closed subset of C N\ U, C M aU
# Por CM AV # B, which is a contradiction. Thus each component of
C N Uintersects dU or V.

Let ¢ be the collection of all components of C N\ U that intersect 4 U,
and let 5 be the collection of all components of C M U that intersect 9 V.
Suppose# = 0. If # is finite, then \U# is separated from C — U and
Us# U (C — U) = C, which is a contradiction. Hence 5 is infinite.
Since Us# U (C — U) = C and U is not separated from C — U,
\U# has a limit point p in dU. Since each element of J# is a continuum
in U, some net of elements of # converges to a continuum A4 containing
p. Each member of this net contains a point of V. Hence 4 intersects
both dU and V. C N U is closed, and therefore A C C N U, which
contradicts our assumption that ¥ = @. [f # = @, then C = U U
(C — U) does not intersect dU. Hence 57 = 0.

Suppose \Us# contains a limit point ¢ of \J2¢". Then some net of ele-
ments of K converges to a continuum B containing ¢. Since each element
of this net contains a point in dU, B M dU # @. However, B must be
a subset of the element of  that contains g, which implies some element
of S intersects U, and this is a contradiction. Hence \U¢ N\ U# = 0.
Similarly, \U2¢ N \UX# = @. Now \UJ¥ is separated from C — U, and
thus \U# is separated from \UX U (C — U). However,

U JUH U (C— T) = C,

which is a contradiction. Hence some component of C M U intersects
both aU and aV.

Whyburn [6] established the following:

THEOREM 6. If the locally compact connected metric space M is not semi-

locally connected at a point p € M, then p lies on a continuum of convergence
of M.

Theorem 6 need not be true for non-metric spaces. However, we do

get the somewhat weaker result.

THEOREM 7. If M us a locally compact space and M s not semi-locally
connected at the point p, then there exists a net that converges to a nondegener-
ate continuum K containing p such that each member of the net is a con-
tinuum of convergence.

_ Proof. By Theorem 4, there exists an open set U containing p such that
U is compact and if 7 is an open set with p € V and V C U, then
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M — V has infinitely many components that intersect both dU and dV.
Let ¥~ be the collection of all open subsets of U such that for each element
Vin? ,p € Vand V C U. Let V be a fixed element of #”, and let € be
the collection of all components of U — V that intersect both d U and 8 V.
By Theorem 5, each component of M — 1 contains at least one member
of €. Hence ¥ is infinite. U — V is closed, and so each member of € is
a continuum in the compact space U. Hence there exists a net of elements
of € that converges to a continuum K,. Since each member of the net
intersects both dU and 9V, K, intersects both dU and dV. There exists
at most one element of C of this net that intersects K,, and therefore if we
delete C from this net and denote the resulting net by N, then K, is a
continuum of convergence of Nin U — V.

Consider the net {K,, v € ¥’} of continua in the compact space U.
Some subset of {K,, V € ¥”} converges to a continuum K in U. Since
each K, intersects U, K intersects dUU. Now let W be an open set con-
taining p. There exists an element V in?” such thatp € Vand V C W.
Hence K, "\ W £ @. Therefore p € lim K, = K, p ¢ dU, and thus K is
nondegenerate.

Definitions. Two points ¢ and b of a connected space M are said to be
conjugate if no point of M separates a from b in M. If p is neither a cut
point nor an end point of a connected space M and p € M, then the set
consisting of p and all points of M conjugate to p is called the simple link
of M generated by p.

Theorem 8 was established in [6] for metric spaces. In proving this
theorem, Whyburn utilizes Theorem 6, which is proved using sequences.
His proof does not generalize to non-metric spaces.

THEOREM 8. If a point p of the locally compact connected space M 1is
neither a cut point nor an end point of M, then there exists a point q of M
such that p # q and p is conjugate to q.

Proof. Let p be a non-cut point of M. Suppose p is not conjugate to any
other point of M. Assume M is not semi-locally connected at p. Then by
Theorem 7, there exists a net of continua {Ka, a € 2/} such that each Ka
is a continuum of convergence and {Kai, a € .2/} converges to a non-
degenerate continuum K containing p. Let ¢ be a point in K different
from p. Since p is not conjugate to ¢, there exist a point x in M and two
separated sets A and B such that M — {x} = A\U B,q € 4,and p € B.
Now x must be a point in K. 4 is an open set containing ¢ and ¢ € lim Ka,
and so there exists an a in %/ such that for all @ = a;, Ka N\ 4 # 0.
Similarly, there exists an a, in.%/ such that for all @ = a,, Ka N B # .
Let b € %7 such thatb = a;and b = as. Then

KeMNA4#0 and Ky B # 0.
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Suppose x ¢ Kb. Then Kbs is a connected subset of M-{x} which implies
Ko C A or Ks C B, but this is a contradiction. Hence x € Ks. Now x
separates two points in Kp, and Kb is a continuum of convergence,
but this is impossible. Hence M is semi-locally connected at p.

Let U be an open set containing p such that U is compact. By Theorem
3, there exists an open set V' suchthatp € V, V C U,and M — V' is
connected. Also, V is compact. Let C be the component of V containing
p. Since 8V N C # 0, there is a point z in 3V N C. Now since z is not
conjugate to p, there exist a point ¥y and two separated sets E and F
such that M-{y} = E\J F,p € E,andz € F.If y ¢ C, then Cis a con-
nected subset of M-{y}, and C U {z} is a connected subset of M-{y},
which is a contradiction. Hence y € C, and therefore M — V C F, which
implies £ C V. E is open and dE = {y}. Thus ¢ is an end point of M,
and the theorem is proved.

THEOREM 9. Every simple link of a locally compact connected space M 1s
nondegenerate, and every point of M is a cut point, an end point, or a point
of a simple link of M.

Proof. Let L, be the simple link of M generated by p. By Theorem 8,
p is conjugate to some point ¢ in M different from p. This implies ¢ € L,,
and hence L, is nondegenerate. If p € M, and p is not a cut point and
not an end point of M, then there exists a point ¢ in M such that p is
conjugate to ¢. Hence ¢ is a point in the simple link of M generated by gq.
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